激光声表面波及其探测表面缺陷的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用有限元法研究了激光点源和环源在铝板表面热弹激发超声的物理过程,建立了激光线源激发声表面波的有限元模型,进而研究了线光源激发的声表面波与铝板表面缺陷的相互作用过程。
     建立了轴对称的有限元模型,模拟了不同光斑半径及脉宽的点光源激发出的超声导波波形,得到了激光能量的时空分布特征对超声信号波形的影响;模拟了环光源激发的超声导波在样品表面及内部的叠加过程,为利用环光源半径控制各种声波模式的聚焦深度提供了理论依据。
     基于平面应变的弹性理论,建立了线光源在铝板中激发声表面波的有限元模型;利用该模型研究了线光源激发的声表面波模式组成及波形特征,分析了具有不同半宽线源激光对声表面波位移信号特征的影响。
     采用有限元法模拟了激光线源激发的声表面波与不同深度表面缺陷的相互作用过程,讨论了Rayleigh波中心频率的反射与透射系数随表面凹痕深度的变化规律;分析了反射声表面波中各模式成分的到达时间随表面凹痕深度的变化规律,给出了反射表面波中不同模式成分的产生过程。
     采用优化的平面应变有限元模型模拟了激光在靠近表面缺陷的不同空间位置上激发的声表面波;波形信号随激发位置改变而呈现的变化特征,证实了移动激光线源扫查技术(SLLS)在检测表面微小缺陷方面具有的优越性;通过分析表面凹痕产生的反射声表面波的模式成分,研究了规则的表面凹痕导致超声波散射及模式转化的物理过程,解释了SLLS技术中位移信号变化的机理。数值模拟结果还表明:当表面缺陷的深度不大于激光激发的Rayleigh波的中心波长时,反射的Rayleigh波位移信号中含有明显的振荡成分;且振荡周期由表面凹痕的深度决定,与激光线源的半宽无关。
     本文的研究结果为激光声表面波的理论与数值模拟研究,以及移动激光光源扫查表面微裂纹的检测技术研究提供了理论依据。
Finite element method has been employed to simulate the generation of ultrasonic guided wave generated by the pulsed laser, which has been focused in the point- or ring-pattern. In addition, the finite element model of laser line source induced surface acoustic wave has been build, based on which the interaction of the laser generated SAW and surface notch on aluminates plate has been simulated in detail.
    The temporal and frequency domain characteristics of guided wave generated by the point laser source with varied radii and pulse durations have been investigated by the axisymmetry finite element model, the results demonstrated that the correlation between the time and frequency domain distribution of the guided wave intensity and the temporal and spatial domain characteristics of the laser energy. In addition, the interference effect of the guided wave induced by the ring-shaped laser source have been studied in detail, the results demonstrated that the focal depth of the ultrasonic modes can be controlled by the inner radius of the ring source.
    Based on plane strain model, line source irradiation on the aluminum plate has been polarized in two dimensional plane, and the plane strain finite element model have been established to simulate line source generated surface acoustic wave and analyze the influence on the characteristic waveform of half-width of line source.
    Plane strain finite element model have been used to model the interaction between laser generated surface acoustic wave and surface notch with varied depths, where the surface notch with rectangular shape is employed to represent the fatigue crack for the convenience of modeling, in addition, the reflected and transmitted coefficients for a frequency component have been calculated and employed to evaluate the depth of crack. In addition, the surface notch with a series depths and widths have been etched on the top surface to simulate the scattered process of the laser generated surface wave, the formation of two different components of the reflected Rayleigh wave have been investigate through arrival time of them.
    A scanning laser line source (SLLS) technique is simulated numerically by the optimized finite element model, and changes in amplitude and frequency content have been observed for ultrasound signals generated by laser scanning over a large aluminum block containing a small surface notch. The experimentally observed SLLS amplitude and
引文
1 R.E. Lee and R.M. White. Excitation of surface elastic waves by transient surface heating. Applied Physics Letters. 1968 12(1): 12-14
    2 Todd W. Murray and James W. Wagner. Laser generation of acoustic waves in the ablative regime. Journal of Applied Physics. 1999 85(4): 2031-2040.
    3 A.K. Kromine, P.A. Fomitchov, S. Krishnaswamy, J.D. Achenbach. Laser ultrasonic detection of surface-breaking discontinuities: Scanning laser source technique. Mater. Eval. 2000 58(2): 173-177
    4 李家伟,陈积懋.无损检测手册.北京:机械工业出版社,2002
    5 J.D. Achenbach. Wave Propagation in Elastic Solids[M]. Elsevier, New York, 1975
    6 C.M. Fortunko, R.B. King and M. Tan. Nondestuctive evaluation of planar defects in plates using low-frequency shear horizontal waves. Journal of Applied Physics. 1982 53: 3450-3458.
    7 J.L. Rose, J.J. Ditri, A. Pilarski, K. Rajana and F.T. Carr. A guided wave inspection technique for nuclear steam generator tubing. NDT&E International. 1994, 27:307-330
    8 D.N. Alleyne and P. Cawley. Long range propagation of Lamb waves in chemical plant pipework. Materials Evaluation. 1997, 55: 504-508
    9 A.K. Gautesen, J.D. Achenbach, and H. McMaken. Surface-wave rays in elastodynamic diffraction by cracks. J. Acoust. Soc. Am. 1978 63(6): 1824-1831
    10 D.A. Mendelsohn, J.D. Achenbach, L.M. Keer. Scattering of elastic waves by a surface-breaking crack. Wave Motion. 1980 2:277-292
    11 J.D. Achenbach and R.J. Brind. Interference of corner reflected and edge diffracted signals for a surface-breaking crack. J. Acoust. Soc. Am. 1981 70: 165-171
    12 H.S. Taun, C.M. Li. Rayleigh wave reflection from groove and step discontinuities. J. Acoust. Soc. Am. 1974 55: 1212-1217
    13 K. Kawasaki and T. Tanaka. Analysis of propagation characteristic of Bleustein-Gulyaev waves at surface imperfections. Appl. Phys. Lett. 1978 32: 83-85
    14 R. A. Simons, Reflection of Rayleigh waves by strips, grooves, and periodic array strips or grooves. J.Acoust. Soc. Am. 1978 63: 1292-1301
    15 B. A. Auld, E.M. Tsao. A variational analysis of edge resonance in a semi-infinite plate. IEEE Transactions on Sonics and Ultrasonics. 1977 24(5): 317-326
    16 G.S. Kino. The application of reciprocity theory to scattering of acoustic waves by flaws. J. Appl. Phys. 1978 49(6): 3190-3199
    17 S. Rokhlin. Diffraction of Lamb wave by a finite crack in an elastic layer. J. Acoust. Soc. Am. 1980 67:1157-1165
    18 S. Rokhlin. Resonance phenomena of Lamb waves scattering by a finite crack in a solid layer. J. Acoust. Soc. Am. 1981 69: 922-928
    19 K. Portz, G. I. Stegeman, and A.A. Maradudin. Rayleigh wave reflection at plate edges. Appl. Phys. Lett. 1981 38(11): 856-858
    20 应崇福.超声学.北京:科学出版社,1993
    21 袁易全,陈思忠.近代超声原理与应用.南京:南京大学出版社,1996
    22 I.A. Viktorov. Rayleigh and Lamb waves-physical theory and applications. New York: Plenum Press, 1967
    23 Hang-Sheng Tuan. On bulk waves excited at a groove by Rayleigh waves. J. Appl. Phys. 1975 46(1): 36-41
    24 Varun Jeoti and Ashok Jhunjhunwala. A Volume-Perturbation approach to the problem of Rayleigh wave scattering at Rectangular Groove. IEEE Trans. UFFC. 1992 39(1): 127-137
    25 B.R. Tittmann, F. Cohen-Tenoudji, M. de Billy, A. Jungman, G. Quentin. A simple approach to estimate the size of the small surface cracks with use of acoustical surface waves. Appl. Phys. Lett. 1978 33: 6-8
    26 B.R. Tittmann, O. Buck, L. Ahlberg, M. De Billy, F. Cohen-Tenoudji, A. Jungaman, G. Quentin. Surface wave scattering from elliptical cracks for failure prediction. J. Appl. Phys. 1980 51: 142-150
    27 V. Domarkas, B. T. Khuri-Yakub, and G.S. Kino. Length and depth resonances of surface cracks and their use for crack size estimation. Appl. Phys. Lett. 1978 33(7): 557-559
    28 Masahiko Hirao and Hidekazu Fukuoka. Scattering of Rayleigh surface waves by edge cracks: Numerical simulation and experiment. J. Acoust. Soc. Am. 1982 72(2): 602-606
    29 C.H. Yew, K. G. Chen, D.L. Wang. An experimental study of the interaction between surface waves and a surface breaking crack. J. Acoust. Soc. Am. 1984 75: 189-196
    30 L.J. Crane, M.D. Gilchrist, J.J.H. Miller. Analysis of Rayleigh-Lamb wave scattering by a crack in an elastic plate. Computational Mechanics. 1997 19: 533-537
    31 Masahiko Hirao and Hidekazu Fukuoka. Scattering of Rayleigh surface waves by edge cracks: Numerical simulation and experiment. J. Acoust. Soc. Am. 1982 72(2): 602-606
    32 S.W. Liu and S.K. Datta. Scattering of Ultrasonic Wave by Cracks in a Plate. Journal of Applied Mechanics. 1993 60: 352-357
    33 S.W. Liu and Jin H. Huang. Transient dynamic responses of a cracked solid subjected to in-plane loadings. International Journal of Solids and Structures. 2003 40: 4925-4940
    34 Christine Valle, Marc Niethammer, Jianmin Qu and Laurence J. Jacobs. Crack characterization using guided circumferential waves. J. Acoust. Soc. Am. 2001 110(3): 1282-1290
    35 Waled Hassan, and William Veronesi. Finite element analysis of Rayleigh wave interaction with finite-size surface-breaking cracks. Ultrasonics. 2003 41: 41-52
    36 P.J. Schafbuch, R.B. Thompson and F.J. Rizzo. Application of the boundary element method to elastic wave scattering by irregular defects. Journal of Nondestructive Evaluation. 1990 9: 113-127
    37 Veom Seok Ahn, John G. Harris, and Jan D. Achenbach. Numerical Analysis of the Acoustic Signature of a Surface-Breaking Crack. IEEE Trans. UFFC. 39(1): 112-118
    38 Younho Cho, and Joseph L. Rose. An elastodynamic hybrid boundary element study for elastic guided wave interactions with a surface breaking defect. International Journal of Solids and Structures. 2000 37: 4103-4124
    39 J.L. Rose, S.P. Pelts and Y. Cho. Modeling of flaw sizing potential with guided waves. Journal of Nondestructive Evaluation. 2000 19: 55-66
    40 Xiaoliang Zhao and Joseph L. Rose. Boundary element modeling for defect characterization potential in a wave guide. International Journal of Solids and Structures. 2003 40: 2645-2658
    41 W.T. Song, J.S. Popovics, J.C. Aldrin and S.P. Shah. Measurement of surface wave transmission coefficient across surface-breaking cracks and notches in concrete. J. Acoust. Soc. Am. 2003 113(2): 717-725
    42 Xiaoliang Zhao, Joseph L. Rose. Boundary element modeling for defect characterization potential in a wave guide. International Journal of Solids and Structures. 2003 40: 2645-2658
    43 R.S. Edwards, S. Dixon and X. Jian. Enhancement of the Rayleigh wave signal at surface defects. J. Phys. D: Appl. Phys. 2004 37: 2291-2297
    44 S. Kenderian, B.B. Djordjevie, R.E. Green, Jr. Point and Line Source Laser generation of Ultrasound for Inspection of Internal and Surface Flaws in Rail and Structural Materials. Res. Nondestr. Eval. 2001 13: 189-200
    45 K. Mori, A. Spagnoli, Y. Murakami, G. Kondo and I. Torigoe. A new non-contacting non-destructive testing method for defect detection in concrete. NDT & E International. 2002 35: 399-406
    46 A.J.A. Bruinsma and J.A. Vogel. Ultrasonic noncontact inspection system with optical fiber methods. Applied Optics. 1988 27(22): 4690-4695
    47 R.E. Lee and R.M. White. Excitation of surface elastic waves by transient surface heating, Applied Physics Letters. 1968 12(1): 12-14
    48 LUKE S. Gournay. Conversion of Electromagnetic to Acoustic Energy by Surface Heating. J. Acoust. Soc.Am. 1966 40(6): 1322-1330
    49 A.M. Aindow, R.J. Dewhurst, D.A. Hutchins, and S.B. Palmer. Laser generated ultrasonic pulses at free metal surfaces. J. Acoust. Soc. Am. 1981 69(2): 449-455
    50 P.A. Fomitchov, A.K. Kromine, Y. Sohn, S. Krishnaswamy, J.D. Achenbach. Ultrasonic imaging of small surface-breaking defects using scanning laser source technique. Review of Progress in Quantitative Nondestructive Evaluation. 2002 21A: 356-362
    51 Franck Enguehard and Lionel Bertrand. Effects of optical penetration and laser pulse duration on laser generated longitudinal acoustic waves. J. Appl. Phys. 1997 84(2): 1532-1538
    52 J.C. Cheng, and S.Y. Zhang. Quantitative theory for laser-generated Lamb waves in orthotropic thin plates. Appl. Phys. Lett. 1999 74(14): 2087-2089
    53 Takao Tanaka and Yasukazu Izawa. Nondestructive detection of small defect by laser ultrasonics. SPIE. 2000 vol 3887: 341-348
    54 Takao Tanaka and Yasukazu Izawa. Nondestructive Detection of Small Internal Defects in Carbon Steel by Laser Ultrasonics. Jpn. J. Appl. Phys. 2001 40: 1477-1481
    55 A.C. Tam and H. Coufal. Photoacoustic generation and detection of 10-ns acoustic pulses in solids. Appl. Phys. Lett. 1983 42(1): 33-35
    56 G. Rosa, R. Oltra and M.-H. Nadal. Laser induced decohesion of coatings: probing by laser ultrasonics. Ultrasonics. 2002 40: 765-769
    57 Gaelle Rosa, Pandora Psyllaki, Roland Oltra, Sophie Costil and Christian Coddet. Simultaneous laser generation and laser ultrasonic detection of the mechanical breakdown of a coating-substrate interface. Ultrasonics. 2001 39: 355-365
    58 D.A. Hutchins, R.J. Dewhurst, S.B. Palmer and C.B. Scruby. Some applications of laser-generated ultrasound in metals. Ultrasonics Sysmposium. 1981: 798-801
    59 R.J. Dewhurst, C. Edwards, A.D.W, Mikie and S.B. Palmer. Estimation of the thickness of thin metal sheet using laser generated ultrasound. Appl. Phys. Lett. 1987 51(14): 1066-1068
    60 Lawrence P. Scudder, David A. Hutchins, and Ningqun Guo. Laser generated ultrasonic guided waves in fiber-reinforced plates-theory and experiment. IEEE trans. UFFC. 1996 43(5): 870-880
    61 R. Chona, C.S. Suh, and G.A. Rabroker. Characterizing defects in multi-layer materials using guided ultrasonic waves, Optics and Lasers in Engineering. 2003. 40: 371-378
    62 A. Neubrand and P. Hess, Laser generation and detection of surface acoustic waves: elastic properties of surface layers. J. Appl. Phys. 1992 71(1): 227-238
    63 Y.-H. Liu, T.-T. Wu and C.-K. Lee. Application of narrow band laser ultrasonics to the nondestructive evaluation of thin bonding layers. J. Acoust. Soc. Am. 2002 111(6): 2638-2643
    64 H. Ollendorf, D. Schneider, Th. Schwarz and A. Mucha. Non-destructive evaluation of TiN films with interface defects by surface acoustic waves. Surface and Coatings Technology. 1995 74: 246-252
    65 D.E.Chimeni. Guide wave in plate and their use in materials characteristics. Appl.Mech.Rev. 1997 50 247-284.
    66 J.B. Spicer, A.D.W. Micie and J.W. Wagner. Quantitative theory for ultrasonic wave in a thin plate. Appl. Phys. Lett. 1990 57(18): 1882-1884
    67 P.Hess. Laser diagnostics of mechanical and elastic properties of silicon and carbon films. Applied Surface Science. 1996 106: 429-437
    68 Zi-quan Li, Xiao-rong Zhang, Shu-yi Zhang and Zhong-hua Shen. Determination of the elastic constants of metal-matrix composites by a laser ultrasound technique. Composites Science and Technology. 2001 61: 1457-1463
    69 Hideo Cho, Shingo Ogawa and Mikio Takemoto. Non-contact laser ultrasonics for detecting subsurface lateral defects. NDT&E International. 1996 29(5):301-306.
    70 Harumichi SATO, Shizuka NAKANO, Hisato OGISO and Kazushi YAMANAKA. Evaluation of Standard Defects Using Surface Acoustic Waves Generated by Phase Velocity Scanning of Laser Interference Fringes. Jpn. J. Appl. Phys. 1997 36: 3267-3269
    71 Harumichi SATO, Hisato OGISO, and Kazushi YAMANAKA. Finite Element Method Analysis of Evaluation of Surface Micro Cracks Using Laser Ultrasound Generated by Phase Velocity Scanning Method. Jpn, J. Appl. Phys. 2003 42: 3184-3188
    72 A.C. Tam and H. Coufal. Photoacoustic generation and detection of 10-ns acoustic pulses in solids. Appl. Phys. Lett., 1983, 42(1): 33-35
    73 Joseph L. Rose. Guided wave nuances for ultrasonic nondestructive evaluation. IEEE Trans. UFFC. 2000 47(3): 575-583
    74 R.M. White. Generation of elastic waves by surface heating. J. Appl. Phys. 1963 34:3559-3567
    75 J.F. Ready. Effects of High-Powered Laser Radiation. London: Academic Press, 1971
    76 CB.Scruby, R.J.Dewhurst and S.B.Palmer. Quantitative studied of thermally generated elastic waves in laser-irradiated metals. J.Appl.Phys. 1980 51(12): 6210-6216
    77 R.J. Dewhurst, D.A. Hutchins, S.B. Palmer and C.B. Scruby. Quantitative measurement of laser generated acoustic waveform. J. Appl. Phys. 1982 53(6) 4064-4071
    78 L.R.F.Rose. Point-Source representation for laser-generated ultrasound. J.Acoust.Soc.Am. 1984 75(3): 723-732
    79 W. Arnold, B. Betz, and B. Hoffmann. Efficient generation of surface acoustic waves by thermoelasticity. Appl. Phys. Lett., 1985 47(7): 672-674
    80 P. A. Doyle. On epicentral waveforms for laser-generated ultrasound. J. Phys. D: Appl. Phys. 1986 19: 1613-1623
    81 F. Alan Mcdonald. Practical quantitative theory of photoacoustic pulse generation. Appl. Phys. Lett. 1989 54(16): 1504-1506
    82 F. Alan Mcdonald, On the precursor in laser-generated ultrasound waveforms in metals. Appl. Phys. Lett. 1990 56(3): 230-232
    83 Lei Wu Jian-Chun Chen Shu-Yi Zhang. Mechanisms of laser-generated ultrasound in plates. J. Phys D: Appl. Phys. 1995 28: 957-964
    84 T. Sanderson, C. Ume, J. Jarzynski. Longitudinal wave generation in laser ultrasonics. Ultrasonics. 1998 35:553-561
    85 苏琨,任大海,李建,尤政,王竹.激光致声技术的研究.光电工程.2002 29(5):68-72
    86 P.A. Doyle and C.M. Scala. Near-field ultrasonic Rayleigh waves from a laser line source. Ultrasonics. 1996 34: 1-8
    87 D. Royer and C. Chenu. Experimental and theoretical waveforms of Rayleigh waves generated by a thermoelastic laser line source. Ultrasonics. 2000 38: 891-895
    88 Bernstein J. and J. Spicer. Line source representation for laser-generated ultrasound in aluminum. J. Acoust. Soc. Am. 2000 107(3): 1352-1357
    89 Irene Arias, and Jan Do Achenbach. Thermoelastic generation of ultrasound by line-focused laser irradiation. International Journal of Solids and Structures. International Journal of Solids and Structures. 2003 40: 6917-6935
    90 Z.H. Shen, B.Q. Xu, X.W. Ni, J. Lu and S.Y. Zhang. Theoretical study on line source laser-based surface acoustic waves in two-layer structure in ablative regime. Optics & Laser Technology. 2004 36: 139-143
    91 Hyunjune Yim and Younghoon Sohn. Numerical simulation and visualization of elastic waves using mass-spring lattice model. IEEE Trans. UFFC. 2000 47(3): 549-558
    92 张鸿庆,王鸣.有限元的数学理论.北京:科学出版社,1991
    93 Zhenhuan Li, Wanlin Guo and Zhenbang Kuang. Three-dimensional elastic stress fields near notches in finite thickness plates. International Journal of Solids and Structures. 2000 37: 7617-7631
    94 K. Dai and L. Shaw. Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders. Acta Materialia. 2004 52:69-80
    95 M. Kass, S. Fukushima, Y. Gohshi et al. A basic analysis of pulsed photoacoustic signals using the finite element method. J. Appl. Phys. 1988 64(3): 972-976
    96 J.H. Lee and C.P. Burger. Finite element modeling of laser-generated Lamb waves. Computers & Stuctures 1995 54(3): 499-514
    97 X.M. Wu and M.L. Qian. Simulation of the finite element method on wave propagation in cylinders. Progress in Natural Science. 2001 11: s265-268
    98 B.Q. Xu, Z.H. Shen, X.W. Ni et al. Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system. Optics and Laser Technology. 2006 38: 138-145
    99 B.Q. Xu, Z.H. Shen, X.W. Ni et al. Numerical simulation of laser-induced transient temperature field in film-substrate system by finite element method. International Journal of Heat and Mass Transfer. 2003 46(25): 4963-4968
    100 B.Q. Xu, Z.H. Shen, X.W. Ni et al. Numerical simulation of laser-induced ultrasonic by finite element method. Journal of Applied Physics. 2004 94(4): 2116-2122
    101 B.Q. Xu, Z.H. Shen, X.W. Ni et al. Finite element modeling of laser-generated ultrasound in coating-substrate system. Journal of Applied Physics. 2004 94(4): 2106-2115
    102 Jeremy A. Cooper, Ross A. Crosbie and Richard J. Dewhurst et al. Surface Acoustic Wave Interactions with Cracks and Slots: A Noncontacting Study Using Lasers. IEEE Trans. UFFC. 1986 UFFC-33: 462-470
    103 R.J. Dewhurst, A.D.W. McKie, and S. B. Palmer. Further evidence for two-component surface acoustic wave reflections from surface breaking slots. Appl. Phys. Lett. 1986 49(25): 1694-1695
    104 Q.Shan and R.J. Dewhurst. Surface-breaking fatigue crack detection using laser ultrasound. Appl. Phys. Lett. 1993 62(21): 2649-2651
    105 Ch. Zhang and J.D. Achenbach. Dispersion and attenuation of surface waves due to distributed surface-breaking cracks. 1990 88(4): 1986-1992
    106 Z. Yan and P.B. Nagy. Thermo-optical modulation for improved ultrasonic fatigue crack detection in Ti-6Al-4V. NDT&E International. 2000 33: 213-223
    107 D. Clorennec, D. Royer and H. Walaszek. Nondestructive evaluation of cylindrical parts using laser ultrasonics. Ultrasonics. 2002 40:783-789
    108 Johanna R. Bernstein and James B. Spicer. Hybrid laser/broadband EMAT ultrasonic system for characterizing cracks in metals. J. Acoust. Soc. Am. 2002 111(4): 1685-1691
    109 Weimin Gao, Christ Glorieux and Jan Thoen. Study of circumferential waves and their interaction with defects on cylindrical shells using line-source laser ultrasonics. Journal of Applied Physics. 2002 91(9): 6114-6119
    110 B.R. Tittmann, O. Buck and L. Ahlberg. Surface wave scattering from elliptical cracks for failure prediction. J. Appl. Phys. 1980 51(1): 142-150
    111 R.L. Jungerman, B.T. Khuri-Yakub and G.S. Kino. Characterization of surface defects using a pulsed acoustic laser probe. Applied Physics Letter. 1984 44(4): 392-393
    112 James L. Blackshire and Shamachary Sathish. Near-field ultrasonic scattering from surface breaking cracks. Applied Physics Letters. 2002 80(18): 3442-3444
    113 R.J. von Gutfeld and R.L. Melcher. 20-MHz acoustic waves from pulsed thermoelastic expansions of constrained surfaces. Applied Physics Letter. 1977 30(6): 257-259
    114 P.A. Fomitchov, A.K. Kromine, Y. Sohn, S. Krishnaswamy, J.D. Achenbach. Ultrasounic imaging of small surface-breaking defects using scanning laser source technique. Review of Progress in Quantitative Nondestructive Evaluation. New York: Plenum Press, 2002 21 A: 356-362
    115 A.K. Kromine, P.A. Fomitchov, S. Krishnaswamy, J.D. Achenbach. Scanning laser source technique for detection of surface-breaking and sub-surface cracks. Review of Progress in Quantitative Nondestructive Evaluation. New York: AIP Press, 2000 19: 335-342
    116 A.K. Kromine, P.A. Fomitchov, S. Krishnaswamy, J.D. Achenbach. Detection of subsurface defects using laser based technique. Review of Progress in Quantitative Nondestructive Evaluation. New York: AIP Press, 2001 19: 1612-1617
    117 Tribikram Kundu. Ultrasonic Nondestructive Evaluation. CRC Press LLC, 2004
    118 Adam Cooney and James L. Blackshire. Non-contact NDE of microscopic surface-breaking cracks using laser generated and detected ultrasonic surfaee waves. Proceedings of SPIE. 2004 5393: 29-40
    119 Younghoon Sohn, Sridhar Krishnaswamy. Mass spring lattice modeling of the scanning laser source technique. Ultrasonics. 2002 39: 543-551
    120 Younghoon Sohn, Sridhar Krishnaswamy. Interaction of a scanning laser-generated ultrasonic line source with a surface-breaking flaw. J. Acoust. Soc. Am. 2004 115(1): 172-181
    121 Irene Arias, Jan D. Achenbach, A model for the ultrasonic detection of surface-breaking cracks by the scanning laser source technique. Wave Motion. 2004 39:61-75
    122 D. Alleyne and P. Cawley. A two-dimensional Fourier transform method for the measurement of propagating multimode signals. J. Acoust. Soc. Am. 1991 89(3): 1159-1168
    123 R. Daniel Costley Jr and Yves H. Berthelot. Dispersion curve analysis of laser-generated Lamb waves. Ultrasonics. 1994 32(4): 249-253
    124 Dong-Soo Kim and Hyung-Choon Park. Determination of dispersive phase velocities for SASW method using harmonic wavelet transform. Soil Dynamics and Earthquake Engineering. 2002 20: 675-684
    125 T.T. Wu and Y.Y. Chen. Wavelet analysis of laser-generated surface waves in a layered structures with unbond regions. Journal of Applied Mechanics. 1999 66: 507-513
    126 B. Castagnede, K.Y. Kim and W. Sachse. Determination of the elastic constants of anisotropic materials using laser-generated ultrasonic signals. J. Apply. Phys. 1991 70(1): 150-157
    127 M. Veidt and W. Sachse. Ultrasonic point-source/point-receiver measurements in thin specimens. J. Acoust. Soc. Am. 1994 96(4): 2318-2326
    128 J. F. Chai and T.T. Wu. Determinations of anisotropic elastic constants using laser-generated surface waves. J. Acoust. Soc. Am. 1994 95(6): 3232-3241
    129 S. Makarov, E. Chilla and H.J. Frohllch. Determination of the elastic constants of thin films from phase velocity dispersion of different surface acoustic wave modes. J. Appl. Phys. 1995 78(8): 5028-5034
    130 F. Hlawatsch and G. F. Boudreaux-Bartels. Linear and Quadratic time-frequency signal representations. IEEE Signal Process Mag. 1992 9(4): 21-67
    131 S.Mallat.信号处理的小波导引.北京:机械工业出版,2002
    132 L.科恩.时—频分析:理论与应用.西安:西安交通大学出版社,2000
    133 胡昌华.基于MATLAB的系统分析与设计(时频分析).西安:西安电子科技大学出版社,2001
    134 Boualem Boashash. Note on the Use of the Wigner Distribution for Time-frequency Signal Analysis. IEEE Transactions on Acoustics, Speech and Signal Processing. 1988 36(9): 1518-1521
    135 W.H. Prosser and Michael D. Scale. Time-frequency analysis of the dispersion of Lamb modes. J. Acoust. Soc. Am. 1999 105(5): 2669-2676
    136 Stephen Holland, Tadej Kosel, Richard Weaver and Wolfgang Sachse. Determination of plate source detector separation from one signal. Ultrasonics. 2000 38: 620-623
    137 许伯强,沈中华,倪晓武等.涂层.基底系统激光激发声表面波的时间-频率分析.激光技术.2004 28(6):609-612
    138 Baiqiang Xu, Zhonghua Shen, Xiaowu Ni et al. Determination of elastic properties of a film substrate system by using the neural networks. Applied Physics Letters. 2004 85: 6161-6163
    139 L. H. Yam, Y.J. Yan, and J.S. Jiang. Vibration-based damage detection for composite structures using wavelet transform and neural network identification. Composite Structures. 2003 60: 403-412
    140 Z. P. Wu, G.R. Liu and X. Han. An Inverse Procedure for Crack Detection in Anisotropic Laminated Plates Using Elastic Waves. Engineering with Computers. 2002 18: 116-123
    141 T. W. Murray, J. B. Deaton Jr, and J. W. Wagner. Experimental evaluation of enhanced generation of ultrasonic waves using an array of laser sources. Ultrasonics. 1996 34: 69-77
    142 Elena Biagi, Fabrizio Margheri and David Menichelli. Efficient Laser-Ultrasound Generation by Using Heavily Absorbing Films as Targets. IEEE Trans. UFFC. 2001 48(6): 1669-1680
    143 孙承伟.激光辐照效应.北京:国防工业出版社,2002
    144 J.C. Cheng and S.Y. Zhang. Quantitative theory for laser-generated Lamb waves in orthotropic thin plates. Appl. Phys. Lett. 1999 74: 2087-2091
    145 Frane Keith, S.B. Mark, Principle of Heat Transfer. 4th Ed. New York: Harper and Row, 1986
    146 徐荣青.高功率激光与材料相互作用力学效应的测试与分析.博士论文(南京理工大学),2004
    147 Z.H. Shen, S.Y. Zhang and J.C. Cheng. Theoretical study on surface acoustic wave generated by laser pulses in solids. Analytical Science. 2001 27(3): s204-207
    148 C. K. Jen, P. Cielo, J. Bussiere and F. Nadeau. Phase variation of focused surface acoustic wave. Apply. Phys. Lett. 1985 46(3): 241-243
    149 M.-H. Noroy, D. Royer, and M. Fink. Transient elastic wave generation by an array of thermoelastic source. Apply. Phys. Lett. 1993 63(24): 3276-3278
    150 Marie-Helene Noroy, Daniel Royer, and Mathias Fink. The laser-generated ultrasonic phased array: Analysis and experiments. J. Acoust. Soc. Am. 1993 94(4): 1934-1943
    151 Young SiK Kim, Herschel Rabitz and Mohsen Tadi et al. Generation of controlled acoustic waves by optimal design of surface loads with constrainted forms. Int. J. Eng. Sci. 1995 33(6): 907-920
    152 Xiao Wang, Michael G. Littman and John B. Mcmanus. Focused bulk ultrasonic waves generated by ring-shaped laser illumination and application to flaw detection. J. Appl. Phys. 1996 80(8): 4274-4281
    153 Wu Yaping, Shi Dufang and He Yulong. Study of the directivity of laser generated ultrasound in solids. J. Applo Phys. 1998 83(3): 1207-1212
    154 陆明万,罗学富.弹性理论基础.第2版.北京:清华大学出版社.2001
    155 Jan D. Achenbach. Laser excitation of surface wave motion, Journal of the Mechanics and Physics of Solids. 2003 51: 1885-1902
    156 R. L. Jungerman, B.T. Khuri-Yakub and G.S. Kino. Characterization of surface defects using a pulsed acoustic laser probe. Appl. Phys. Lett. 1984 44(4): 392-393
    157 Catherine CHENU, Daniel ROYER and Mathias FINK. Defect detection by surface acoustic waves generated by a multiple beam laser. IEEE. 1995 Ultrasonics Symposium, 821-824
    158 Masahiko Hirao and Hidekazu Fukuoka. Scattering of Rayleigh surface waves by edge cracks: Numerical simulation and experiment. J. Acoust. Soc. Am. 1982 72(2): 602-606
    159 Hang-Sheng Tuan. On bulk waves excited at a groove by Rayleigh waves. J. Appl. Phys. 1975 46(1): 36-41
    160 Varun Jeoti and Ashok Jhunjhunwala. A Volume-Perturbation approach to the problem of Rayleigh wave scattering at Rectangular Groove. IEEE Trans. UFFC. 1992 39(1): 127-137
    161 Kwun H, Bartels K A. Experimental observation of wave dispersion in cylindrical shells via time-frequency. J. Acoust. Soc. Am., 1995.97(6): 3905-3907
    162 Niethammer M, Jacobs L. Time-frequency representations of Lamb waves. J. Acoust. Soc. Am. 2001 109(5): 1841-1847
    163 Prosser W H, Seale M D. Time-frequency analysis of the dispersion of Lamb modes. J. Acoust. Soc. Am. 1999 105(5): 2669-2676
    164 Baiqiang Xu, Zhonghua Shen and Xiaowu Ni et al. Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system. Optics and Laser Technology. 2006 38: 138-145
    165 Jan D. Achenbach. Laser excitation of surface wave motion. Journal of the Mechanics and Physics of Solids. 2003 51: 1885-1902
    166 Irene Arias. Modeling of the Detection of Surface-Breaking Cracks by Laser Ultrasonics. Ph.D. thesis. NorthWeastern University, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700