镍基非晶复合涂层的半导体激光制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光熔覆技术是20世纪70年代随着大功率激光器的发展而兴起的一种新的表面工程技术。它是集激光加热熔化、熔池中物质交互作用及快速凝固成形等多学科交叉的一门新技术。而激光熔凝(激光重熔)处理是用较高功率密度的激光束,在金属或合金表面扫描,使表层金属熔化,随后快速冷却凝固。冷却速率通常为102~106K/s,有时甚至能达到1012K/s,从而得到细微的接近均匀的表层组织。因此利用激光熔覆获得稀释率极低的熔覆层,使得非晶合金体系的成分得到保证,再利用激光重熔产生的大凝固速度使得在传统晶体材料的表面制备非晶涂层成为可能。
     本文在低碳钢表面通过半导体激光熔覆+重熔的工艺制备了镍基非晶纳米晶复合涂层,主要研究内容有:Ni-Fe-B-Si-Nb非晶合金体系的成分设计与制备,涂层的显微组织和相结构的演变规律和形成机制,以及涂层硬度分布和耐磨性能的表征。主要研究成果如下:
     针对Ni-Fe-B-Si-Nb合金体系,基于判断非晶形成能力三条经验准则和共晶点准则进行了混合焓、归一化错配熵的计算和相图分析,在此基础上初步设计了合金成分范围。并结合合金元素含量对涂层非晶形成能力影响的试验研究,最终确定了适合采用激光熔覆+重熔制备非晶复合涂层的合金粉末成分为(Ni_(0.6)Fe_(0.4))_(68)B_(18)Si_(10)Nb_4(原子百分比),此时所得激光重熔涂层具有相对最大的非晶体积含量。
     系统研究了激光熔覆和激光重熔参数变化对重熔涂层非晶体积含量的影响。发现激光功率密度会影响稀释率,随激光功率密度的增加,熔覆层的熔深增加,熔池搅拌作用增强,稀释率也会提高。稀释率较低时,熔覆层内的成分和名义成分接近,因此在重熔层内获得了较大体积含量的非晶组织,而当稀释率较大时,导致重熔层内非晶含量降低,甚至不能形成非晶。在保证熔覆层成分接近名义成分的基础上,随激光功率密度的增加,熔覆层的组织和成分更加均匀,在激光重熔后,重熔层的非晶体积含量也随之增加。重熔时激光扫描速度为4m/min和5m/min时,重熔层内基本无非晶相生成,速度为6m/min时重熔层内开始形成非晶,随重熔时激光扫描速度的进一步增加,重熔层非晶含量也随之升高,当激光重熔扫描速度为9m/min时,重熔层内的非晶体积含量为64%。
     观察和分析了激光重熔层的组织分布,发现激光熔覆功率密度为12100W/cm~2,扫描速度为0.36m/min,激光重熔功率密度为53000W/cm~2,扫描速度大于6m/min(含)可在重熔层内获得非晶相,8m/min时,其重熔层组织主要为非晶相和NbC颗粒相,在其他参数条件下(非晶含量降低时),重熔层内还可能形成等轴晶、纳米晶相及枝晶相和非晶相的混合组织等。计算了(Ni_(0.6)Fe_(0.4))_(68)B_(18)Si_(10)Nb_4合金涂层在激光重熔时的热循环曲线,并结合热力学、动力学对激光熔覆+重熔条件下的非晶相形成特点及机制进行了探讨。结果表明,采用激光熔覆+重熔获得镍基非晶复合涂层的临界冷却速率约为10118.8K/s,高于相同成分的镍基合金在采用铜模吸铸制备大块非晶时的临界冷却速率。认为出现这一现象的主要原因是:热力学方面,在熔覆层/重熔层界面处会出现部分熔化区,以及在重熔层内部存在NbC颗粒相,都可以作为异质形核的基底,其形核自由能会降低,有利于形核,必须继续增加冷却速率才能防止晶体形核及晶粒长大行为的产生。动力学方面,由于采用激光重熔工艺,在激光重熔时会产生不可忽视的熔体流动和溶质迁移行为,加速了元素的长程扩散,因此也必须通过提高激光扫描速度(熔体冷却速率),降低熔体表面张力梯度和高温停留时间,来提高其非晶形成能力。
     系统测试了(Ni_(0.6)Fe_(0.4))_(68)B_(18)Si_(10)Nb_4合金激光熔覆+重熔涂层的显微硬度分布及耐磨性能。显微硬度测试结果表明在涂层截面上由表及里显微硬度值逐渐降低,在重熔层内其显微硬度值最大,并且随重熔层内非晶含量的增加,显微硬度值不断提高。激光重熔涂层的平均硬度和弹性模量分别为1227.9HV和277.4GPa,高于相同合金体系的大块非晶合金,探讨了重熔涂层的强化机制。摩擦磨损试验结果表明随摩擦转速、载荷以及摩擦时间的增加,涂层的失重逐渐增加。摩擦系数随载荷的增加呈减小的趋势。针对(Ni_(0.6)Fe_(0.4))_(68)B_(18)Si_(10)Nb_4合金激光熔覆涂层、激光重熔涂层(非晶复合涂层)以及大块非晶,H~3/E~(*2)比值可以反映对其耐磨性影响的变化规律,随H~3/E~(*2)比值的增加,耐磨性得到提高。重熔涂层非晶含量增加时,涂层耐磨性能也得到提高。
Laser cladding technology is a novel technology developed in1970s dueto the development of high power laser equipment. It is a multidisciplinarytechnology with laser heating and melting, mass exchange in the melted pooland rapid solidification. Laser melting or laser remelting is a technique that ahigh power density laser beam scans on surface of metals or alloys, leads tothe melting of surface metals, and solidifies followed. The cooling rate isusually at102~106K/s, even to1012K/s, so fine and homogeneous structurescould be obtained at the surface. It is possible to form composite amorphouslayer in the surface crystalline materials when using laser cladding andremelting process. The laser cladding process can give low dilution claddedcoating to guarantee the composition; laser remelting process can lead to highsolidification rate.
     In this paper, an amorphous composite coating was fabricated by usinghigh power diode laser cladding and remelting process on mild steel surface.Design and preparation of Ni-Fe-B-Si-Nb amorphous alloys systems wascarried out. The microstructure and phase were observed and analyzed. Themicrohardness and wear resistance properties of the coating were also tested.Some of main experimental results and conclusions are listed as follows.
     For Ni-Fe-B-Si-Nb alloy systems, based on the three empirical rules anddeep eutectic rule for high glass-foming ability in metallic glasses, the mixingenthalpy and mismatch entropy were calculated, the alloys phase diagrams were analyzed. A preliminary composition of the alloy is obtained.Furthermore, considering the characteristics of laser processing andexperimental studies, the final composition of (Ni_(0.6)Fe_(0.4))_(68)B_(18)Si_(10)Nb_4(at.%)was determined. The biggest amorphous volume fraction could be obtained inthe laser cladding and remelted coating.
     The influence of laser cladding and remelting processing parameters onamorphous volume fractions of the remelted coating was studiedsystematically. It can be seen that dilution ratio was affected by laser powerinput. With the increasing of laser power, the penetration and dilution willincrease. A high amorphous volume fraction could be obtained at low dilutioncoating where the nominal composition of the powder was kept. While forhigh dilution coating, the amorphous volume fraction was relatively low,even no amorphous phase was formed in the remelted coating. When thenominal composition was guaranteed, the structure and composition weremore homogeneous at higher laser power input. The amorphous volumefraction was also at higher standards in the remelted coating. The amorphousphase was not formed when the laser scanning speed is4m/min and5m/minduring the laser remelting process. For6m/min or more, the amorphous phasewas observed, and the amorphous volume fraction increased with theincreasing of laser scanning speed. The amorphous volume fraction was64%for6m/min.
     Structure of amorphous phase matrix and NbC particles were observedin the remelted coating when the laser cladding power was800W, scanningspeed was0.36m/min, laser remlting power was3500W and remeltingscanning speed was8m/min. The fine equiaxed grains, nano-grains anddendrites/amorphous structures could also be obtained in the remeltedcoating for low amorphous volume fraction remelted coatings. The thermalcycle of the coating during laser remelting process was calculated using FEM method. Combined with the thermodynamics and kinetic aspects, theformation characteristics and mechanisms of amorphous phase for lasercladding and remlting process were studied. The results showed that thecritical cooling rate was10118.8K/s for (Ni_(0.6)Fe_(0.4))_(68)B_(18)Si_(10)Nb_4alloyfabricated by laser cladding and remelting process which is higher than thatof BMGs. In thermodynamics aspect, the semi-melted zone atremlted/cladded interface and NbC particles in remelted zone are both thesites of heterogeneous nucleation. The barrier energy needed forheterogeneous nucleation is reduced. So much more cooling speed is neededto suppressing crystallization within the supercooled liquid. In kinetics aspect,the liquid flow and solute transport behavior in remelted pool can not beneglected, which accelerated the element diffusion. Therefore, the Surfacetention gradient and holding time at high termperature should be decreasedby increasing the scanning speed (cooling rate) during the laser remeltingprocess.
     The microhardness and wear resistance properties of the coating weretested systematically. The graded microhardness distribution was exhibited inthe coating, the microhardness increased from the interface of clad/substratesurface to the top of the remelted coating. The microhardness was higher forcoatings with bigger amorphous volume fraction. The mean microhardnessand elastic modulus are1227.9HV and277.4GPa, respectively which arehigher than that of the BMGs with same compositions. The strengtheningmechanism of this phenomenon was also studied. Wear tests results showedthat the wear losses increased with increasing of the wear rotation speed, loadand time. Friction coefficient decreased with the increase of load. The ratio ofH3/E*2can represent the changing rule of wear resistance properties of thecladded coating, remelted coating and BMGs. Wear resistance propertiesincreases with the increasing of H3/E*2ratio. In addition, the increase of amorphous volume fraction also leads to the increase of wear resistanceproperties of the remelted coating.
引文
[1]闫志杰,柴跃生.大块非晶合金.北京:兵器工业出版社,2005.
    [2]惠希东,陈国良.块体非晶合金.北京:化学工业出版社,2007.
    [3]徐滨士.装备再制造工程的理论与技术.北京:国防工业出版社,2007.
    [4]陈鹤鸣,赵新彦.激光原理及应用.北京:电子工业出版社,2009.
    [5] J. Kramer. Produced the first amorphous metals through vapor deposition, AnnlnPhys.,1934,37:19-21.
    [6] Brenner A, Couch D E, Williams K. Electro deposition of alloys of phosphorus withnickel or cobalt. J Res Natn Bur Stand,1950,44:109-119.
    [7] Turnbull D, Cohen M H. Concening reconstructive transformation and formation ofglass. J Chem Phys,1958,29:1049-1055.
    [8] Kilement W, Willens R, Duwez P. Non-crystalline structure in solidified good-siliconalloys. Nature,1960,187:869-870.
    [9] Pond R, Maddin R. Method of producing rapidly solidified filamentary castings. MetSoc of AIME-Trans,1969,245:2475-2476.
    [10]Chen H S, Krause J T, Coleman E. Elastic constants hardness and their implicationsto flow properties of metallic glasses.J Non-Cryst Solids,1975,18(2):157-171.
    [11]Inoue A, Nakamura T, Sugita T. Bulky La-A1-TM (TM: transition metal) amorphousalloys with high tensile strength produced by a high-pressure die casting method.Mater Trans JIM,1993,34:351-358.
    [12]Inoue A,Masumoto T. Mg-based amorphous alloys. Mater Sci Eng A,1999,173:1-8.
    [13]Peker A, Johnson W L. Highly processable metallic glass Zr41Ti14Cu12.5Ni10Be22.5.Appl. Phys. Lett.,1993,63:2342-2344.
    [14]Nishiyama N, Inoue A. Stability and nucleation behavior of glass-formingPd–Cu–Ni–P alloy with a critical cooling rate of0.067K/s. Intermetallics,2002,10:1141-1147.
    [15]Akihisa Inoue, Nobuyuki Nishiyama, Hisamichi Kimura. Preparation and thermalstability of bulk amorphous Pd40Cu30Ni10P20alloy cylinder of72mm in diameter.Mater Trans JIM1997,38:179-183.
    [16]Inoue A, Zhang T. Fabrication of bulk glassy Zr55Al10Ni5Cu30alloy of30mm indiameter by a suction casting method. Materials Transactions, JIM,1996,37:185-187.
    [17]Yokoyama Y, Mund E, Inoue A, Schultz L. Production of Zr55Cu30Ni5Al10glassy alloyrod of30mm in diameter by a cap-cast technique. Materials Transactions,2007,48:3190-3192.
    [18]Qingsheng Zhang, Wei Zhang and Akihisa Inoue. Preparation of Cu36Zr48Ag8Al8bulkmetallic glass with a diameter of25mm by copper mold casting. MaterialsTransactions,2007,48:629-631.
    [19]Zeng YQ, Nishiyama N, Inoue A. Development of Ni-Pd-P-B bulk metallic glasseswith high glass-forming ability. Materials Transactions,2009,50:1243-1246.
    [20]A. Inoue, A. Takeuchi. Recent development and application products of bulk glassyalloys. Acta Materialia,2011,59:2243–2267.
    [21]张哲峰,伍复发,范吉堂等.非晶合金材料的变形与断裂.中国科学G辑:物理学力学天文学.2008,38(4):349-372.
    [22]F. F. Wu, Z. F. Zhang, S. X. Mao, Compressive properties of bulk metallic glass withsmall aspect ratio. Journal of Materials Research,2007,22(2):501-507.
    [23]李金富,曹庆平,周尧和. Cu60Zr20Ti20块体金属玻璃在不同应变速率轧制时的组织变化.中国科学G辑:物理学力学天文学.2008,38(4):381-386.
    [24]姚可夫,陈娜. Pd-Si二元块体非晶合金.中国科学G辑:物理学力学天文学.2008,38(4):387-393.
    [25]徐涛,李工,高云鹏等.高温下Fe73Cu1.5Nd3Si13.5B9非晶合金结构演化的原位X射线研究.中国科学G辑:物理学力学天文学,2008,38(4):394-398.
    [26]马明臻,宗海涛,王海燕等. Zr基大块非晶合金熔体的流动性与成型性.中国科学G辑:物理学力学天文学.2008,38(4):399-405.
    [27]惠希东,刘雄军,高蕊等. Zr基金属玻璃原子结构研究.中国科学G辑:物理学力学天文学.2008,38(4):406-416.
    [28]张勇,周云军,惠希东等.大块金属玻璃及高熵合金的合金化作用.中国科学G辑:物理学力学天文学.2008,38(4):439-448.
    [29]黄永江,沈军,孙剑飞. Ti42.5Zr7.5Cu40Ni5Sn5块体非晶合金的形成、热稳定性与力学行为.中国科学G辑:物理学力学天文学.2008,38(4):417-422.
    [30]李磊,刘渊,张泰华等. Fe基块体非晶合金在纳米压入过程中的变形行为.中国科学G辑:物理学力学天文学.2008,38(4):423-429.
    [31]艾科,戴兰宏.球型压头下块体金属玻璃“隆起”现象的数值模拟研究.中国科学G辑:物理学力学天文学.2008,38(4):430-438.
    [32]郭晶,边秀房,李雪莲等. Gd, Pr基大块非晶形成合金的过热液体脆性与能量图谱的相关性.中国科学G辑:物理学力学天文学.2008,38(4):449-454.
    [33]张临财,江峰,张德红等.第二相对Zr基非晶复合材料力学性能的影响.中国科学G辑:物理学力学天文学.2008,38(4):455-464.
    [34]程旭,王清,陈伟荣等.基于团簇的Fe-B-Y-Nb四元块体非晶合金.中国科学G辑:物理学力学天文学.2008,38(4):465-470.
    [35]谌祺,柳林, Chan K. C..锆基块体非晶及非晶基复合材料在过冷液态区的形变行为.中国科学G辑:物理学力学天文学.2008,38(4):471-476.
    [36]赵昆,罗强,汪卫华.稀土基块体金属玻璃.中国科学G辑:物理学力学天文学.2008,38(4):337-348.
    [37]Y. H. Liu, G. Wang, R.J. Wang, et al.. Super plastic bulk metallic glasses at roomtemperature. Science,2007,315:1385-1388.
    [38]J. H. Na, W.T. Kim, D.H. Kim, S. Yi. Bulk metallic glass formation in Ni–Zr–Nb–Alalloy systems. Materials Letters,2004,58:778-782.
    [39]Donghua Xu, Gang Duan, William L. Johnson, Carol Garland. Formation andproperties of new Ni-based amorphous alloys with critical casting thickness up to5mm. Acta Materialia,2004,52:3493-3497.
    [40]J.H. Na, J.M. Park, K.H. Han, B.J. Park, W.T. Kim, D.H. Kim. The effect of Taaddition on the glass forming ability and mechanical properties of Ni–Zr–Nb–Almetallic glass alloys. Materials Science and Engineering A,2006,431:306–310.
    [41]L.Y. Chen, H.T. Hu, G.Q. Zhang, J.Z. Jiang. Catching the Ni-based ternary metallicglasses with critical diameter up to3mm in Ni–Nb–Zr system. Journal of Alloys andCompounds,2007,443:109–113.
    [42]J.Y. Lee, D.H. Bae, J.K. Lee, D.H. Kim. Bulk glass formation in theNi–Zr–Ti–Nb–Si–Sn alloy system. J. Mater. Res.,2004,19:2221-2225.
    [43]Yuqiao Zeng, Akihisa Inoue, Nobuyuki Nishiyama, Mingwei Chen. Remarkable effectof minor boron doping on the formation of the largest size Ni-rich bulk metallicglasses. Scripta Materialia,2009,60(11):925-928.
    [44]J.K. Lee, D.H. Bae, S. Yi, W.T. Kim, D.H. Kim. Effects of Sn addition on the glassforming ability and crystallization behavior in Ni–Zr–Ti–Si alloys. Journal ofNon-Crystalline Solids,2004,333:212–220.
    [45]J. B. Qiang, W. Zhang, A. Inoue. Ni–(Zr/Hf)–(Nb/Ta)–Al bulk metallic glasses withhigh thermal stabilities. Intermetallics,2009,17:249–252.
    [46]Qiang J. B., Zhang W., Inoue A.. Formation and thermal stability of Ni-based bulkmetallic glasses in Ni-Zr-Nb-Al system. Materials Transactions,2007,48(9):2385-2389.
    [47]T. Zhang and A. Inoue. New bulk glassy Ni-gased alloys with high strength of3000MPa. Mater. Trans.,2002,43:708-711.
    [48]Xinmin Wang, Isamu Yoshii, Akihisa Inoue, Yon-Han Kim and In-Bae Kim. Bulkamorphous Ni75-xNb5MxP20-xBy (M=Cr, Mo) alloys with large supercooling andhigh strength. Materials Transactions, JIM,1999,10:1130-1136.
    [49]Wei Zhang, Akihisa Inoue. Formation and mechanical properties of Ni-basedNi-Nb-Ti-Hf bulk glassy alloys. Scripta Materialia,2003,48:641-645.
    [50]Inoue Akihisa, Wei Zhang, Tao Zhang. Bulk amorphous, nano-crystalline andnano-quasicrystalline alloys IV: Thermal stability and mechanical strength of bulkglassy Ni-Nb-Ti-Zr alloys. Materials transactions–JIM,2002,43(8):1952-1956.
    [51]M.H. Lee, D.H. Bae, W.T. Kim and D.H. Kim, Ni-Based refractory bulk amorphousalloys with high thermal stability. Mater. Trans.2003,44:2084-2087.
    [52]W. Zhang and A. Inoue. Effects of Ti on the Thermal stability and glass-formingability of Ni-Nb glassy alloys. Mater. Trans.,2002,43:2342-2345.
    [53]Haein Choi-Yim, Donghua Xu, and William L. Johnson. Ni-based bulk metallic glassformation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X=B,Fe,Cu) alloy systems. Appl. Phys.Lett.,2003,82:1030-1032.
    [54]A. Kawashima, H. Habazaki, K. Hashimoto. Highly corrosion-resistant Ni-based bulkamorphous alloys. Mater. Sci. Eng. A,2001,304–306:753-757.
    [55]B. Shen, C. Chang, A. Inoue. Ni-based bulk glassy alloys with superhigh strength of3800MPa in Ni–Fe–B–Si–Nb system. Appl. Phys. Lett.,2006,88:201903.
    [56]C.L. Zhu, Q. Wang, Y.M. Wang, J.B. Qiang, C. Dong. Ni-based B–Fe–Ni–Si–Ta bulkmetallic glasses designed using cluster line, minor alloying, and element substitutions.Intermetallics,2010,18:791–795.
    [57]Leaonhardt M, Loser W, Lindenkreuz H G. Solidifieation kineties and phaseformation of undercooled eutectie Ni-Nb melts. Acta materialia,1999,47(10):2961-2968.
    [58]Chang H J, Park E S, Jung Y S, et al. The effeet of Zr addition in glass forming abilityof Ni-Nb alloy system. Journal of Alloys and Compounds,2007,434-435:156-159.
    [59]Tien H Y, Lin C Y, Chin T S. New ternary Ni-Ta-Sn bulk metallic glasses.Intermetallics,2006,14:1075-1078.
    [60]Yi S, Lee J K, Kim W T. Ni-based bulk amorphous alloys in the Ni-Ti-Zr-Si system.Journal of Non-Crystalline Solids,2001,291:132-136.
    [61]Liang W Z, Shen, J, Sun J F. Effect of Si addition on the glass forming ability of aNiTiZrAlCu alloy. Journal of Alloys and Compounds,2006,420:94-97.
    [62]包石磊.新型镍基非晶合金的制备与性能研究.兰州理工大学硕士学位论文,2008.
    [63]王一博,应丽霞,董国君,龚凡.激光熔覆技术研究进展及其工业应用.中国材料进展,2009,28(3):17-21.
    [64]丁阳喜,周立志.激光表面处理技术的现状及发展.热加工工艺,2007,36:69-72.
    [65]W.R. Morrow, H. Qi, I. Kim, J. Mzaumder, S.J. Skerlos. Environmental aspects oflaser-based and conventional tool and die manufacturing, Journal of CleanerProduction,2007,15:932-943.
    [66]李贵江,许长庆,孟丹,穆志宏.材料表面激光合金化研究进展.铸造技术,2008,29(8):1136-1139.
    [67]蔡军,梁海峰,刘国林.汽车大型覆盖件模具激光表面强化技术的应用.装备制造技术,2008,(7):25-27.
    [68]F. Bachmann. Industrial application of high power diode lasers in materials processing,Applied Surface Science,2003,208-209:125-136.
    [69]朱祖昌,叶俭.高功率二极管激光器在钢相变硬化中的应用现状.2008,33(8):16-20.
    [70]E. Kennedy, G. Byrne, D.N. Collins. A review of the use of high power diode lasers insurface hardening. Journal of Materials Processing Technology,2004,155-156:1855-1860.
    [71]董世运,马运哲,徐滨士.激光熔覆材料研究现状.材料导报,2006,20(6):5-9.
    [72]陈学定,韩文政.表面涂层技术.北京:机械工业出版社,1994,47-49.
    [73]徐滨士,刘世参.表面工程新技术.北京:国防工业出版社,2002.
    [74]梁会琴,晃明举,王东升.Ta2O5/Ni60激光熔覆层的耐蚀性研究.激光杂志,2007,28(6):78-79.
    [75]C. Navas, A. Conde, B.J. Fernandez, F. Zubiri, J.de Damborenea. Laser coating toimprove wear resistance of mould steel. Surface&Coating Technology,2005,194:136-142.
    [76]张维平,刘硕,马玉涛.激光熔覆颗粒增强金属基复合材料涂层强化机制.材料热处理学报,2005,26(1):70-74.
    [77]Sui Him Mok, Guijun Bi, Janet Folkes, Ian Pashby, Joel Segal. Deposition ofTi-6Al-4V using a high power diode laser and wire, Part II: Investigation on themechanical properties. Surface&Coatings Technology,2008,202(19):4613-4619.
    [78]J. Rams, A. Pardo, A. Ure a, R. Arrabal, F. Viejo, A.J. López. Surface treatment ofaluminum matrix composites using a high power diode laser. Surface and CoatingsTechnology,2007,202(4-7):1199-1203.
    [79]Z. Liu, J. Cabrero, S. Niang, Z.Y. Al-Taha. Improving corrosion and wearperformance of HVOF-sprayed Inconel625and WC-Inconel625coatings by highpower diode laser treatments. Surface and Coatings Technology,2007,201(16-17):7149-7158.
    [80]宋桂荣.激光重熔超音速火焰喷涂铁基合金涂层的组织和性能研究.天津大学硕士学位论文,2010.
    [81]张培磊,姚成武,丁敏,芦凤桂.激光熔覆制备非晶化涂层的研究进展.焊接,2009,(5):19-23.
    [82]Jones H. Observations on a structural transition in aluminium alloys hardened byrapid solidification. Mat. Sci. Eng.,1969,5:1-18.
    [83]D. Carvalho, S. Cardoso and R. Vilar. Amorphisation of Zr60Al15Ni25surface layers bylaser processing for corrosion resistance. Scripta Matcrialia,1997,31(4):523-527.
    [84]G. Y. Liang, T. T. Wong, J. Y. Su, C. H. Woo, Amorphous structure and properties oflaser clad Ni-Cr-Al coating on Al-Si alloy, Journal of Materials Science Letters,2000,19:1193-1196.
    [85]Xiaolei Wu, Youshi Hong. Fe-based thick amorphous-alloy coating by laser cladding,Surface and Coatings Technology,2001,141:141-144.
    [86]李刚. Zr基非晶合金激光熔覆与诱导自蔓延合成.大连理工大学博士学位论文,2003.
    [87]F. Audebert, R. Colaco, R. Vilar, H. Sirkin. Production of glassy metallic layers bylaser surface treatment. Scripta Materialia,2003,48:281–286.
    [88]Zhu Qingjun, Qu Shiyao, Wang Xinhong, et al. Synthesis of Fe-based amorphouscomposite coatings with low purity materials by laser cladding. Applied SurfaceScience,2007,253:7060-7064.
    [89]Tai Man Yue, Yun P. Su. Laser multi-layer cladding of Zr65Al7.5Ni10Cu17.5amorphousalloy on magnesium substrates. J. Mater. Sci.,2007,42:6153-6160.
    [90]A. Basu, A.N. Samant, S.P. Harimkar, J. Dutta Majumdar, I. Manna, Narendra B.Dahotre. Laser surface coating of Fe-Cr-Mo-Y-B-C bulk metallic glass compositionon AISI4140steel. Surface&Coatings Technology,2008,202:2623-2631.
    [91]Pei Lei Zhang, Zhu Guo Li, Cheng Wu Yao, Shun Yao, Feng Gui Lu. Amorphizationof Fe-Ni based alloys by laser cladding and remelting, Advanced Materials Science,2010,97-101:1420-1424.
    [92]Kaijin Huang, Changsheng Xie, T.M. Yue. Microstructure of Cu-based amorphouscomposite coatings on AZ91D magnesium alloy by laser cladding. J. Mater. Sci.Technol.,2009,25(4):492-498.
    [93]D.T.A. Matthews, V. Ocelik, D. Branagan, J. Th. M. de Hosson. Laser engineeredsurfaces from glass forming alloy powder precursors: Microstructure and wear,Surface and Coatings Technology,2009,203:1833-1843.
    [94]D.T.A. Matthews, V. Ocelik, Th. M. de Hosson. Tribological and mechanicalproperties of high power laser surface-treated metallic glasses, Materials Science andEngineering A,2007,471:155-164.
    [95]Chaoping Jiang, Jinshan Li, Hongchao Kou, Jiangbo Dai, Xiangyi Xue and HengzhiFu. Microstructure, phase and microhardness distribution of laser-deposited Ni-basedamorphous coating. International Journal of Surface Science and Engineering,2010,4(3):296-303.
    [96]Vamsi Krishna Ball, Amit Bandyopadhyay. Laser processing of Fe-based bulkamorphous alloy. Surface&Coatings Technology,2010,205:2661-2667.
    [97]Bingqing Chen, Yan Li, Yan Cai, Ran Li, Shujie Pang, Tao Zhang. Surfacevitrification of alloys by laser surface treatment. Journal of Alloys and Compounds,2012,511:215-220.
    [98]程江波.面向再制造的高速电弧喷涂铁基非晶纳米晶涂层制备与表征.上海交通大学博士学位论文,2009.
    [99]Cunshan Wang, Yongzhe Chen, Ting Li, Biao Yao. Composition design and lasercladding of Ni–Zr–Al alloy coating on the magnesium surface. Applied SurfaceScience,2009,256:1609–1613.
    [1]林巨才.现代硬度测量技术及应用.北京,中国计量出版社,2008.
    [2]朱瑛,姚英学,周亮.纳米压痕技术及其试验研究.工具技术,2004,38(8):13-16.
    [3] Oliver W C, Pharr G M. An imporved technique of determining hardness and elasticmodulus using load and displacement sensing indentation experiments. Journal ofMaterials Research,1992,7(6):1564-1583.
    [1]董世运,马运哲,徐滨士.激光熔覆材料研究现状.材料导报,2006,20(6):5-9.
    [2] Inoue A.. High strength bulk amorphous alloys with low critical cooling rates. Mater.Trans. JIM,1995,36:866-875.
    [3] Akira Takeuchi, Akihisa Inoue. Calculations of mixing enthalpy and mismatchentropy for ternary amorphous alloys. Materials Transactions, JIM,2000,41(11):1372-1378.
    [4] Jatin Bhatt, G. K. Dey, B. S. Murty. Thermodynamic and topological modeling andsynthesis of Cu-Zr-Ti-Ni-based bulk metallic glasses by mechanical alloying.Metallurgical and Materials Transactions A,2008,39:1543-1551.
    [5] Yaqiang Dong, Qikui Man, Huaijun Sun, Baolong Shen, Shujie Pang, Tao Zhang,Akihoro Makino, Akihisa Inoue. Glass-forming ability and soft magnetic properties of(Co0.6Fe0.3Ni0.1)67B22+xSi6xNb5bulk glassy alloys. Journal of Alloys and Compounds,2011,509S: S206–S209.
    [6]魏恒斗,陈学定,郝雷,张静,杨春秀,王翠霞.Ni-Fe-Si-B非晶合金的形成和热稳定性.兰州理工大学学报,2005,31(6):9-12.
    [7]魏恒斗,陈学定,陈自江,张静.Ni-Fe-Nb-Si-B非晶合金的形成和热稳定性.中国稀土学报,2005,23:158-161.
    [8] Z. P. LU, C. T. LIU. Role of minor alloying additions in formation of bulk metallicglasses: A Review. Journal of Materials Science,2004,39:3965-3974.
    [9] Akihisa Inoue, Tsutomu Shibata, Tao Zhang. Effect of Additional Elements on GlassTransition Behavior and Glass Formation Tendency of Zr-Al-Cu-Ni Alloys. MaterialsTransactions, JIM,1995,36(12):1420-1426.
    [10]N. Mitrovic, S. Roth, J. Eckert. Kinetics of the glass-transition and crystallizationprocess of Fe72xNbxAl5Ga2P11C6B4(x=0,2) metallic glasses. Applied Physics Letters,78:2145-2147.
    [11]Chunling Qin, Katsuhiko Asami, Tao Zhang, Wei Zhang, Akihisa Inoue. Effects ofAdditional Elements on the Glass Formation and Corrosion Behavior of Bulk GlassyCu-Hf-Ti Alloys. Materials Transactions, JIM,2003,44(5):1042-1045.
    [12]Akihisa Inoue, Baolong Shen. Formation and Soft Magnetic Properties ofCo-Fe-Si-B-Nb Bulk Glassy Alloys. Materials Transactions, JIM,2002,43(5):1230-1234.
    [13]Anding Wang, Mingxiao Zhang, Jianhua Zhang, He Men, Baolong Shen, Shujie Pang,Tao Zhang. FeNiPBNb bulk glassy alloys with good soft-magnetic properties. Journalof Alloys and Compounds,2012,536S: S354–S358.
    [14]惠希东,陈国良.块体非晶合金.北京:化学工业出版社,2007.
    [15]W. H. Wang, C. Dong, C. H. Shek. Bulk metallic glasses. Materials Science andEngineering R,2004,44:45–89.
    [16]A. Peker. Ph.D. Dissertation. California Institute of Technology,1994.
    [17]Hallemans, B., Wollants, P., Roos, J., Thermodynamic Reassessment and Calculationof the Fe-B Phase Diagram. Z. Metallkd.,1994,85:676–682.
    [18]Livio Battezzati, Carlo Antonione, Marcello Baricco. Undercooling of Ni-B and Fe-Balloys and their metastable phase diagrams. Journal of Alloys and Compounds,1997,247:164-171.
    [19]Marcello Baricco, Mauro Palumbo. Phase Diagrams and Glass Formation in MetallicSystems. Advanced Engineering Materials,2007,9(6):455-467.
    [20]Tokunaga, T., Ohtani, H., Hasebe, M.. Thermodynamic Study of Phase Equilibria inthe Ni-Fe-B System. Mater. Trans.,2005,46(6):1193–1198.
    [21]Raghavan, V..“The B-Fe-Ni (Boron-Iron-Nickel) System”, in “Phase Diagrams ofTernary Iron Alloys”. Indian Institute of Metals, Calcutta,1992,6A,387–394.
    [22]S.F. Guo, N. Li, C. Zhang, L. Liu. Enhancement of plasticity of Fe-based bulkmetallic glass by Ni substitution for Fe. Journal of Alloys and Compounds,2010,504S: S78-S81.
    [23]J. M. Park, G. Wang, R. Li, N. Mattern, J. Eckert, D. H. Kim. Enhancement of plasticdeformability in Fe-Ni-Nb-B bulk glassy alloys by controlling the Ni-to-Feconcentration ratio. Apllied Physics Letters,2010,96:031905.
    [24]Wulin Song, Peidi Zhu, Kun Cui. Effect of Ni content on cracking susceptibility andmicrostructure of laser clad Fe-Cr-Ni-B-Si alloy. Surface and Coatings Technology,1996,80:279-282.
    [25]Xiuying Yang, Xiao Peng, Jiang Chen, Fuhui Wang. Effect of a small increase in theNi content on the properties of a laser surface clad Fe-based alloy. Applied SurfaceScience,2007,253:4420-4426.
    [26]Wenge Li, Qianlin Wu. Effect of Ni addition on In-Situ WC-Cr3C2cermet coating bylaser controlled reactive synthesis use. Advanced Materials Research,2010,123-125:43-46.
    [1]钟敏霖,刘文金,任家烈.合金表面连续激光非晶化的研究和进展.机械工程材料,1996,20(5):19-23.
    [2]张庆茂.送粉激光熔覆应用基础理论的研究.中国科学院博士研究生学位论文,2000,8.
    [3] F.T. Cheng, K.H. Lo, H.C. Man. A preliminary study of laser cladding of AISI316stainless steel using preplaced NiTi wire. Mater. Sci. Eng. A,2004,380:20-29.
    [4] J.T. Hofman, D.F. de Lange, B. Pathiraj, J. Meijer. FEM modeling and experimentalverification for dilution control in laser cladding. Journal of Materials ProcessingTechnology,2011,211(2):187-196.
    [5]张庆茂,杨森,钟敏霖,刘文今.送粉式激光熔覆过程中激光有效能量的描述.激光技术,2002,26(5):321-324.
    [6] B. Shen, C. Chang, A. Inoue. Ni-based bulk glassy alloys with superhigh strength of3800MPa in Ni–Fe–B–Si–Nb system. Appl. Phys. Lett.,2006,88:201903.
    [7]李刚.Zr基非晶合金激光熔覆与诱导自蔓延合成.大连理工大学博士论文,2003.
    [8]长崎诚三,平林真.二元合金状态图集.北京:冶金工业出版社,2004.
    [9]梁勇,曾晓雁,佟百运,斯重遥.激光合金化熔池成分均匀性与形状系数的关系.金属学报,1990,26(2):B114-B118.
    [10]M. Picasso, A.F.A. Hoadley. Finite element simulation of laser surface treatmentsincluding convection in the melt pool. International Journal of Numerical Methods forHeat&Fluid Flow,1994,4:61-83.
    [11]Dietrich Lepski and Frank Bruckner. The theory of laser materials processing-LaserCladding. Springer Series in Materials Science,2009,119:235-279.
    [12]A. Grabowski, B. Formanek, M. Sozanska, M. Nowak. Laser remelting of Al-Fe-TiO3composite powder incorporated in an aluminum matrix. Journal of Achievements inMaterials and Manufacturing Engineering,2006,18:95-98.
    [13]Ramos J.A., Murphy J., Lappo K., Wood K., Bourell D.L., Beaman J.J.. Single-layerDeposits of Nickel Base Superalloy by means of Selective Laser Melting. Proceedingsof the13th Solid Freeform Fabrication Symposium,2002,211-223, Austin, Texas.
    [1]徐晖,谭晓华,夏雷,王庆,白琴,肖学山,董远达.大块非晶合金的研究进展.上海大学学报(自然科学版),2011,17:503-513.
    [2] D. Turnbull. Under what condition can a glass be formed?. Contemporary Physics,1969,10(5):473-488.
    [3] Inoue A, Zhang T, Masumoto T. Glass-formingability of alloys. Journal ofNon-Crystal Solids,1993,156(2):473-480.
    [4] Z.P. Lu, C.T. Liu. A new glass-forming ability criterion for bulk metallic glasses. ActaMaterialia,2002,50:3501-3512.
    [5] Xia L, Fang S S, Wang Q, et a1. Thermodynamic modeling of glass formation inmetallic glasses. Applied Physics Letters,2006,88:171905.
    [6] A. Inoue, A. Takeuchi. Recent development and application products of bulk glassyalloys. Acta Materialia,2011,59:2243–2267.
    [7] Nishiyama N, Inoue A. Stability and nucleation behavior of glass-formingPd–Cu–Ni–P alloy with a critical cooling rate of0.067K/s. Intermetallics2002,10:1141-1147.
    [8] S. Elangovan, S. Semeer, K. Prakasan. Temperature and stress distribution inultrasonic metal welding-An FEA-based study. Journal of materials processingtechnology,2009,209:1143-1150.
    [9]武传松.焊接热过程数值分析.哈尔滨:哈尔滨工业大学出版社,1990.
    [10]Bingqing Chen, Yan Li, Ran Li, Shujie Pang. Influence of laser surface melting onglass formation and tribological behaviors of Zr55Al10Ni5Cu30alloy. J. Mater. Res.,2011,26:2642-2652.
    [11]W.H. Wang, C. Dong, C.H. Shek. Bulk metallic glasses. Materials Science andEngineering R,2004,44:45-89.
    [12]W. Kurz, D. J. Fisher著,李建国,胡侨丹译.凝固原理.北京,高等教育出版社,2009.
    [13]Ralf Busch. The Thermophysical Properties of Bulk Metallic Glass-Forming Liquids.JOM (Journal of the Minerals, Metals and Materials Society),2000,52:39-42.
    [14]C.A. Angell. Formation of Glasses from Liquids and Biopolymers. Science,1995,267:1924-1935.
    [15]Akira Takeuchi, Akihisa Inoue. Calculations of dominant factors of glass-formingability for metallic glasses from viscosity. Materials Science and Engineering A,2004,375–377:449-454.
    [16]Medres B, Shepeleva L, Bamberger M. Liquidmovement in the melt pool during laseralloying or lasercladding by direct powder injection. Laser Eng.,2000,10:305-314.
    [17]Shakeel Safdar, Lin Li, M A Sheikh. Numerical analysis of the effects ofnon-conventional laser beam geometries during laser melting of metallic materials. J.Phys. D: Appl. Phys.,2007,40:593-603.
    [18]O. Momin, S.Z. Shuja, B.S. Yilbas. Laser induced melt pool formation in titaniumsurface: influence of laser scanning speed. International Journal of NumericalMethods for Heat&Fluid Flow,2012,22:990-1009.
    [19]Jean-Marie Drezet, Sélim Mokadem. Marangoni convection and fragmentation inlaser treatment. Materials Science Forum,2006,508:257-262.
    [20]T. Chande, J. Mazumder. Mass transport in laser surface alloying: Iron-nickel system.Appl. Phys. Lett.,1982,41:41-42.
    [21]惠希东,陈国良.块体非晶合金.北京:化学工业出版社,2007.
    [22]Sindo Kou. Welding Metallurgy. Wiley-Interscience,2002.
    [23]D. Turnbull, M.H. Cohn. In modern aspects of vitreous state. Kinetics ofheterogeneous nucleation. London: Butterworth,1960.
    [24]D.M. Herlach, Nonequilibrium solidification of undercooled metallic melts. Mater.Sci. Eng. R,1994,12:177-272.
    [25]张振忠,杨根仓,陈光.深过冷Fe-B-Si共晶合金凝固组织纳米化机制探讨.材料科学与工艺,2001,9(4):342-346.
    [1]温诗铸.材料耐磨研究的进展与思考.摩擦学学报,2008,28(1):1-5.
    [2] M.Z. Ma, R.P. Liu, Y. Xiao, D.C. Lou, L. Liu, Q. Wang, W.K. Wang. Wear resistanceof Zr-based bulk metallic glass applied in bearing rollers. Materials Science andEngineering: A,2004,386:326-330.
    [3] Mamoru Ishida, Hideki Takeda, Nobuyuki Nishiyama, Kazuhiko Kita, YukiharuShimizu, Yasunori Saotome, Akihisa Inoue. Wear resistivity of super-precisionmicrogear made of Ni-based metallic glass. Materials Science and Engineering: A,2007,449–451:149-154.
    [4] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys.Acta Mater.,2007,55:4067-4109.
    [5] Braham Prakash. Abrasive wear behaviour of Fe, Co and Ni based metallic glasses.Wear,2005,258:217-224.
    [6]张泰华,杨业敏.纳米硬度技术在表面工程力学性能检测中的应用.中国机械工程,2002,13(24):2148-2151.
    [7] Wei Hua Wang. The elastic properties, elastic models and elastic perspectives ofmetallic glasses. Progress in Materials Science,2012,57:487-656.
    [8] M. Song, Y. Y. Sun, Y. H. He, S. F. Guo. Structure related hardness and elasticmodulus of bulk metallic glass. Journal of applied physics,2012,111:053518.
    [9] Wilson Acchara, Carlos Alberto Cairob. The Influence of (Ti,W)C and NbC on theMechanical Behavior of Alumina. Materials Research,2006,9:171-174.
    [10]T. Gladman. Precipitation hardening in metal. Materials Science and Technology,1999,15:30-36.
    [11]刘家浚.材料耐磨抗蚀及其表面技术概论.北京:机械工业出版社,1986.
    [12] Inoue A, Zhang T, Ishihara S, Saida J, Matsushita M. Preparation and mechanicalproperties of nanoquasicrystalline base bulk alloys. Scripta Materialia,2001,44:1615-1619.
    [13] Eckert J, Kuhn U, Mattern N, Reger-Leonhard A, Heilmair M. Bulk nanostructuredZr-based multiphase alloys with high strength and good ductility. Scripta Materialia,2001,44:1587-1590.
    [14] D.K. Misra, S.W. Sohn, W.T. Kim, D.H. Kim. Plastic deformation in nanostructuredbulk glass composites during nanoindentation. Intermetallics,2009,17:11-16.
    [15]盛骤,谢式千,潘承毅.概率论与数理统计.北京:高等教育出版社,2010.
    [16] J. F. Archard, Contact and rubbing of flat surfaces. J. Appl. Phys.,1953,24:981-988.
    [17] F.P. Bowden, D. Tabor, Friction and lubrication of solid. Clarendon press, Oxford.1954.
    [18]吴宏. Zr基块体非晶合金室温塑性变形与摩擦磨损行为研究.中南大学博士学位论文,2011.
    [19] A. Leyland, A. Matthews. On the significance of the H/E ratio in wear control: ananocomposite coating approach to optimized tribological behavior. Wear,2000,246:1–11.
    [20] A. Matthews, A. Leyland, K. Holmberg, H. Ronkainen, Design aspects for advancedtribological surface coatings. Surface and Coatings Technology,1998,100:1-5.
    [21] J. Musil, M. Jirout. Toughness of hard nanostructured ceramic thin films. Surface&Coatings Technology,2007,201:5148-5152.
    [22] T.Y. Tsui, G.M. Pharr, W.C. Oliver, C.S. Bhatia, R.L. White, S. Anders, A. Anders, I.G.Brown, Nanoindentation and nanoscratching of hard carbon coatings for magneticdisks. Mater. Res. Soc. Symp. Proc.,1995,383:447-452.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700