应用于产生太赫兹波的光电导开关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电导开关具有极其优良的特性,在超宽带电磁波源、高功率微波发生器、宽带通信等领域具有广泛的应用前景。特别是光电导开关作为辐射天线产生THz电磁波有着广阔的应用价值和重大意义。本文主要针对光电导开关的输出特性进行理论和实验研究。
     本文对于应用于产生太赫兹波的光电导开关的两种基本工作模式的特性进行了比较和分析。理论上分析了光电导开关对于不同波长的光吸收机制,重点讨论了光子能量小于GaAs禁带宽度的激光触发开关的非本征光吸收。对光电导开关的线性工作模式和非线性工作模式进行了详细的实验研究,研究了偏置电压和触发光脉冲能量、触发光脉冲个数、触发光脉冲间隔对光导开关输出的影响;发现了光电导开关非线性导通时的载流子累加效应;研究了非线性导通对光电导开关材料的损伤物理机制。
Photoconductive Semiconductor Switches (PCSS) have a very broad prospect of applications in numerous fields such as the source generating high power ultra-wideband electromagnetic wave, high power microwave oscillator and broad-band communication because of their excellent characteristics. Especially PCSS as antennas generating THz electromagnetic radiation have a broad application value and great significance. So the output characteristics of PCSS have been investigated theoretically and experimentally in this dissertation.
     Two basic characteristics of work pattern about the photoconductive switches were compared and analyzed in this article. Different wavelengths of light absorption mechanism were analyzed theoretically about PCSS with emphases on the optical absorption of which the photon energy is less than that of GaAs bandgap. Detail experiments were carried out of the linear and nonlinear modes of PCSS. The impacts of the bias voltage and triggering optical pulse energy, triggering numbers of light pulses and triggering light pulse interval on the electrical pulse output were investigated. It has been found the current carrier additive effect in nonlinear mode of the PCSS. The damage mechanism of PCSS in nonlinear mode was also analyzed.
引文
[1] Ferguson B,Zhang X C. Materials for Terahertz Science and Technology. Nature Material, 2002, 1:26.
    [2]贾刚,汪力,张希成.太赫兹波科学与技术[J].中国科学基金,2002,(4):200-204.
    [3] Ferguson B , Wang S , Gray D , et al. T2ray computed tomography[J ] . Optics Letters ,2002 ,15 :131221314.
    [4] ZHANG Baigang , YAO Jianquan , ZHANG Hao , et al .Temperature tunable infrared optical parametric oscillator with periodically poled LiNbO3 [J ] . Chin Phys Lett , 2003 ,20
    [5] MI X W, CAO J C , ZHANG C. Optical absorption in terahertz-driven quantum wells[J ] . J Appl Phys , 2004 , 95 (3) :1191-1195.
    [6]沈京玲,张存林,胡颖,啁啾脉冲互相关法探测THz辐射[J ] .物理学报, 2004, 53 :2212 - 2215.
    [7]施卫,梁振宪,徐传骧,“高倍增GaAs光电导开关的设计与研制”,西安交通大学学报,Vol.32(8), 1998, pp.19-23
    [8] K?hler R,Tredicucci A, Beltram F, et al. Terahertz semiconductor hetero structure laser [J]. Nature, 2002, 417:156-159.
    [9] Jepsen P U, Jacobsen R H and Keiding S R. Generation and deterction od terahertz pulsers from biased semiconduction antennas [J]. J. Opl. Soc. 1996, 13(11):2424-2436.
    [10] Siegel P H. Terahertz technology. IEEE Trans. Microwave Theory Technol, 2002, 50:910.
    [11] X. C. Zhang, Y. Jin, X. F. Ma. Coherent measurement of THz optical rectification from electro- optic crystals [J]. Appl. Phys. Lett., 1992, 61(23):2764~ 2766
    [12] A. Rice et al. Optical rectification in ZnTe. Appl. Phys. Lett. 64, 1324(1994).
    [13] Zekui Zhou,Tongjun Zhang,Guangxin Zhang et al. Science and Technology of Terahertz Wave. Process Automation Instrumentation Vol. 27. No.3 March 2006.
    [14] Zhang X C, Hu B B, Darrow J T, et al. Generation of femtosecond electromagnetic pulses from semiconductor surfaces [J]. Appl. Phys. Lett, 1990, 56(11) :1011-1013.
    [15] William G P. Far-IR/THz Radiation from the Jefferson Laboratory, EnergyRecovered Linac, Free Electron Laser. Rev Sci Instrum, 2002, 73:1461.
    [16] Benjamin S. Williams et al. THz quantum-cascade laser operating up to 137K .Appl. Phys. Lett. 83, 5142(2003).
    [17] Haus J W, Power P, Scalora M, et al. Novel, tunable and enhanced terahertz sources using nonlinear photonic crystals [J]. Laser and Fiber-Optical Networks Modeling, Proceedings of LFNM 2003. 5th International workshop, 2003, 5(9) :252-254.
    [18] Paiella R, Capasso F, Gmachl C, et al. Self-mode-locking of quantum cascade lasers with giant ultra-fast optical nonlinearities [J]. Science, 2000, 290:1739-1742.
    [19] Sasaki Y, Suizu K and Ito H. Surface-emitted terahertz-wave generation using double injection seeded optical parametric generation [C]. The 5th Pacific Rim Conference, 2003, 1:72-75.
    [20] Taniuchi T, Okada S, Nakanishi H. Widely-tunable THz-wave generation in 2-20THz range from DAST crystal by nonlinear difference frequency mixing [J]. Electroncs Letters, 2004, 40(1).
    [21]孙博,姚建铨.基于光学方法的太赫兹辐射源[J].中国激光, 2006, 33(10):1350~1357
    [22] Jerry R. Meyer, Dong Ho Wu. Terahertz emission, detection and military applications. Proceeding of SPIE Vol.5411.
    [23]赵尚弘,陈国夫,赵卫. THz射线产生技术及应用最新进展. LASER TECHNOLOGY. December ,2000.Vol. 24 ,No. 6
    [24] Smith P R ,Auston D H,Nuss M C. Subpicosecond photoconducting dipole antenna s[J ] . IEEE J Quantum Electron ,1998 ,24 :2552260.(7) :1077 - 1080.
    [25]Gradinaru G, Sudarshan T S. Prebreakdown and Breakdown Phenomena in High-Field Semiconduction-Dielectric Systems. Appl. Phys. Vol.73(11),1993: 7643~7666.
    [26]C.D.Capps,R.A.Falk,J.C.Adams, Time dependent model for optically activated triggered GaAs switches,J.Appl.Physics,1993,74(11),No.1,pp6645-6649
    [27]C.D.Capps,R.A.Falk,J.C.Adams, Time dependent model for optically activated GaAs switches, Proc. SPIE Optically Activated Switching III, Los Angeles,CA,1993,Vol.1873,pp285-291
    [28]C.H.Lee, IEEE Trans. Microwave Theory and Techniques, 1990,Vol.38, pp596-606
    [29] C.H.Lee(ed), Picoseond Optoelectronic Devices, Academic Press, New York, 1984.
    [30]G.M.Loubriel,M.W.O’Mally,F.J.Zutavern,Towards Pulsed Power uses for Photo- conductive Semiconductor Switches: Closing Switches, 6th IEEE Pulsed Power Conf., 1987, pp145~148
    [31]龚仁喜,张义门,石顺祥,张同意,高压GaAs光导开关的锁定及延迟效应机理分析,光学学报,2001, N0.11, pp1372-1376
    [32]F.J.Zutavern, G.M.Loubriel, M.W.O’Mally, et al., High Gain Photoconductive Semiconductor Switching, Proc. 8th IEEE Pulsed Power Conference, San Diego, CA, 1991, pp23-26
    [33]G.M.Loubriel, et al., Triggering GaAs Lock-on Switches with Laser Diode Arrays, IEEE, Trans. Electron Devices, 1991,Vol.38, No.4, pp692-695
    [34]G.M.Loubriel, et al., Physics and Applications of the lock-on effect, Proc. 8th IEEE Pulsed Power Conference, San Diego, CA, 1991, pp33-36
    [35]F.J.Zutavern, G.M.Loubriel, M.W.O’Mally, et al., Measurement of Filament Velocity and Reduced triggering Energy, Proc. SPIE Optically Activated Switching IV, 1994,Vol.2343,pp21-31
    [36]F.J.Zutavern, et al., Electrical and Optical Properties of High Gain GaAs Switches, Proc. SPIE Optically Activated Switching III, 1992,Vol.1873,pp152-159
    [37]W.T.White,C.G.Dease, M.D.Pocha, et al, Modeling GaAs High-Voltage Sub- nanosecond Photoconductive Switches in One Spatial Dimension, IEEE Trans. Electron Devices, 1990,Vol.37 ,No.12, pp2532–2541
    [38]W.T.White,C.G.Dease, M.D.Pocha, et al., Analysis of Performance of Gallium Arsenide Photoavalanche Switches, Proc. 7th IEEE Pulsed Power Conference, San Diego, CA, 1989, pp442-445
    [39]R.P.Brinkmann, K.H.Schoenbench, M.S.Mazzola, Analysis of time-dependent current transport in an optically controlled,Cu-compensated GaAs switch, Proc. SPIE Optically Activated Switching II, 1992,Vol.1632,pp262-273
    [40]J.H.Yee,G.H.Khanaka,R.L.Druce, et al, Modeling the effect of deep impurity ionization on GaAs photoconductive switches, Proc. SPIE Optically Activated Switching II, 1992,Vol.1632,pp21-28
    [41]H.Zhao, P.Hadizad, J.H.Hur, et al., Avalanche injection model for the lock-on effect in III-V power photoconductive switches, J.Appl.Phys. 1993,73(4),15, pp1807-1812
    [42]P.Hadizad, J.H.Hur, H.Zhao, et al., A comparative study of Si- and GaAs-based devices for repetitive, high-energy, pulsed switching application, J.Appl.Phys. 1992,71(7),15, pp3586-3592
    [43]R.P.Brinkmann, K.H.Schoenbench, M.S.Mazzola, Analysis of time-dependent current transport in an optically controlled,Cu-compensated GaAs switch, Proc. SPIE Optically Activated Switching II, 1992,Vol.1632,pp262-273
    [44]J.L.Hudgins, D. W.Bailey, R.A.Dougal, et al., Streamer Model for Ionization Growth in a Photoconductive Power Switch, IEEE Trans. Power Electronics,Vol.10, No.5,1995, 615-620
    [45]D. W.Bailey, R.A.Dougal, J.L.Hudgins, et al., Streamer propagation model for high gain photoconductive Switching, Proc. SPIE Optically Activated Switching III, 1993,Vol.1873, pp185-191
    [46]C.D.Capps,R.A.Falk,J.C.Adams, Time dependent model for optically activated triggered GaAs switches,J.Appl.Physics,1993,74(11),No.1,pp6645-6649
    [47]C.D.Capps,R.A.Falk,J.C.Adams, Time dependent model for optically activated GaAs switches, Proc. SPIE Optically Activated Switching III, Los Angeles, CA, 1993, Vol.1873, pp285-291
    [48] W.T.White,C.G.Dease, M.D.Pocha, et al., Analysis of Performance of Gallium Arsenide Photoavalanche Switches, Proc. 7th IEEE Pulsed Power Conference, San Diego, CA, 1989, pp442-445
    [49]施卫,梁振宪,高倍增高压超快GaAs光电导开关中的光激发畴现象,半导体学报,Vol.20,No.1,1999, pp53-57
    [50]施卫,梁振宪,高倍增高压超快GaAs光电导开关触发瞬态特性分析,电子学报,2000,Vol.28,No.2, pp20-23
    [51] Kumuduni.W.K.A,Nakayama.Y.,Nakata.Y.,etal,TransPort of YO molecules Produced by ArF laser ablation of YBa2Cu3O7-8 in ambient oxygen gas[J] Journal of Applied Physies,1993,74(12):7510一7516 [52」N.Bleombergen.Beam Material Interactions and Lethality[J] Reviews of Modern Physics1987,59.5119
    [53]李效白,GaAs微波功率场效应晶体管及其集成电路,科学出版社,p66一70
    [54]段铣,张贵源等,砷化嫁工艺学,中国有色金属工业总公司职工教育教材编审办公室,p6--7
    [55]朱朝高,GaAs阈值电压均匀性与测试系统的研究,博士论文,p3一7
    [56]龚仁喜,张义门,石顺祥,张同意,高压GaAs光导开关的锁定及延迟效应机理分析,光学学报,2001,N0.11.pp1372-1376
    [57]刘恩科,朱秉升,罗晋生.半导体物理学.国防工业出版社, 1989年5月第1版.
    [58]顾祖毅,田立林,富力文.电子工业出版社,1995年4月第1版.
    [59]张同意,非线性光导开关技术的研究,西安电子科技大学博士学位论文,2001,
    [60]龚仁喜,GaAs光导开关线性及非线性特性研究,西安电子科技大学博士学位论文,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700