激光诱导相分离制备圆盘状纳米结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将脉冲激光液相烧蚀法和物质的相分离相结合,提出一种制备圆盘状纳米结构的新方法,成功制备出硅纳米圆盘和碳化硅纳米圆盘,并对纳米圆盘的形成机制做了相关研究,主要内容如下:
     (1)利用脉冲激光液相辐照SiO粉末在去离子水中的悬浮液,研究了SiO在激光引起的极端非平衡条件下的相分离过程,成功制备出硅纳米圆盘;
     (2)通过改变液相介质、激光脉宽、激光辐照时间和固相原料以及快速退火SiO粉等对比实验,确定了Si纳米圆盘是通过激光引起的固态相分离形成的;
     (3)利用脉冲激光液相烧蚀SiOC非晶粉末在去离子水中的悬浮液,成功制备出碳化硅纳米圆盘,证实激光诱导固态相分离是一种制备纳米圆盘的普适方法。
In this thesis, a new route towards the synthesis of nanodisks was developed by combining the pulse-laser ablation in liquid with phase separation. Silicon nanodisks and silicon carbide nanodisks were synthesized and the formation mechanism of the nanodisks was investigated. The mian conclusions are as below:
     (1) Silicon nanodisks were synthesized by pulsed laser irradiating the suspension of SiO powders in de-ionized water with magnetic stirring. The phase separation process of SiO under the extreme non-equilibrium conditions was investigated.
     (2) A series of control experiments were conducted by varying liquid medium, laser pulse width, irradiation time and silicon-containning starting materials, a rapid thermal treatment of SiO powders was also performed, all of experimental results lend the support to a mechanism of solid state phase transformation in the low tempreture zone induced by laser radiation.
     (3) SiC nanodisks were synthesized by pulsed-laser irradiating the suspension of the amorphous SiOC powders in de-ionized water with magnetic stirring. It was proved that the extreme non-equilibrium conditions created by pulse laser can be expanded to the synthesis of other nanodisks by phase separation.
引文
[1] Yoshida T, Yamada Y, Orii T, Electroluminescence of silicon nanocrystallites prepared by pulsed laser ablation in reduced pressure inert gas, Journal of Applied Physics, 1998, 83: 5427~5431
    [2] Canham L, Gaining light from silicon, Nature, 2000, 408: 411~412
    [3]刘恩科,朱秉生,罗晋生等,半导体物理学,西安:西安交通大学出版社,1998. 10~25
    [4] Henglein A, Small-paricle Reseach: Physico-Chemical Properties of Excremely Small Colloidal Metal and Semiconductor Particles. Chem. Rev., 1989, 89, 1861
    [5] Xia Y N, CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air, Nano Lett., 2002, 2, 1333.
    [6] C. M. Lieber, Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires, J. Am. Chem. Soc. 2000, 122, 188.
    [7] Wang X, Li Y D, Rational synthesis of alpha-MnO2 single-crystal nanorods, Chem. Common, 2002, 7: 764-765.
    [8] Duan X F, C. M. Lieber, Gerneral synthesis of compound semiconductor nanowires, Adv Mater, 2000, 12(4): 298-302.
    [9] Murray C B, Norris D J, Bawendi M G, synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc.1993, 115, 8706.
    [10] Zeng H, Li J, Liu J P, Wang Z L, Sun S, Exchange-coupled nanocomposite magnets by nanoparticle self-assembly, Nature , 2002, 420, 395.
    [11] Alivisatos A P, Semiconductor clusters, nanocrystals, and quantum dots, Science, 1996, 271: 933.
    [12] El-Sayed M A, Small Is Different: Shape-, Size-, and Composition-Dependent Properties of Some Colloidal Semiconductor Nanocrystals, Acc. Chem. Res. 2004, 37, 326.
    [13] Puntes V F, Krishnan K M, Alivisatos A P, Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt, Science, 2001, 291, 2115.
    [14] Park J I, Cheon J, Synthesis of "Solid Solution" and "Core-Shell" Type Cobalt-Platinum Magnetic Nanoparticles via Transmetalation Reactions, J. Am. Chem. Soc. 2001, 123, 5743.
    [15] Brus L E, Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys. 1984, 80, 4403.
    [16] Chestnoy N, Hull R, Brus L E, Higher excited electronic states in clusters of ZnSe, CdSe and ZnS: Spin-orbit, vibronic, and relaxation phenomena, J. Chem. Phys. 1986, 85, 2237.
    [17] Steigerwald M, Brus L E, Semiconductor crystallites: a class of large molecules, Acc. Chem. Res. 1990, 23, 183.
    [18] Markovich G, Collier C P, Henrichs S E, Remacle F, Levine R D, Heath J R, Architectonic Quantum Dot Solids, Acc. Chem. Res. 1999, 32, 415.
    [19] Cleveland C L, Luedtke W D, Landman U, Melting of gold clusters, Phys. Rev. B 1999, 60, 5065.
    [20] Jun Y W, Choi J S, Cheon J W, Shape Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal Routes, Angew. Chem. Int. Ed. , 2006, 45, 3414,
    [21] Hu J, Li L, Wang W, Manna L, Wang L and Alivisatos A P, Science 2001, 292, 2060
    [22] Zhang J H, Liu H Y, Wang Z L, Ming N B, Li Z R and A. S. Biris, Polyvinylpyrrolidone - Directed Crystallization of ZnO with Tunable Morphology and Bandgap Adv. Funct. Mater. 2007, 17: 3897-3905.
    [23] Lisiecki I , Pileni M P, Synthesis of copper metallic clusters using reverse micelles as microreactors , J. Am. Chem. Soc., 1993, 115: 3887-3896
    [24] Lamarre J M, Billard F, Kerboua C H, Chahineze H K, Michel L, Sjoerd R, Ludvik M, Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix, Optics Communications , 2008, 281: 331
    [25] Jin R C, Cao Y W, Mirkin C A, Photoinduced Conversion of Silver Nanospheres to Nanopri sms, Science, 2001, 294: 1901-1903.
    [26] Park J I, Kang N J, Jun Y, Oh S J, Ri H C and Cheon J, Superlattice and Magnetism Directed by the Size and Shape of Nanocrystals, Chem. Phys. Chem., 2002, 3: 543-547.
    [27] Burda C, Chen X B, Narayanan R H, E-Sayed M A, Chemistry and Properties of Nanocrystals of Different Shapes, Chem. Rev. , 2005, 105, 1025-1102.
    [28] Cordente N, Respaud M, Senocq, Casanove M J, Amiens C, Chaudret B, Synthesis and Magnetic Properties of Nickel Nanorods, Nano Letter , 2001, 1: 565-568.
    [29] Pavesi L, Dal Negro L, Mazzoleni C, Optical gain in silicon nanocrystals, Nature 2000, 408: 440-444.
    [30] Cui Y, Lieber C M, Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks, Science 2001, 291, 851-853.
    [31] Chen Y W, Tang Y H, Pei L Z, Guo C, Self-Assembled Silicon Nanotubes Grown from Silicon Monoxide , Adv. Mater. 2005, 17 : 564-567.
    [32] Kubota T, Hashimoto T, Ishikawa Y, Samukawa S, Miura A, Uraoka Y, T. Fuyuki, M. Takeguchi, K. Nishioka, I. Yamashita, Charging and Coulomb staircase effects in silicon nanodisk structures fabricated by defect-free Cl neutral beam etching process, Appl. Phys. Lett. , 2006, 89: 233127.
    [33] Garcia-Santamaria F, Ibisate M, Rodriguez I, Meseguer F, Lopez C, Photonic Band Engineering in Opals by Growth of Si/Ge Multilayer Shells, Adv. Mater. 2003, 15: 788-792.
    [34] Maillard Mathieu, Pinray Huang, Louis Brus, Silver Nanodisk growth by surface plamon enhanced photoreduction of adsorbed [Ag+], Nano Letter, 2003, 3: 1611-1615.
    [35] Chen Sihai, Fan Zhiyong, David L, Carroll, Silver Nanodisks: Synthesis, Characterizati on, and Self-Assembly, J. Phys. Chem. B, 2002, 106:10777-10781
    [36] Guo Yu Guo, Sook Lee Jong, Maier Joachim, Preparation and characterization of AgI nanoparticles with controlled size, morphology and crystal structure, Solid State Ionics , 2006, 177: 2467–2471.
    [37] Lu Hongxia, Sun Hongwei, Mao Aixia, Yang Huizhi, Wang Hailong, Hu Xing, Preparation of plate-like nano-Al2O3 using nano-aluminum seeds by wet-chemical methods, Materials Science and Engineering A, 2005, 406: 19–23.
    [38] Langhammer Christoph, Schwind Markus, Kasemo Bengt, Zoric Igor, Localized Surface Plasmon Resonances in Aluminum Nanodisks, Nano Lett, 2008, 8: 1461-1471.
    [39] Simakin AV, Voronov V V, Shafeev GA, Brayner R, Bozon-Verduraz F, Nanodisks of Au and Ag produced by laser ablation in liquid environment,Chenmical Physics Letter, 2001, 348:182-186.
    [40] Hao Encai, Lance Kelly K, Hupp Joseph T, Schatz George C, Synthesis of Silver Nanodisks Using Polystyrene Mesospheres as Templates, J. AM. CHEM. SOC., 2002, 124, 15182-15183.
    [41] Vavassori P, Bonanni V, Busato A, Static and dynamical properties of circular NiFe/Cu/Co nanodisks, : JOURNAL OF APPLIED PHYSICS, 2008,103: 07C512
    [42] Puntes Victor F, Kannan M Krishnan, Alivisatosl A Paul, Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt, Science, 2001, 291: 2215-2217.
    [43] Salzemann C, Urban J, Lisiecki I, Pileni M P, Characterization and Growth Process of Copper Nanodisks , Adv.Funt.Mater., 2005, 15: 1277-1284.
    [44] Sun Y, Xia Y N , Triangular Nanoplates of Silver: Synthesis, Characterization, and Use as Sacrificial Templates For Generating Triangular Nanorings of Gold , Adv. Mater., 2003, 15: 695-699.
    [45]Yoreo D J J,Dove P M, Shaping Crystals with Biomolecules, Science, 2004, 306:1301-1302.
    [46]Mock J J,Barbic M,Smith D R, Shape effects in plasmon resonance of individual colloidal silver nanoparticles, J Chem Phys, 2002, ll6: 6755
    [47]Chen S, Carroll D L, Silver Nanoplates: Size Control in Two Dimensions and Formation Mechanisms, J Phys Chem B, 2004, 108: 5500-5506.
    [48]Naik R R, Stringer S J, Agarwal G, Biomimetic synthesis and patterning of silver nanoparticl- es, Nature Mater, 2002, 1: 169-172.
    [49]Pileni M P, The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals , Nature Mater, 2003, 2: 145-150.
    [50]Yang J, Qi L, Zhang D, Dextran-Controlled Crystallization of Silver Microcrystals with Novel Morphologies, Crystal Growth& Design, 2004, 4: 1371-1375.
    [51]Liu Junfeng, Li Yadong, Synthesis and Self-Assembly of Luminescent Ln3+-Doped LaVO4 Uniform Nanocrystals, Adv. Mater. 2007, 19: 1118-1122.
    [52] Peng Gao, Chen Ying, Wang Shuqing, Ye Lina, Guo Qixun, Xie Yi, Low temperature hydrothermal synthesis of ZnO nanodisk arrays utilizing self-assembly of surfactant molecules at solid–liquid interfaces, Journal of Nanoparticle Research , 2006, 8: 131-136.
    [53]Chen S, Carroll D L, Synthesis and Characterization of Truncated TriangularSilver Nanoplates, Nano Lett, 2002, 2: 1003-1007.
    [54]Liang H Z,Kim D J, Mechanism for the Formation of Flake Silver Powder Synthesized by Chemical Reduction in Ethylene Glycol, Acta Physico-chimica Sinica, 2003, 2: 150-153.
    [55] Kubota T, Hashimoto T, Takeguchi M, Nishioka K, Uraoka Y, Fuyuki T, Yamashita I, Samukawa S, Coulomb-staircase observed in silicon-nanodisk structures fabricated by low-energy chlorine neutral beams, J. Appl. Phys. 2007, 101: 124301
    [56]Jin R,Cao Y C, Controlling anisotropic nanoparticle growth through plasmon excitation Nature, 2003, 425: 487-490.
    [57]周全法,李锋,朱雯,光诱导法制备纳米级圆盘状银粉的研究贵金属,2003,24:35-38.
    [58] Sun Yugang, Mayers Brian, Xia Younan,Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process, Nano Lett,2003, 3: 675-679. [59Jin R, Cao Y, Photoinduced Conversion of Silver Nanospheres to Nanoprisms, Science,2001, 294: 1901-1903.
    [60] Seto T, Kawakami Y, Suzuki N et al., Laser synthesis of uniform silicon single nanodots, Nano Letter, 2001, 1: 315-318.
    [61] Bae C H, Nam S H, Park S M, Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution, Applied Surface Science, 2002,197: 628~634
    [62] Yavas O, Schilling A, J Bischof, Bubble nucleation and pressure generation during laser cleaning of surfaces, Applied Physics A, Material Science Process,1997, 64, 331~339.
    [63] Shaw S J, Schiffers W P, Gentry T P et al., A study of the interaction of a laser-generated cavity with a nearby solid boundary Journal Physics D: Applied Physics: 1999, 32, 1612~1617
    [64] Shaw A, Studies on bubble dynamics, Shock Waves, 1997, 7: 33~42
    [65] ?vr?ek V, Sasaki T, Shimizu Y et al., Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water. Applied Physics Letters, 2006, 89, 213113-1~3.
    [66]朱杰,周利,刘常升,陈岁元,张大鹏,脉冲激光液相法制备纳米硅颗粒,材料与冶金学报, 2004, 3:196-198
    [67] Nabarro F R N, The influence of elastic straun on the shape of particles segregating in an alloy, Proc. Phys. Soc. 1940,52: 90-93.
    [68] Busseret C, Souifi A, Baron T et al. Electronic properities of silicon nanocrystals- ltes obtained by SiOx (x<2) annealing, Mater .Sci.Engin.C, 2002, 19: 237-241.
    [69] Xu X, Wang Y, Liu Z, Zhao R, A New Route to Large-Scale Synthesis of Silicon Nanowires in Ultrahigh Vacuum, Adv. Funct. Mater., 2007, 17: 1729-1734.
    [70] Gritsenko V A, Zhuravlev K S, Milov A D, Silicon dots/clusters in silicon nitide: photoluminescenc and electron spin renosance, Thin Solid Films,1999, 353:20-24
    [71] Dutta A k, Visible photoluminescence from Ge nanocrystal embedded into a SiO matrix fabricated by atmospheric pressure chemical vapor deposition, Appl Phys Lett, 1996, 68:1189-1191.
    [72]Fuji M,Hayashi S,Yamamoto J, Grown of Ge microcrystal in SiO2 thin matrices : A Raman and electron microscopic study. Jpn J Appl Phys, 1991, 30: 687-694.
    [73]Maeda Y, Tsukamoto N,Yazawa Y, et al. Visible photoluminescence of Ge microcrystal embedded into a SiO2 glassy matrics. Appl Phys Lett, 1991, 59: 3168- 3170
    [74]Liu F X, Yang J L, Zhao T P. Raman and Fourier-transform infrared photoacoustic spectra of granular ZrO2.Phys Rev B,1997,55:8847-8851.
    [75]Kanata T, Murai H, Kubota,et al.Raman and X-ray scattering from ultralfine semiconductor partices, J Appl Phys,1987,61:969-971.
    [76]Gumula T, Paluszkiewicz C., Blazewicz M., Structural characterization of polysiloxane-derived phases produced during heat treatment, Journal of Molecular Structure, 2004, 704: 259-262.
    [77] Sun.J,Han X, Du XW, Preparation and photoluminescence of ZnO nanoparticles by oxidizing ZnAlO alloy, summitted to Nanotechnology
    [78]Keiyu Nakagawa, Teruto Kanadani, Laurence Anthony and Hatsujiro HashImoto, Microstruct- ural Changes at the Initial Stage of Precipitation in an Aluminum–Silicon Alloy, Materials Transactions, 2005, 46:779 -783.
    [79] Mukhopadhyay A K, Influence of Cu Additions on the Morphology of GeSi Precipitates in an Al-Ge-Si Alloy, Metallurgical and Materials Transactions A, 2001, 32:1949-1958.
    [80]安海娇,聚硅氧烷热解合成三维致密碳氧化硅陶瓷:[硕士学位论文],天津:天津大学,2007.
    [81] Liu A S, Jones R, Liao L, Rubio D S, Rubin D, Cohen O, Nicolaescu R, A high-speed silicon optical modulator based on a metal-oxide-semicondctorcapacitor, Nature, 2004, 427: 615.
    [82] Pavesi L, Dal Negro L, Mazzoleni C, Franzo G, Priolo F, Optical gain in silicon nanocrystals , Nature 2000, 408: 440-444.
    [83] Cui Y, Lieber C M, Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks, Science 2001, 291: 851-583
    [84] Chen Y W, Tang Y H, Pei L Z, Guo C, Self-Assembled Silicon Nanotubes Grown from Silicon Monoxide, Adv. Mater. ,2005, 17 : 564-567.
    [85] Garcia-Santamaria F, Ibisate M, Rodriguez I, Meseguer F, Lopez C, Photonic Band Engineering in Opals by Growth of Si/Ge Multilayer Shells, Adv. Mater. 2003, 15: 788-792.
    [86] Zhang R Q, Zhao M W, Lee S T, Silicon Monoxide Clusters: The Favorable Precursors for Forming Silicon Nanostructures, Phys. Rev. Lett., 2004, 93: 095503.
    [87] Lax M, Temperature rise induced by a laser beam, J Appl Phys, 1977, 48: 3919-3924.
    [88]Christian Fauteux, Remi Longtin, Joseph Pegna, Fast synthesis of ZnO nanostructures by laser-induced decomposition of zinc acetylacetonate, Inorg. Chem., 2007, 46: 11036-11047.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700