LD泵浦Nd:YAG透明陶瓷全固态激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自激光器诞生以来,人们一直没有停止探索新激光介质材料的脚步。按照所用的激光介质种类分,激光器可分为气体激光器、染料激光器、半导体激光器和固体激光器。其中固体激光器由于体积小、效率高、输出稳定、泵浦灵活等优点,在国防、科技、医疗等各个领域都有广泛应用。一直以来,单晶是固体激光器中应用最广泛的激活介质,其类型的多样化决定了激光器的多样化,大大增加了激光器的设计灵活性。目前在高功率固体激光器中,Nd:YAG晶体由于其良好的热学、光学等综合性能,成为最成熟和应用最广泛的激光介质,但它也存在发展瓶颈,比如掺杂浓度低、生长成本高等;在中小功率固体激光器中,Nd:YVO4晶体由于具有较大的吸收和发射截面而得到普遍应用,但热效应明显以及光损伤阈值较低的缺陷影响了其在高功率激光器中的应用。
     近年来,以透明陶瓷作为激光介质的固体激光器引起了人们越来越多的关注。透明陶瓷作为一种新兴材料,具有高热导率、低电导率、高硬度、耐磨损、耐腐蚀等一系列优异的综合性能。与玻璃相比,陶瓷具有更好的韧性和抗光伤能力;与单晶相比,陶瓷具有更短的生产周期、更高的掺杂浓度和更低的生产成本。衡量透明陶瓷质量的参数主要有:散射率、气孔体积、晶粒尺寸和晶界宽度等。随着陶瓷制备工艺的日趋精湛,上述各参数得到了不断改进,出现了一系列优秀的透明陶瓷材料,例如:Nd:YAG陶瓷、Yb:YAG陶瓷、Yb:Y2O3陶瓷和Nd:Lu2O3陶瓷等。其中Nd:YAG陶瓷已经实现了部分产业化并且在光谱性能、荧光寿命等方面达到了与Nd:YAG单晶一致的程度,再加上易于生长成大尺寸、允许做成高掺杂浓度等特点弥补了Nd:YAG单晶所存在的缺陷,为固体激光器的发展带来了更加广阔的前景。
     本文系统研究了以Nd:YAG透明陶瓷作为激光介质的全固态激光器的连续、脉冲以及双波长的输出性能,并与某些单晶的实验结果进行了比较,其主要研究内容包括:
     1)对LD泵浦的Nd:YAG陶瓷1.06μm、1.3 pm和946 nm连续激光器进行了研究。1.06μm连续激光实验中,当泵浦功率为21.6 W时,获得了11.3 W的连续激光输出,相应的光-光转换效率和斜效率分别为52.3%和54.4%。在高泵浦功率下并未出现饱和现象,因此继续加大泵浦功率有望获得更高输出。1338 nm连续激光实验中,当泵浦功率为20.5 W时,获得了1.05 W的连续激光输出,相应的光-光转换效率为5.1%。由于在1.3μm波段存在1319 nm和1338 nm的模式竞争,为了得到单一的1338 nm波长激光输出,在腔内加入了损耗片以抑制1319nm波长激光,因此转换效率较低。946 nm连续激光实验中,分别采用了三块不同长度的陶瓷样品,通过理论计算和实验验证得出了陶瓷的最佳长度。利用长度为5 mm的陶瓷样品,当吸收泵浦功率为10.5 W时,获得了1.46 W的连续激光输出,相应的光-光转换效率和斜效率分别为13.9%和17.9%。
     2)利用KTP和BiBO作为倍频晶体,对LD泵浦的Nd:YAG陶瓷连续倍频绿光激光器进行了研究。实验中发现,KTP晶体的倍频性能要优于BiBO晶体,当利用KTP晶体进行倍频时,泵浦功率为26.4 W时,绿光输出功率为1.86 W,光-光转换效率为7%。在输出功率为1 W时用针孔法对绿光光斑的一维空间分布进行了测量,结果显示符合高斯分布,经计算光束传输因子M2约为1.7。这是国内首次利用Nd:YAG陶瓷进行的LD端面泵浦高功率连续波绿光输出。
     3)对LD泵浦的Nd:YAG陶瓷1.06μm被动调Q脉冲激光器进行了研究。1.06μm脉冲激光实验中,分别用到了Cr:YAG和GaAs两种饱和吸收体。Nd:YAG陶瓷/Cr:YAG被动调Q实验采用了三块不同初始透过率的饱和吸收体,所得到的最大脉冲能量、最短脉冲宽度和最高峰值功率分别为:188μJ、3.16 ns和59.5 kW。Nd:YAG陶瓷/GaAs被动调Q实验所得到的最短脉冲宽度、最大单脉冲能量以及最高峰值功率分别为为17 ns、41.6μJ和2.44 kW。通过与Nd:LuVO4晶体、Yb:NaY(WO4)2晶体被动调Q实验结果的比较,突显了Nd:YAG陶瓷在高功率激光器应用中的优势。
     4)对LD泵浦的Nd:YAG陶瓷三种不同的双波长激光器进行了研究。首次实现了Nd:YAG陶瓷1052 nm连续激光输出,最大输出功率为6.19 W,相应的光-光转换效率和斜效率分别为35.8%和39%。以Cr4+:YAG作为饱和吸收体和调制选频器件,实现了1064 nm和1052 nm双波长脉冲激光输出,并从理论上解释了两种波长的产生原因和顺序,其中最短脉冲宽度、最大脉冲能量和最高峰值功率分别为:4.8 ns、103.2μJ和21.5 kW。实现了1319 nm和1338 nm双波长连续和脉冲激光输出,并测量了总输出功率中1319 nm和1338 nm激光所占比例,最大连续输出功率为5.92 W,最大脉冲输出功率为226 mW,最短脉冲宽度和最高重复频率分别为15 ns和133 kHz。利用激光介质的高增益特性,直接将其未镀膜的抛光端面作为输出耦合镜,实现了Nd:YAG陶瓷、Nd:YAG晶体、Nd:YVO4晶体免镀输出镜介质膜的1064 nm连续激光。其中利用陶瓷得到的最大输出功率达到1.74W,光-光转换效率和斜效率分别为13.0%和19.3%,优于相同实验条件下Nd:YAG晶体和Nd:YVO4晶体的结果。在此基础上实现了1064 nm、1319 nm、1338 nm多波长连续激光运转,最大输出功率为3.2 W。
     通过以上研究,证明了Nd:YAG陶瓷作为激光工作物质的优越性,预示了它在多种固体激光装置中具有重要应用前景。
To make laser device more and more efficient, people never stop searching for new laser gain material ever since the day when laser was invented. According to different laser materials, there are four series of lasers, gaseous state laser, dye laser, semi-conductor laser and solid state laser. Due to the compactness, high efficiency, stable output and various pump modes, all-solid-state lasers have wide applications in national defense, scientific research and medical treatment. Single crystals are the most popular laser gain material,the variety of the single crystal allows various laser design proposals. Due to the good thermal and optical characteristics, Nd:YAG crystal has been considered to be an exellent laser gain medium in high power solid-state lasers, but it has its own defects, such as low doping level and high cost. Nd:YVO4 crystal has large absorption and emission cross-sections, it is favorable in middle-power and pulsed laser operation, but the serious thermal effect and low damage threshold show its limit in high-power laser applications.
     In recent years, people became more and more interested in ceramic lasers. As a newly developed laser material,transparent ceramics have a series of good characteristics, such as high thermal conductivity, low electrical conductivity, high hardness et al. Compared with glass, ceramic has better toughness and higher damage threshold. Compared with single crystal,ceramic has shorter growing period and higher doping level.With the development of the sintering technology, many excellent ceramic gain materials have been obtained, such as Nd:YAG ceramic, Yb:YAG ceramic, Yb:Y2O3 ceramic, Nd:Lu2O3 ceramic et al.Compared with Nd:YAG crystal, Nd:YAG ceramic has comparable optical and even better physicochemical characteristics. Meanwhile, ease of fabrication and high doping level make ceramic more useful in many fields.
     In this paper, we focused our research on the continuous wave (CW), pulsed and dual-wavelength Nd:YAG ceramic lasers, the main contents of this thesis are as following,
     1)LD-pumped CW 1064 nm,1338 nm and 946 nm Nd:YAG ceramic lasers were demonstrated. In the 1064 nm regime, we obtained 11.3 W CW output power at an incident pump power of 21.6 W, corresponding to an optical conversion efficiency of 52.3%, the slope efficiency was 54.4%. Under high pump power, no saturation was observed, which indicated higher power scaling can be expected. In the 1338 nm regime, we obtained 1.05 W CW output power at an incident pump power of 20.5 W, corresponding to an optical conversion efficiency of 5.1%. In the 946 nm regime, three different samples were used. With the 5 mm long Nd:YAG ceramic, we obtained 1.46 W CW output power at an incident pump power of 10.5 W, corresponding to an optical conversion efficiency of 13.9%, the slope efficiency was 17.9%.
     2) LD pumped Nd:YAG ceramic/KTP and Nd:YAG ceramic/BiBO green lasers were demonstrated. Through the experiment we found that the KTP crystal was superior to the BiBO crystal in frequency doubling. When the type-Ⅱcut KTP crystal was used as a frequency doubler, the maximum 532 nm green output was 1.86 W, and the optical conversion efficiency was 7%. The distribution of the green laser facula was found to be Gaussian type and the M2 factor was measured to be 1.7. To the best of our knowledge, this is the first report of a LD-end pumped high power Nd:YAG ceramic green laser.
     3) LD pumped Nd:YAG ceramic/Cr:YAG and Nd:YAG ceramic/GaAs passively Q-switched lasers were demonstrated. When the Cr:YAG crystal was used as saturable absorber, the largest pulse energy, shortest pulse width and highest peak power were measured to be 188μJ、3.16 ns and 59.5 kW, respectively. When the GaAs crystal was used as saturable absorber, the largest pulse energy, shortest pulse width and highest peak power were measured to be 41.6μJ、17 ns and 2.44 kW, respectively. Compared with the passively Q-switched results of Nd:LuVO4 and Yb:NaY(WO4)2 crystals, Nd:YAG ceramic has better performance.
     4) Three different kinds of dual-wavelength Nd:YAG ceramic lasers were studied. CW 1052 nm laser was obtained with Nd:YAG ceramic for the first time. The maximum output power was 6.19 W, corresponding to an optical conversion efficiency of 35.8% and slope efficiency of 39%. Using Cr:YAG as saturable absorber and frequency selector, we realized 1052 nm and 1064 nm dual-wavelength laser output, the largest pulse energy, shortest pulse width and highest peak power were measured to be 103.2μJ、4.8 ns and 21.5 kW, respectively. We realized 1319 nm and 1338 nm CW and pulsed dual-wavelength laser output. For both CW and pulsed output, we measured the ratio of 1319 nm and 1338 nm lasers. The maximum CW output power was 5.92 W and the pulsed part was 226 mW, the shortest pulse width and highest repetition rate were 15 ns and 133 kHz. Due to the high gain coefficient of laser materials, we realized 1064 nm Nd:YAG ceramic, Nd:YAG crystal and Nd:YVO4 crystal CW output laser without extra output coupler. The maximum output power was 1.74 W with Nd:YAG ceramic, corresponding to an optical conversion efficiency of 13.0%, the slope efficiency was 19.3%. Based on this idea, we realized 1064 nm,1319 nm and 1338 nm multi-wavelength laser output, the maximum output power was 3.2 W.
     With all the studies above, Nd:YAG ceramic has been proved to be an excellent laser gain material, which can find applications in variety of lasers.
引文
[1]T. H. Maiman, "Stimulated optical radiation in ruby", Nature,187,493 (1960).
    [2]W.克希耐尔, “固体激光工程”,科学出版社(2002)。
    [3]金光勇,王慧,“半导体泵浦固体激光器技术”,吉林大学出版社(2008)。
    [4]R. N. Hall, G. E. Fenner, et al, "Coherent light emission from GaAs junctions", Phys.Rev. Lett.9,366 (1962).
    [5]M. I. Nathan, W. P. Dumke, et al, "Stimulated emission of radiation from GaAs P-N junctions", Appl. Phys. Lett.1,62(1962).
    [6]N. Holoyak, Jr. and S. F. Bevacgua, "Coherent (visible) light emission from Ga(As1-xPx) junctions", Appl. Phys. Lett.1,82 (1962).
    [7]T. M. Quist, R. H. Rediker, R. J. Key, et al, "Semiconductor maser of GaAs", Appl. Phys. Lett.1,91(1962).
    [8]楼祁洪,漆云凤,周军,蔡虹,“高性能透明激光陶瓷及陶瓷激光器的最新应用进展”,红外与激光工程,37,993(2008)。
    [9]Y. Suemune, H. Ikawa, "Thermal conductivity of KMnF3, KCoF3 and KZnF3 single crystals", J. Phys. Soc. Jpn,19,1686 (1964).
    [10]刘颂豪,“透明陶瓷激光器的研究进展”,光学与光电技术,4,1(2006)。
    [11]R. L. Coble, "Preparation of transparent ceramic Al2O3", Am. Ceram. Soc. Bull. 38,507(1959).
    [12]S. E. Hatch, W. F. Parsons, R. J. Weagley, "Hot pressed polycrystalline CaF2:Dy2+ laser", Appl. Phys. Lett.5,153 (1964).
    [13]E. Carnall, S. E. Hatch, W. F. Parsons, "Optical studies on hot-pressed polycrystalline CaF2 with clean grain boundaries", Mater Sci. Res.,3,165(1966).
    [14]R. C. Anderson, US Patent,3640887(1972).
    [15]C. Greskovich, J. P. Chernoch, "Polycrystalline ceramic lasers", J. Appl. Phys.44, 4599(1973).
    [16]M. Sekita, H. Haneda, T. Yanagitani et al, "Induced emission cross section of Nd:Y3Al5O12 ceramic", J. Appl. Phys.67,453(1990).
    [17]A. Ikesue, T. Kinoshita, "Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers", J. Am. Ceram. Soc,78, 1033(1995).
    [18]I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, "Optical properties and laser characteristics of highly Nd-doped YAG ceramics", Appl. Phys. Lett.77,939 (2000).
    [19]Y. Sato, T. Taira, A. Ikesue, "Spectral parameters of Nd3+-ion in the polycrystalline solid-solution composed of Y3Al5O12 and Y3Sc2Al3O12", Jpn J. Appl. Phys.42,5071 (2003).
    [20]J. Saikawa, Y. Sato, T. Taira, A. Ikesue, "Absorption, emission spectrum properties and efficient laser performances of Yb:Y3ScAl4O12 ceramics", Appl. Phys. Lett.85,1898 (2004).
    [21]T. Yanagitani, H. Yagi, M. Ichikawa, Jpn Patent,10101333 (1998).
    [22]T. Ikegami, T. Mori, Y. Yajima et al., "Fabrication of transparent Yttria ceramics throught the synthesis of Yttrium Hydroxide at low temperature and doping by sulfate ions", J. Ceram. Soc. Jpn,107,297 (1999).
    [23]杨秋红,“激光透明陶瓷研究的历史与最新发展”,硅酸盐学报,37,476(2009)。
    [24]J. Lu et al., "Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state and optical materials", J. Alloy. Compounds 341,220-225 (2002).
    [25]H. Arnie, "Transparent ceramics spark laser advances", [J].S&TR, April:10-17 (2006).
    [26]闻雷,孙旭东,马伟民,“固相反应法制备Nd:YAG透明陶瓷”,无机材料学报,2,295(2004)。
    [27]李劲东,姜本学,潘裕柏,吴玉松,李江,徐军,冯锡淇,黄莉萍,郭景坤.“国产Nd:YAG陶瓷获得激光输出”,[J].中国激光,33,864(2006)。
    [28]许祖彦等,“国产Nd:YAG透明陶瓷实现10.0 W激光输出”,中国激光,34,660(2007)。
    [29]周勇等,“双端端泵国产透明陶瓷Nd:YAG激光器研究”,量子电子学报,25,257(2008)。
    [30]许毅,于海波,吴玉松,姜本学,李江,潘裕柏,梁晓燕,郭景坤,徐军,“激光二极管抽运的国产Yb:YAG陶瓷激光器”,[J].中国激光,34,1171(2007)。
    [31]Y. Feng, J. Lu, K. Takaichi, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Passively Q-Switched Ceramic Nd3+:YAG/Cr4+:YAG Lasers," Appl. Opt.43, 2944 (2004)
    [32]Y. Qi, Q. Lou, et al, "Experimental study of Ti:sapphire laser end-pumped Nd:YAG ceramic laser Q-switched by Cr4+:YAG saturable absorber", J. Opt. A: Pure Appl. Opt.8,550 (2006).
    [33]Y. Wu, J. Li, et al, "Diode-pumped passively Q-switched Nd:YAG ceramic laser with a Cr4+:YAG crystal saturable absorber", J. Am. Ceram. Soc.90,1629 (2007).
    [34]J. Kong, Z. Z. Zhang, et al, "Diode end-pumped passively Q-switched Nd:YAG ceramic laser with Cr4+:YAG saturable absorber", Laser Phys.18,1508 (2008).
    [35]冯涛,姜本学,蒋丹宇,徐军,施剑林,“Nd:YSAG透明陶瓷的制备及激光实验”,硅酸盐学报,36(2008)。
    [36]J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A.A. Kaminskii, H. Yagi and T. Yanagitani, "Optical properties and highly efficient laser oscillation of Nd:YAG ceramics", Appl.Phys.B,71,469 (2000).
    [37]Y. Qi, X. Zhu, Q. Lou, J. Ji, J. Dong and Y. Wei, "Nd:YAG ceramic laser obtained high slope-efficiency of 62% in high power applications," Opt. Express 13,8725 (2005).
    [38]D. Kracht, D. Freiburg, R. Wilhelm, et al. "Core-doped ceramic Nd:YAG laser", Optics Express,14,2690 (2006).
    [39]Rigo Peters, Christian Krankel, Klaus Petermann, and Gunter Huber, "Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency", Opt. Express,15,7075 (2007).
    [40]D. W. Trainor, "Ceramic slab Nd:YAG laser emits 5 kW", [J]. Laser Focus World, 41,16(2005).
    [41]L. Fornasiero, E. Mix, V. Peters, K. Petermann, and G. Huber, "New Oxide Crystals for Solid State Lasers", Cryst. Res. Technol.34,255(1999).
    [42]K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, S.A. Basun, "Rare-earth-doped sesquioxides", J. Lumin.87,973 (2000).
    [43]K. Petermann, L. Fornasiero, E. Mix, V. Peters, "High melting sesquioxides: crystal growth, spectroscopy, and laser experiments", Opt. Mater.19,67 (2002).
    [44]U. Griebner, V. Petrov, K. Petermann and V. Peters, "Passively mode-locked Yb:Lu2O3 laser," Opt. Express 12,3125 (2004).
    [45]P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, G. Erbert, "Highly efficient mode-locked Yb:Sc2O3 laser," Opt. Lett.29,391 (2004).
    [46]K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J.J. Romero, S. Kutovoi, J. Speiser, A. Giesen, "Highly Yb-doped oxides for thin-disc lasers," J. Cryst. Growth 275,135(2005).
    [47]J. Liu, M. Rico, U. Griebner, V. Petrov, V. Peters, K. Petermann, and G. Huber, "Efficient room temperature continuous-wave operation of an Yb3+:Sc2O3 crystal laser at 1041.6 and 1094.6 nm", Phys. Stat. Sol. (A) 202, R19-R21 (2005).
    [48]M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Diode-pumped 188-fs mode-locked Yb3+:Y2O3 ceramic laser", Appl. Phys. Lett.90,071101 (2007).
    [49]M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, "Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser", Opt. Express 14,12832 (2006).
    [50]张峻诚,王加贤,苏培林,韩磊,熊刚强,“激光二极管抽运Nd:YVO4和频黄光激光器的理论及实验研究”,光学学报,28,2365(2008)。
    [51]李德华,周薇,“氙灯泵浦的Nd:YAG激光器时间响应特性分析”,山东科技大学学报,26,87(2007)。
    [52]沈云,王海,“四能级原子系统中量子相干增强的Kerr非线性效应的研究”,量子光学学报,10,125(2004)。
    [53]杜英杰,张俊香,郜江瑞,“四能级系统中的原子相干效应”,量子光学学报,10,14(2004)。
    [54]李永放,张向阳,孙建锋,王永昌,“四能级系统中的ac-stark分裂研究”,物理学报,51,782(2002)。
    [55]郑加安,赵圣之,张行愚,王青圃,蒋志凌,“LD纵向泵浦固体激光器参数优化”,光电子激光,11,476(2000)。
    [56]林燕凤,张戈,朱海永等,“Nd:YAG调Q激光器双波长振荡机理分析”,物理学报,58,3909(2009)。
    [57]张志海,邢歧荣,王加贤,柴路,张伟力,王清月,“采用Cr4+:YAG为可饱和吸收体的Nd:YAG调Q锁模”,光电子·激光,10,508(1999)。
    [58]Lu J, Yagi H, Takaichi K, et al. "110W ceramic Nd3+:YAG laser", Appl Phys. B, 79,25 (2004).
    [59]Akio Ikesue, "Polycrystalline Nd:YAG ceramic lasers", Optical Materials,19, 183(2002).
    [60]万艳芬,杨鹏,“Nd:YAG透明激光陶瓷的光谱研究”,压电与声光,28,563(2004)。
    [61]M. Ciofini, A. Lapucci, "Compact scalable diode-pumped Nd:YAG ceramic slab laser", Appl. Optics,43,6174 (2004).
    [62]J. Ji, X. Zhu, C. Wang, Y. Feng, Q. Lou, "Comparison of laser performance of electro-optic Q-switched Nd:YAG ceramic/single crystal laser", Chinese Optics Letters,4,219 (2006).
    [63]T. Taira, A. Ikesue, K. Yoshida, "Diode-pumped Nd:YAG ceramics lasers", ASSL paper:CS4(1998).
    [64]I. Mukhin, O. Palashov, E. Khazanov, A. Ikesue, Y. Aung, "Experimental study of thermally induced depolarization in Nd:YAG ceramics", Optics Express,13, 5983 (2005).
    [65]M. Dubinskii, L. Merkle, J. Goff, V. Castillo, G. Quarles, "Laser studies of 8% Nd:YAG ceramic gain material", ASSP paer:MA4 (2005).
    [66]G. Xie, D. Tang, J. Kong, L. Qian, "Passively Q-switched Nd:YAG ceramic laser with GaAs saturable absorber", CLEOPR, paper:WP-007 (2007).
    [67]Z. Wang, H. Liu, J. Wang, Y. Lv, Y. Sang, R. Lan, H.Yu, X. Xu, Z. Shao, "Passively Q-switched dual-wavelength laser output of LD-end-pumped ceramic Nd:YAG laser", Optics Express,17,12076 (2009).
    [68]J. Lu, J. Lu, T. Murai et al., "36-W diode-pumped continuous-wave 1319 nm Nd:YAG ceramic laser", Optics Lett.27,1120 (2002).
    [69]L. Guo, W. Hou, H. Zhang, Z. Sun et al., "Diode-end-pumped passively mode-locked ceramic Nd:YAG laser with a semiconductor saturable mirror", Optics Express,13,4085 (2005).
    [1]S.G.P. Strohmaier, H.J. Eichler, J.F. Bisson, H. Yagi, K. Takaichi, K. Ueda, T. Yanagitani, and A.A. Kaminskii, "Ceramic Nd:YAG laser at 946 nm", Laser Phys. Lett.2,383 (2005).
    [2]R. Lavi, S.Jackel, Y. Tzuk et al. "Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level [J]. Appl Opt,38,7382 (1999).
    [3]V. Lupei, G. Aka, D. Vivien. "Quasi-three-level 946 nm CW laser emission of Nd:YAG under direct pumping at 885 nm into the emitting level [J].Opt Commun,204,399 (2002).
    [4]马海霞,楼祺洪,漆云凤,董景星,魏云荣,“Nd:YAG多晶透明陶瓷的光谱性质”,激光技术,28,488(2004)。
    [5]T. Y. Fan, R. L. Byer, "Diode laser-pumped solid-state lasers", IEEE J. Quantum Electron,24,895(1988).
    [6]P. Laporta, M. Brussard, "Design criteria for mode size optimization in diode-pumped solid-state lasers", IEEE J. Quantum Electron,27,2319 (1991).
    [7]戴特力,“半导体二极管泵浦固体激光器”,四川大学出版社,1993。
    [8]王正平,“LD泵浦Nd:YVO4固体激光器特性研究”,硕士论文,山东大学,1999。
    [9]T. Y. Fan, R. L. Byer, "Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser", [J]. IEEE J. Quantum Electron,23(5),605 (1987).
    [10]魏勇,张戈,黄呈辉,黄凌雄,位民,沈鸿元,“1318.8/1338 nm同时振荡双波长Nd:YAG激光器”,激光与红外,35,164(2005)。
    [11]刘伟仁,霍玉晶,何淑芳,“LD抽运的946 nm Nd:YAG激光器及其腔内倍频”,光电子·激光,13,247(2002)。
    [12]R. Koch, W. A. Clarkson et al., "Efficient room temperature CW Yb:glass laser pumped by a 946 nm Nd:YAG laser", Opt. Comm.,134,175(1997).
    [13]David G, Matthew S, Richard S. Conroy, et al."Blue micro-chip laser fabricated from Nd:YAG and KNbO3", [J]. Optics Letters,21,198 (1996).
    [14]V. Pruneri, R. Koch, P. G. Kazansky, et al. "49mW of CW blue light generated by first-order quasi-phase-matched frequency doubling of a diode-pumped 946 nm Nd:YAG", [J]. Optics Letters,20,2375 (1995).
    [15]C. Zhang, X. Y. Zhang, Q. P. Wang et al. "Diode-pumped Q-switched 946 nm Nd:YAG ceramic laser", Laser Phys. Lett.6,521 (2009).
    [16]钱世雄,王恭明,“非线性光学原理与进展”,复旦大学出版社,2001。
    [17]张玲,“LD泵浦的运转于准三能级的900nm附近激光器的研究”,中国科学院物理研究所,2006。
    [18]布洛姆伯根著,吴存恺,沈文达,沃新能译,“非线性光学”,科学出版社。
    [19]J. Wang, Y. Liu, J. Wei et al., "Growth, characterization and non-critical phase-matching of Niobium-doped KTP crystal", Cryst. Res. Technol.,32,319 (1997).
    [20]H. Hellwig, L. J. Bohaty, "Exceptional large nonlinear optical coefficients in the monoclinic bismuth borate BiB3O6 (BiBO). Solid State Comm.,109,249 (1999).
    [1]W.克希耐尔.孙文,江泽文,程国祥译。固体激光工程[M].北京:科学出版社(2002)。
    [2]王青圃,张行愚,刘泽金,李平,“激光原理”,山东大学出版社(2003)。
    [3]陈伟,叶艾,任竞骁,“高功率激光器电光调Q技术研究”[J].光学与光电技术,5(1):27-30(2007)。
    [4]练文,叶艾,“高效率电光调Q固体激光器的实验研究”[J].光学与光电技术,3(6):26(2005)。
    [5]王杰,姚建铨,王鹏,于意仲,施翔春,“LD抽运Nd:YAG激光器声光调Q”[J].中国激光,28(1):4(2001)。
    [6]朱筱玮,李爱云,于金涛,陈永丽,“新型结构声光调Q激光器研究”,光子学报,37,1726(2008)。
    [7]J. A. Morris, C. R. Pollock, "Passive Q-switching of a diode-pumped Nd:YAG laser with a saturable absorber", Opt. Lett.,15,440-442 (1990).
    [8]王薇,朱长虹,李正佳,“钕激光器被动调Q技术的发展”,光电子技术与信息,16(2003)。
    [9]J.J. Zayhowski, C. Dill, "Diode-pumped passively Q-switched picosecond microchip lasers", Opt. Lett.,19,1427-1429 (1994).
    [10]J.J. Zayhowski, "Passively Q-switched Nd:YAG microchip lasers and applications", J. Alloys Comp.,303,393-400 (2000).
    [11]H. Lei, M. Gong, Y. Ping, and L. Qiang, "Repetition rate continuously controllable passively Q-switched Nd:YAG bonded microchip laser", Laser Physics Letters,4,572-575 (2007).
    [12]J. Dong, A. Shirakawa, K. Ueda, "Switchable pulses generation in passively Q-switched multilongitudinal-mode microchip laser", Laser Physics Letters,4, 109-116(2007).
    [13]L. J. Qin, D.Y. Tang, G. Q. Xie, C. M. Dong, Z. T. Jia, and X. T. Tao, "High power continuous wave and passively Q-switched laser operation of a Nd:GGG crystal", Laser Physics Letters,5,100-103 (2008).
    [14]J. An, S. Zhao, G. Li, K. Yang, D. Li, J. Wang, M. Li, and Z. Zhuo, "LD-pumped passively Q-switched Nd:YVO4 green laser with a MgO-PPLN and Cr:YAG saturable absorber", Laser Physics Letters,5,193-196 (2008).
    [15]J. Yang, Q. Fu, J. Liu, and Y. Wang, "Experiments of a diode-pumped Nd:GdVO4/LT-GaAs Q-switched and mode-locked laser", Laser Physics Letters, 4,20-22(2007).
    [16]H. J. Qi, X. D. Liu, X. Y. Hou, Y. F. Li, and Y. M. Sun, "A c-cut Nd:GdVO4 solid-state laser passively Q-switched with Co:LMA lasing at 1.34 μm", Laser Physics Letters,4,576-579 (2007).
    [17]J.S. Ma, Y.F. Li, Y.M. Sun, H.J. Qi, R.J. Lan, and X.Y. Hou, "Passively Q-switched 1.34 μm Nd:GdVO4 laser with V:YAG saturable absorber", Laser Physics Letters,5,593-596 (2008).
    [18]R.J. Lan, M.D. Liao, H.H. Yu, Z.P. Wang, X.Y. Hou, X.G. Xu, H.J. Zhang, D.W. Hu, and J.Y. Wang, "3.3 ns Nd:LuVO4 micro-type laser", Laser Physics Letters,
    6,268-271 (2009).
    [19]J. An, S.Z. Zhao, Y.F. Li, G.Q. Li, K.J. Yang, D.C. Li, J. Wang, M. Li, and Z.G. Yu, "LD-pumped passively Q-switched Nd:LuVO4 laser with a GaAs output coupler", Laser Physics Letters,6,351-354 (2009).
    [20]M. Liu, J. Liu, L. Li, and S.S. Liu, "Experimental study on pulse characteristics of diode-pumped Q-switched Nd:KGW laser", Laser Physics Letters,6,437-440 (2009).
    [21]M. Li, S. Zhao, Y. Li, K. Yang, G. Li, D. Li, J. An, T. Li, and Z. Yu, "Passively Q-switched mode-locked Nd3+:LuVO4 laser by LT-GaAs saturable absorber" Laser Physics Letters,6,526-530 (2009).
    [22]J.J. Degnan, "Optimization of passively Q-switched lasers", IEEE J.Quantum Electron.,31,1890-1901(1995).
    [23]X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S.Zhang,"Optimization of Cr4+-doped saturable absorber Q-switched lasers", IEEE J. Quant. Electron.,33, 2286-2294(1997).
    [24]H. Sakai, H. Kan, and T. Taira, "1 MW peak power single-mode high brightness passively Q-switched Nd:YAG microchip laser", Optics Express,16, 19891-19899(2008).
    [25]G.J. Spuhler, R.Paschotta, R.Fluck, B.Braun, M.Moser, G.Zhang, E. Gini, and U. Keller. "Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers", J. Opt. Aoc. Am. B. 16,376-388 (1999).
    [26]J.J. Zayhowski, and P.L. Kelley. "Optimization of Q-switched lasers", IEEE J. Quantum Electron.27,2220-2225 (1991).
    [27]C. Maunier, J.L. Doualan, R. Moncorge et al., "Growth, spectroscopic characterization and laser performance of Nd:LuVO4, a new infrared material that is suitable for diode pumping", J. Opt. Aoc. Am. B.19,1794-1800, (2002).
    [28]Zhang H. J., Kong H. K., Zhao S. R et al. "Growth of new laser crystal Nd:LuVO4 by the Czochralski method", [J]. J Cryst. Growth,256,192 (2003).
    [29]Y. Feng, J. Lu, K. Takaichi, K. Ueda, H. Yagi, T. Yanagitani, and A.A.Kaminskii, "Passively Q-switched ceramic Nd:YAG/Cr:YAG lasers", Appl. Opt.,43,2944-2947 (2004).
    [30]Y. Qi, Q. Lou, Y. Liu, Y. Zhang, H. Ma, J. Dong, and Y. Wei, "Experimental study of Ti:sapphire laser end-pumped Nd:YAG ceramic laser Q-switched by Cr4+:YAG saturable absorber", J. Opt. A:Pure and Applied Optics,8,550-554 (2006).
    [31]Y. Wu, J. Li, Y. Pan, Q. Liu, and J. Guo, "Diode-pumped passively Q-switched Nd:YAG ceramic laser with a Cr4+:YAG crystal-satiable absorber", J. Am. Ceram. Soc,90,1629-1631 (2007).
    [32]J. Kong, Z. Z. Zhang, D. Y. Tang, G. Q. Xie, C. C. Chan, and Y. H. Shen, "Diode end-pumped passively Q-switched Nd:YAG ceramic laser with Cr:YAG saturable absorber", Laser Physics,18,1508-1511 (2008).
    [33]H.H. Yu, H.J. Zhang, Z.P. Wang, J.Y. Wang, Z.S. Shao, and M.H. Jiang. "CW and Q-switched laser output of LD-end-pumped 1.06 μm c-cut Nd:LuVO4 laser", Opt. Express 15,3206-3211, (2007).
    [34]J. Liu, H. Zhang, Z. Wang, J. Wang, Z. Shao, M. Jiang, H. Weber, "Continuous wave and pulsed laser performance of Nd:LuVO4 crystal", Opt. Lett.29,168-170, (2004).
    [35]F. Liu, H. Xia, S. Pan, W. Gao, D. Ran, S. Sun, Z. Ling, H. Zhang, S.Zhao, J. Wang, "Passively Q-switched Nd:LuVO4 laser using Cr4+:YAG as saturable absorber", Opt. Laser Technol.39,1449-1453, (2007).
    [36]S.P. Ng, D.Y. Tang, L.J. Qian, L.J. Qin, "Satellite pulse generation in diode-pumped passively Q-switched Nd:GdVO4 lasers", IEEE J. Quantum Electron.42,625-632, (2006).
    [37]T. T. Kajava, A. L. Gaeta, "Q switching of a diode-pumped Nd:YAG laser with GaAs", Opt. Letters 21,1244-1246 (1996).
    [38]L. Qin, D. Tang, G. Xie, H. Luo, C. Dong, Z. Jia, X. Tao, "Diode-pumped passively Q-switched Nd:GGG crystal with GaAs saturable Absorber", Laser Phys. 18,719-721 (2008).
    [39]Z. Li, Z. Xiong, N. Moore, G. Lim, W. Huang, D. Huang, "Amplified-spontaneous-emission effects in a passively Q-switched diode-pumped Nd:YVO4 laser", J. Opt. Soc. Am. B 21,1479-1485 (2004).
    [40]J. Kong, D. Tang, "Passively Q-switched Yb:Y2O3 ceramic laser with a GaAs output coupler", Opt. Express 12,3560-3566 (2004).
    [41]D. Shen, D. Tang, J. Kong, "Passively Q-switched Yb:YAG laser with a GaAs output coupler", Opt. Commun.211,271-275 (2002).
    [42]G. Xie, D. Tang, J. Kong, L. Qian, "Diode-pumped passively Q-switched Nd:YAG ceramic laser with GaAs saturable absorber", J. Opt. A:Pure Appl. Opt. 9,621-625(2007).
    [43]王巍,刘钢,刘英同,“激光二极管抽运的Nd:NYW/LBO绿光激光器”,中国激光,34,646(2007)。
    [44]朱忠丽,葛建军,王英伟,孙晶,李建立,刘景和,“Yb:NYW激光晶体生长”,光学技术,30,306(2004)。
    [45]G. Xie, D. Tang, H. Zhang, J. Wang, L. Qian, "Efficient operation of a diode-pumped Yb:NaY(WO4)2 laser", Opt. Express 16,1686-1691 (2008).
    [46]J. Liu, H. Zhang, J. Wang, V. Petrov, "Continuous-wave and Q-switched laser operation of Yb:NaY(WO4)2 crystal", Opt. Express 15,12900-12904 (2007).
    [47]A. Garcia-Cortes, J. M. Cano-Torres, M. D. Serrano, C. Cascales, C. Zaldo, S. Rivier, X. Mateos, U. Griebner, V. Petrov, "Spectroscopy and Lasing of Yb-Doped NaY(WO4)2:Tunable and Femtosecond Mode-Locked Laser Operation", IEEE J. Quantum Electron.43,758-764 (2007).
    [48]H. Luo, D. Y. Tang, G. Q. Xie, H. J. Zhang, L. J. Qin, H. H. Yu, L. J. Qian, "High power mode-locked operation of Yb-doped NaY(WO4)2 end-pumped by laser diodes", Laser Phys. Lett.5,651 (2008).
    [49]L. Pan, I. Utkin, R. Fedosejevs, "Two-wavelength ytterbium-doped fiber laser with sustained relaxation oscillation", Appl. Optics 48,5484-5489 (2009).
    [50]Y. F. Chen, Y. P. Lan, H. L. Chang, "Analytical model for design criteria of passively Q-switched lasers", IEEE J. Quant. Electron.37,462-468 (2001).
    [1]P. H. Siegel, "Terahertz technology", IEEE Trans. Microwave Theory and Tech.50, 910(2002).
    [2]P. G. O'Shea, H. P. Freund, "Free-electron lasers:status and applications", Science, 292,1853(2001).
    [3]W. S. Holland, J. S. Greaves, et al., "Submillimetre images of dusty debris around nearby stars", Nature (London),392,788 (1998).
    [4]M. C. Nuss, P. M. Manikiewich, et al., "Dynamic conductivity and coherence peak in YBa2Cu3O7 superconductors", Phys. Rev. Lett.,66,3305 (1991).
    [5]M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani, and M. Hangyo, "Terahertz absorption spectra of L, D and DL-alanine and their application to determination of enantiometric composition", Appl. Phys. Lett.86,053903 (2005).
    [6]B. B. Hu, M. C. Nuss, "Imaging with terahertz waves", Opt. Lett.20,1716 (1995).
    [7]王加贤,“双波长输出的Nd:YAG/Cr4+:YAG激光器的腔设计与参数选择”,激光杂志,23,14(2002)。
    [8]万勇,韩凯,韩鸿等,“重频双波长输出(Nd,Ce):YAG喇曼频移激光器研究”,激光技术,26,126(2002)。
    [9]延英,罗玉,潘庆等,“瓦级连续双波长输出Nd:YAP/KTP稳频激光器”,中国激光,31,513(2004)。
    [10]王加贤,吕凤萍,苏娅菲,“双调Q复合腔Nd:YAG/Cr:YAG激光器的研究”,中国激光,31,399(2004)。
    [11]N. Saito, K. Akagawa, S. Wada, et al., "Dual wavelength oscillation by electronic tuning of a Ti:sapphire laser for difference-frequency generation", CLEO 68 (1998).
    [12]陈安,重庆大学学报,17,71(1994)。
    [13]沈鸿元,“双波长激光晶体”,中国激光,21,334(1994)。
    [14]H. Y. Shen, W. X. Lin, R. R. Zeng, et al., "1079.5 and 1341.4nm:larger energy from a dual-wavelength Nd:YAIO3 pulsed laser", Appl. Opt.,32,5952 (1993)
    [15]C. G Bethea, "Megawatt power at 1.318μm in Nd:YAG and simultaneous oscillation at 1.06 and 1.318μm", IEEE J. Quantum Electron, QE-9,254 (1973).
    [16]林文雄,沈鸿元,曾瑞荣等,“双波长Nd:YAG脉冲激光器的实验研究”,中国激光,A21,89(1994)。
    [17]George A. Henderson, "A computational model of a dual-wavelength solid-state laser", J. Appl. Phys.,68,5451(1990).
    [18]V. E. Nadtocheev, O. E. Nanii, "Two-wave emission from a cw solid-state Nd:YAG laser", Sov. J. Quantum Electron,19,444 (1989).
    [19]Y. F. Chen, "CW dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser", Appl. Phys. B,70,475 (2000).
    [20]Li P. X., Li D. H., Li C. Y, Zhang Z. G, "Oscillation conditions of CW simultaneous dual-wavelength Nd:YAG laser for transitions 4F3/2-4I9/2 and 4F3/2-4I11/2", Chin. Phys.,13,1689 (2004).
    [21]张强,姚建铨,温伍麒,刘欢,丁欣,周睿,“高功率激光二极管抽运Nd:YAG连续双波长激光器”, 中国激光,33,577(2006)。
    [22]S. Ardhendu, R. Aniruddha, M. Sourabh, S. Nandita, D. Prasanta, D. Pranab, "Simultaneous multi-wavelength oscillation of Nd laser around 1.3 μm:A potential source for coherent terahertz generation", Opt. Express,14,4721 (2006).
    [23]S. Singh, R. G. Smith, L. G. Van Uitert, "Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature," Phys. Rev. B 10,2566-2572(1974).
    [24]J. Marling, "1.05-1.44 μm Tunability and Performance of the CW Nd3+:YAG Laser," IEEE J. Quant. Electron.14,56-62 (1978).
    [25]J. J. Degnan, "Optimization of passively Q-switched lasers", IEEE J.Quant. Electron.31,1890-1901(1995).
    [26]X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S.Zhang, "Optimization of Cr4+-doped saturable-absorber Q-switched lasers", IEEE J. Quant. Electron.33, 2286-2294(1997).
    [27]Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, "Excited-state absorption studies of Cr4+ions in several garnet host crystals," IEEE J. Quant. Electron.34,292-299(1998).
    [28]王正平,滕冰,杜晨林等,“低对称性非线性光学晶体BIBO的倍频性质”,物理学报,52(9),2176-2184,(2003)。
    [29]W.克希耐尔,固体激光工程,科学出版社(2002)
    [30]Akio Ikesue, "Polycrystalline Nd:YAG ceramic lasers", Optical Materials,19, 183(2002).
    [31]J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "36-W diode-pumped continuous-wave 1319-nm Nd:YAG eramic laser", Opt. Lett.27(13),1120-1122 (2002).
    [32]T. Omatsu, A. Minassian, M. J. Damzen, "Passive Q-switching of a diode-side-pumped Nd doped 1.3 μm ceramic YAG bounce laser", Opt. Commun. 282(24),4784-4788(2009).
    [33]W. Ge, H. Zhang, J. Wang, X. Cheng, M. Jiang, "Pulsed laser output of LD-end-pumped 1.34 μm Nd:GdVO4 laser with Co:LMA crystal as saturable absorber", Optics Express,13,3883 (2005).
    [34]V. P. Mikhailov, K. V. Yumashev et al, "Passive Q-switch performance at 1.3μm (1.5μm) and nonlinear spectroscopy of Co2+:MgAl2O4 and Co2+:LaMgAl11O19 crystals", Advanced Solid State Lasers,26, paper ME12 (1999).
    [35]H. Qi, X. Hou, Y. Li, Y. Sun, H. Zhang, J. Wang, "Co:LMA saturable absorber Q-switch for a 1.319μm Nd:YAG laser", Opt. Laser Tech.,39,724 (2007).
    [36]B. Zhang, H. Huang, J. He, J. Yang, J. Xu, C. Zuo, S.Zhao, "Diode-end-pumped passively Q-switched 1.34 μm Nd:Gd0.5Y0.5VO4 laser with Co2+:LMA saturable absorber", Optical Materials,31,1697 (2009).
    [37]C. Zuo, B. Zhang, J. He et al., "CW and passive Q-switching of 1331-nm Nd:GGG laser with Co2+:LMA saturable absorber", Appl. Phys. B,95,75 (2009).
    [38]H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, Q. J. Ye, "Comparison of simultaneous multiple wavelength lasing in various neodymium host crystals at transitions from 4F3/2-4I11/2 and 4F3/2-4I13/2", Appl. Phys. Lett.56,1937 (1990).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700