高灵敏SERS光纤传感器的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贵金属纳米粒子具有很多独特的表面等离子体性质,这与金属纳米粒子的表面自由电子的集体振荡是密切相关的,它们都强烈的依赖金属纳米粒子的尺寸、形貌等因素,这使其在现代材料领域的研究中得到广泛的应用。光纤自出现之日起即引起科研工作者的极大关注,在诸多领域如通讯及传感等,有着重要的应用。光纤化学、生物传感器是传感领域中一个重要的研究方向,近十几年来取得的研究成果令人瞩目,它已广泛应用于化学传感以及生物体系中特异性识别、DNA等的快速检测,应用前景十分广阔。由于光纤具有信号的远程传输、低损耗及对外界环境干扰较小的优点,将光纤与SERS光谱技术相结合制备光纤SERS传感器,这种技术借助于SERS光谱技术可获得被测样品较为丰富的光谱信息,并实现实时、原位、在体、在线的光谱检测。光纤SERS传感器的灵敏度除了要求光纤本身要具备背景荧光底、传输效率高等优点外,对光纤探测端的形状、SERS活性层的修饰及在如何在光谱检测过程中提高信噪比都提出了比较高的要求。本文围绕高灵敏度SERS活性光纤的快速制备、应用技术而展开,主要研究内容如下:
     1.利用光化学法快速制备光纤SERS传感器,并将其应用于生物体系中Atto610标记的生物素与亲和素特异性识别过程的监测。利用光化学法在光纤尖端沉积银膜,探讨在相同激光功率下不同诱导时间对光纤沉积端形貌的影响。并根据Atto610的SERS信号强度变化对实验条件进行优化,寻找最佳的光诱导沉积时间、诱导生长液的最佳比例,调控光纤探测端LSPR的性质。在干扰极小的条件下时实测量生物素与亲和素特异性识别过程的SERS光谱,并利用干扰性实验证明这种识别的抗干扰能力。
     2.光纤探测端原位热聚合物多孔材料制备具有三维孔道结构基底,并利用光化学法快速沉积银纳米粒子使其具有SERS活性。利用SEM表征多孔材料的形貌结构,并分析热聚合温度、孔径、粒径对拉曼探针分子4-Mpy与4-MBA的SERS信号的影响,通过SERS信号的强度对比分析寻找理想的聚合温度。
     3. SERS光纤pH传感器的快速制备及应用。利用光化学法在快速制备光纤SERS传感器,并在其上组装4-Mpy拉曼探针分子,通过对比其在不同pH溶液中质子化特征峰强度变化的规律来确定pH值。在研究过程中,发现4-Mpy质子化特征峰在pH值增加的过程中有蓝移的现象,探讨拉曼探针分子4-Mpy频移变化与溶液pH值的关系。并据此推断4-Mpy分子在不同的pH溶液中与银膜的夹角有所不同,在酸性溶液中它垂直于银膜,中性及碱性溶液中与银膜产生一定的倾角。该SERS活性光纤具有较好的重复使用性,在实际检测中的具有潜在的应用价值。
Surface-enhanced Raman scattering (SERS) is a fast and ultrasensitive scatteringspectra technique, has been widely applicable to single molecule detection, pesticidetracing, protein tests, pharmacy, biosensing, and art authentication, etc. SERS requiresminimal sample preparation and is non destructive to sample which allows real timeanalysis and great potential for multi components analysis. The morphology of themetallic structure plays a major role in determining the magnitude of signalenhancement and sensitivity of detection. The preparation of SERS substrates is anessential subject in SERS study. Some researchers employed the laser-induced Ag/Audeposition method to quickly construct an Au/Ag NP film on glass substrate for SERS.Optical fibers have long been the interest of analytical chemists. Through the fiber,signal and light can be transmitted to several kilometers without noticeable loss. It ischemically stable, and is not susceptible to environmental changes. Sensors based onsurface-enhanced Raman scattering (SERS) and optical fiber probes have been usedin chemical and biological detection and sensing due to their unique advantages, suchas their low cost, flexibility, reliability, and also remote sensing capabilities.
     Based on above view, my study is outlined as follows:
     1. Preparation of SERS-active optical fiber by laser-induced Ag depositionand its application for the bioidentification of biotin/avidin
     We applied the SERS-active fiber prepared by the photochemical Ag NPdeposition to the bioidentification of avidin/biotin. First, we optimized thelaser-induced conditions for the fabrication of SERS-active Ag NP layer. The reflection spectroscopy and scanning electron microscope (SEM) were used tocharacterize the plasmonic property and the morphology of the formed SERS-activeAg NP layer. The optical fiber with laser-induced Ag film was used for monitoring thebiotin/avidin identification process. Since biotin gave weak Raman signals and nofingerprint information was provided in the direct detection of biotin, we used a dyemolecule labeled biotin (Atto610-biotin), which supported strong Raman activity dueto the fluorescent quenching effect when it was assembled on the Ag film surface bythe specific identification of avidin. The concentration-dependent SERS spectra ofAtto610-biotin were recorded and the working curve was obtained. The lowestdetection concentration of Atto610-biotin by using this SERS-active optical fiber wasas low as10-7mg/mL.
     2. Fabrication of SERS-acitve optical fiber sensor by in situ thermalpolymerization of porous material and its apllication
     Polymer porous was preparing with the thermal polymerization method in the tipof the ordinary multimode fiber in situ. Silver nanoparticles film was deposited withthe laser-inducement method in the porous material of the tip fiber for preparation ofhigh SERS-active polymer porous fiber sensor. The metal nanoparticle aggregatescontaining many “hot spots” suspended in solution can present a large total surfacearea, thus facilitating effective interactions with analytes and generation of strongRaman scattering emission. In comparison to SERS sensing using nanostructuredmetal films, which are inherently planar detectors, this approach allows direct probingof analytes within a defined volume of solution, thereby providing higher sensitivity.Porous material laser-induce SERS-active fiber technology has high sensitivity,remotely, on line, real-time and non-destructive can apply the process monitoring,micro-fluidic chip, environmental testing, clinical monitoring and bio-pharmaceuticalfield.
     3. Preparation and study on the SERS-active fiber pH sensor withlaser-inducement deposition silver nanoparticle film
     We provide a method of photochemical modification of an optical fiber tip with asilver nanoparticle film.4-MBA and4-Mpy were absorbed by optical fiberSERS-active layer for pH sensor. SERS spectrum changes were monitored in differentpH values solution with SERS-active fiber. In the course of the study, we found that4-Mpy Raman peaks at1619cm-1was blue shift with pH value increases, inferred4-Mpy molecules in different pH solutions has vary the angle with the silver film.4-Mpy molecule was perpendicular with the silver film in acidic solution, and itproduces a certain inclination in the neutral and alkaline solution.
引文
[1] Raman C V. A new type of secondary radiation [J]. Nature,1928,121:501-502.
    [2] Fleischmann M, Hendra P J, MeQuillan A J. Raman spectra of pyridine adsorbed at a silverelectrode [J]. Chem. Phys. Lett.,1974,26:163-166.
    [3] Jeanmaire D L, Van Duyne R P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic,aromatic, and aliphatic amines adsorbed on the anodized silver electrode [J]. J. Electroanal.Chem.,1977,84:1-20.
    [4] Albrecht M G, Creighton J A. Anomalously intense Raman spectra of pyridine at silverelectrode [J]. J. Am. Chem. Soc.,1977,99:15215-5217.
    [5] Nie S M, Emory S R. Probing single molecules and single nanoparticles by surface-enhancedRaman scattering [J], Science,1997,275:1102-1106.
    [6] Kneipp K, Yang W, Harald K, Perelman L T, Itzkan I, Dasari R R, Feld M S. Single moleculedetection using surface-enhanced Raman scattering (SERS)[J], Phys. Rev. Lett.,1997,78:1667-1670.
    [7] Anibal C V D, Marsal L F, Callao M P, Ruisánchez I. Surface enhanced Raman spectroscopy(SERS) and multivariate analysis as a screening tool for detecting Sudan I dye in culinaryspices [J]. Spectrochima. Acta. A.,2012,87:135-141.
    [8] Craig A P, Franca A S, Irudayaraj P C. Surface-enhanced Raman spectroscopy applied to foodsafety [J]. Annu. Rew. Food Sci. Technol.,2013,4:369-380
    [9] Cao Y C, Jin R, Mirkin C A. Nanoparticles with Raman spectroscopic fingerprints for DNAand RNA detection [J]. Science,2002,297:1536-1540.
    [10] Galarreta B C, Norton P R, Lagugné-Labarthet F. SERS detection of streptavidin/Biotinmonolayer assemblies [J]. Langmuir,2011,27:1494-1498.
    [11] Smith W E. Practical understanding and use of surface enhanced Raman scattering/surfaceenhanced resonance Raman scattering in chemical and biological analysis [J]. Chem. Soc. Rev.,2008,37:955-964.
    [12] Downes A, Elfick A. Raman spectroscopy and related techniques in biomedicine [J]. Sensors,2010,10:1871-1889.
    [13] Li J M, Ma W F, You L J, Guo J, Hu J, Wang C C. Highly sensitive detection of target ssDNAbased on SERS liquid chip using suspended magnetic nanospheres as capturing substrates [J].Langmuir,2013,29:6147-6155.
    [14] Maclaughlin C M, Mullaithilaga N, Yang G S, Ip S Y, Wang C, Walker G C. Surface-enhancedRaman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia andlymphoma cells and SERS flow cytometry [J]. Langmuir,2013,29:1908-1919.
    [15] Pozzi F, Lombardi J R, Bruni S, Leona M. Sample treatment considerations in the analysis oforganic colorants by surface-enhanced Raman scattering [J], Anal. Chem.,2012,84:3751-3757.
    [16] Bruni S, Guglielmi V, Pozzi F. Surface-enhanced Raman spectroscopy (SERS) on silvercolloids for the identification of ancient textile dyes: Tyrian purple and madder [J]. J. RamanSpectrosc.,2010,41:175-180.
    [17] Brosseau C L, Casadio F, Van Duyne R P. Revealing the invisible: using surface-enhancedRaman spectroscopy to identify minute remnants of color in Winslow Homer’s colorless skies[J]. J. Raman Spectrosc.,2011,42:1305-1310.
    [18] Otto A. The “chemical”(electronic) contribution to surface-enhanced Raman scattering [J]. J.Raman Spectrosc.,2005,36:497-509.
    [19]丁松园,吴德印,杨志林等.表面增强拉曼散射增强机理的部分研究进展[J].高等学校化学学报,2008,29(12):2569-2581.
    [20] Willets K A, Van Duyne P R. Localized surface Plasmon resonance spectroscopy and sensing[J]. Annu. Rev. Chem.,2007,58:267-297.
    [21] Wu Y P, Zhou F, Yang L B. A shrinking strategy for creating dynamic SERS hot spots on thesurface of thermosensitive polymer nanospheres [J]. Chem. Commun.,2013,49:5025-5027.
    [22] Aamuel L K, Renee R F, Annel-Isabelle A, Creating, characterizing and controlling chemistrywith SERS hot spots [J]. Phys. Chem. Chem. Phys.,2013,15:21-36.
    [23] Chen H J, Kou X S, Yang Z, Ni W H, Wang J F. Shape-and size-dependent refractive indexsensitivity of gold nanoparticles [J]. Langmuir,2008,24:5233-5237.
    [24] Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication ofhoneycomb structures of anodic alumina [J]. Science,1995,268:1446-1449.
    [25] Gu G H, Suh J S. Silver nanorods used to promote SERS as a quantitative analytical tool [J]. J.Raman Spectrosc.,2010,41:624-627.
    [26] Ruan C, Eres G, Wang W, Zhang Z Y, Gu B H. Controlled fabrication of nanopillar arrays asactive substrates for surface-enhanced Raman spectroscopy [J]. Langmuir,2007,23:5757-5760.
    [27] Choi D, Choi Y, Hong S, Kang T, Lee L P. Self-organized hexagonal-nanopore SERS array [J].Small,2010,6:1741-1744.
    [28] Wang X N, Xu S P, Cong M, Li H B, Gu Y J, Xu W Q. Hierarchical structural nanopore arraysfabricated by pre-patterning aluminum using nanosphere lithography [J]. Small,2012,8:972-976.
    [29] Wang X N, Xu S P, Li H B, Tao J L, Zhao B, Xu W Q. A three-dimensional surface-enhancedRaman scattering substrate: Au nanoparticle supramolecular self-assembly in anodic aluminumoxide template [J]. J. Raman Spectrosc.,2012,43:459-463.
    [30] Wang X N, Wang Y Y, Cong M, Li H B, Gu Y J, Lombardi J R, Xu S P, Xu W Q. Propagatingand localized surface plasmons in hierarchical metallic structure for surface-enhanced Ramanscattering [J]. Small,2013,9:1895-1899.
    [31] Dieringer J A, McFarland A D, Shah N C, Stuart D A, Whitney A V, Yonzon C R, Young M A,Zhang X, Van Duyne R P. Surface enhanced Raman spectroscopy: new materials, concepts,characterization tools, and applications [J]. Faraday Discuss.,2006,132:9-26.
    [32] Marquestaut N, Martin A, Talaga D. Raman enhancement of azobenzene monolayers onsubstrates prepared by Langmuir-Blodgett deposition and electron-beam lithographytechniques [J]. Langmuir,2008,24:11313-11321.
    [33] Huebner U, Boucher R, Schneidewind H, Cialla D, Popp J. Microfabricated SERS-arrays withsharp-edged metallic nanostructures [J]. Microelectron Eng.,2008,85:1792-1794.
    [34] Li H B, Gu Y J, Guo H Y, Wang X N, Liu Y, Xu W Q, Xu S P. Tuable plasmons in shallowsilver nanowell arrays for directional surface-enhanced Raman scattering [J]. J. Phys. Chem. C,2012,116:23608-23615.
    [35] Guo H Y, Xu W Q, Zhou J, Xu S P, Lombardi J R. Highly efficient construction of orientedsandwich structures for surface-enhanced Raman scattering [J]. Nanotechnol.,2013,24:045608.
    [36] Yamada H, Yamamoto Y. Surface enhanced Raman scattering (SERS) of chemisorbed specieson various kinds of metals and semiconductors [J]. Surface Science,1983,134:71-90.
    [37] Quagliano L G. Observation of molecules adsorbed on III-V semiconductor quantum dots bysurface-enhanced Raman scattering [J]. J. Am. Chem. Soc.,2004,126:7393-7398.
    [38] Mao Z, Song W, Xue X X, Ji W, Li Z S, Chen L, Mao H J, Lv H M, Wang X, Lombardi J R,Zhao B. Interfacial charge-transfer effects in semiconductor molecule metal structures:influence of contact variation [J]. J. Phys. Chem. C,2012,116:14701-14710.
    [39] Mao Z, Song W, Chen L, Ji W, Xue X X, Ruan W D, Li Z S, Mao H J, Ma S, Lombardi J R,Zhao B. Metal–semiconductor contacts induce the charge-transfer mechanism ofsurface-enhanced Raman scattering [J]. J. Phys. Chem. C,2011,115:18378-18383.
    [40] Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Tian Z Q et al. Shell-isolatednanoparticle-enhanced Raman spectroscopy [J]. Nature,464:392-396.
    [41] Zhao J, Zhang X Y, Yonzon C R.; Haes A J, Van Duyne R P. Localized surface Plasmonresonance biosensors [J]. Nanomedicine,2006,1:219-228.
    [42] Haynes C L, Van Duyne R P. Plasmon-sampled surface-enhanced Raman excitationspectroscopy [J]. J. Phys. Chem. B,2003,107:7426-7433
    [43] Lu L, Kobayashi A, Tawa K, Ozaki Y. Silver nanoplates with special shapes:controlledsynthesis and their surface Plasmon resonance and surface-enhanced Raman scatteringproperties [J]. Chem. Mater.,2006,18:4894-4901
    [44] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P. Biosensing withplasmonic nanosensors [J]. Nature Mater.,2008,7:442-453.
    [45] Atwater H A, Maier S, Polman A, Dionne J A, Sweatlock L. The new “p-n junction”:lasmonics enables photonic access to the nanoworld [J]. MRS Bull.,2005,30:385-389
    [46] Barnes W L, Dereux A, Ebbesen T W. Surface Plasmon subwavelength optics [J]. Nature,2003,424:824-830.
    [47] Fang N, Lee H, Sun C, Zhang X. Sub-Diffraction-Limited Optical Imaging with a SilverSuperlens [J]. Science,2005,308,534-537.
    [48] Zia R, Schuller J A, Chandran A, Brongersma M L. Plasmonics: the next chip-scale technology[J]. Mater. Today,2006,9:20-27.
    [49] Tanahashi I, Mitsuyu T. Preparation and optical-properties of silica-gels in which small goldparticles were grown by photoreduction [J]. J. Non-Cst. Solids,1995,181:77-82.
    [50] Niidome Y, Hori A, Takahashi H, Goto Y, Yamada S. Laser-Induced deposition of goldnanoparticles onto glass substrates in cyclohexane [J]. Nano Lett.,2001,1:365–369.
    [51] Bjerneld E J, Murty K, Prikulis J, K ll M. Laser-induced growth of Ag nanoparticles fromaqueous solutions [J]. ChemPhysChem.,2002,3:116–119.
    [52] Bjerneld E J, Svedberg F, K ll M. Laser-induced growth and deposition of noble-metalnanoparticles for surface-enhanced Raman scattering [J]. Nano Lett.,2003,3:593–596.
    [53] Xu B B, Ma Z C, Wang L, Zhang R, Niu L G, Yang Z, Zhang Y L, Zheng W H, Zhao B, Xu Y,Chen Q D, Xia H, Sun H B. Localized flexible integration of high-efficiency surface enhancedRaman scattering (SERS) monitors into microfluidic channels [J]. Lab on a Chip,2011,11:3347-3351.
    [54] Xu B B, Zhang R, Liu X Q, Wang H, Zhang Y L, Jiag H B, Wang L, Ma Z C, Ku J F, Xiao F S,Sun H B. On-chip fabrication of silver microflower arrays as a catalytic microreactor forallowing in situ SERS monitoring [J]. Chem. Commun.,2012,48:1680-1682.
    [55] Damian C, Brendan T, Brett P. High-capacity gold nanopaticle functionalized polymermonoliths [J].Chem. Comm.,2010,46:2109-2111.
    [56] Carlo G Z. Coupling solid-phase microextraction to liquid chromatography. A review [J].Anal.Bioanal. Chem.,2003,375:73-80.
    [57] Sanja R, Vadoud H, Vuckovic N D. et al. Recent developments in solid-phase microextraction[J]. Anal. Bioanal. Chem.,2009,393:781-795.
    [58]林玲.微流控芯片上功能材料和组装及其在分析化学中的应用[D].北京:北京化工大学化学院,2012.
    [59]黄晓冬.分子印迹整体柱的制备及应用研究[D].大连:中国科学院大连化学物理研究所,2003.
    [60] Yang Y, Chen L, Lee K H, Craighead H G. Coupling on-chip solid-phase extraction toelectrospray mass spectrometry through an integrated electrospray tip [J]. Electrophoresis,2005,26:3622–3630.
    [61] Eric C P, Svec F, Fréchet J M J. Control of porous properties and surface chemistry in"molded" porous polymer monoliths prepared by polymerization in the presence of TEMPO [J].Macromolecules.,1999,32:6377-6379.
    [62] Eric C P, Miroslav P, Svec F, et al. Molded rigid polymer monoliths as separation media forcapillary electrochromatography.1.Fine control of porous properties and surface chemistry [J].Anal. Chem.,1998,70:2288-2295.
    [63] Lin L, Chen H, Wei H B, Wang F, Lin J M. On-chip sample pretreatment using a porouspolymer monolithic column for solid-phase microextraction and chemiluminescencedetermination of catechins in green tea [J]. Analyst,2011,136:4260-4267.
    [64] Svec F, Fréchet J M J. Temperature is a simple and efficient tool for the control of pore-sizedistribution in macroporous polymers [J]. Macromolecules,1995,28:7580-7582.
    [65] Xu Y, Cao Q, Svec F, Fréchet M J. Porous polymer monolithic column with surface-boundgold nanoparticales for the capture and separation of cysteine-containing peptides [J]. Anal.Chem.,2010,82(8):3352-3358.
    [66] Damian C, Brendan T, Brett P. High-capacity gold nanopaticle functionalized polymermonoliths [J]. Chem. Comm.,2010,46:2109-2111.
    [67] Risticevic S, Niri V H, Vuckovic D, Pawliszyn J. Recent developments in solid-phasemicroextraction [J]. Anal. Bioanal. Chem.,2009,393:781-795.
    [68] McGlashen M L, Davis K L, Morris M D. Surface-enhanced Raman scattering of dopamine atpolymer-coated silver electrodes [J]. Anal. Chem.,1990,62:846.
    [69] Maxwell D J, Emory S R, Nie S M. Nanostructured thin-film materials withsurface-enhanced optical properties [J]. Chem. Mater.,2001,13:1082.
    [70] Lee A, Dubinsky S, Tumarkin E, Moulin M, Beharry A A, Kumacheva E. Multifunctionalhybrid polymer-based porous materials [J]. Adv. Funct. Mater.,2011,21:1959.
    [71] Dubinsky S, Petukhova A, Gourevich I, Kumacheva E. Hybrid porous material produced bypolymerization-induced phase separation [J]. Chem. Commun.,2010,46:2578-2580.
    [72] Liu J, White I, DeVoe D L. SERS detection using silver nanocluster-embedded porous polymermonoliths.14th International Conference on Miniaturized Systems for Chemistry and LifeSciences, October3-7,2010[C]. The Netherlands: Groningen, c2010.
    [73] Liu J, White I, DeVoe D L. Nanoparticle-functionalized porous polymer monolith detectionelements for surface-enhanced Raman scattering [J]. Anal. Chem.,2011,83:2119-2124.
    [74] Li Q Q, Du Y P, Tang H R, Wang X, Chen G P, Iqbal J, Wang W M, Zhang W B. Ultrasensitive surface-enhanced Raman scattering detection based on monolithic column as a newtype substrate [J]. J. Raman Spectrosc.,2012,43:1392-1396.
    [75]李青青,杜一平,唐慧容,汪宣,陈贵平,王文明.基于整体柱的超灵敏表而增强拉曼检测[J].光散射学报,2012,24(3):245-250.
    [76] Steidtner J. Pettinger B. Tip-enhanced Raman spectroscopy and microscopy on single dyemolecules with15nm resolution. Phys. Rev. Lett.,2008,100,236101.
    [77] Liu Z, Ding S Y, Chen Z B, Wang X, Tian J H, Anema J R, Zhou X S, Wu D Y, Mao B W, XuX, Ren B, Tian Z Q. Revealing the molecular structure of single-molecule junctions indifferent conductance states by fishing-mode tip-enhanced Raman spectroscopy [J]. Nat.Commun.,2011,2:305.
    [78] Liu Z, Wang X, Dai K, Jin S, Zeng Z C, Zhuang M D, Yang Z L, Wu D Y, Ren B, Tian Z Q.Tip-enhanced Raman spectroscopy for investigating adsorbed nonresonant molecules onsingle-crystal surfaces: tip regeneration, probe molecule, and enhancement effect [J]. J RamanSpectrosc.,2009,40:1400-1406.
    [79] Wang X, Liu Z, Zhuang M D, Zhang H M, Wang X, Xie Z X, Wu D Y, Ren B, Tian Z Q.Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystalsurface using electrochemically prepared Au tips [J]. Appl. Phys. Lett.,2007,91:101105.
    [80] Wachsmann-Hogiu S, Weeks T, Huser T. Chemical analysis in vivo and in vitro by Ramanspectroscopy-from single cells to humans [J]. Curr. Opin. Biotech.,2009,20:63-73.
    [81] Feng S Y, Chen R, Lin J Q, Pan J J, Wu Y A, Li Y Z, Chen J S, Zeng H S. Gastric cancerdetection based on blood plasma surface-enhanced Raman spectroscopy excited by polarizedlaser light [J]. Biosens. Bioelectron.,2011,26:3167-3174.
    [82] Hu C X, Wang J X, Zheng C, Xu S P, Liang Y C, Bi L R, Fan Z M, H B, Xu W Q. Ramanspectra exploring breast tissures: comparison of principal component analysis and supportvector machine-recursive feature elimination [J]. Med. Phys.,2013,40:063501.
    [83] Stone N, Matousek P. Advanced transmission Raman spectroscopy: A promising tool forbreast disease diagnosis [J]. Cancer Res.,2008,68(11):4424-4430.
    [84] Stone N, Kendall C, Smith J, Crow P, Barr H. Raman spectroscopyfor identification ofepithelial cancers [J]. Faraday Discuss.,2004,126:141–157.
    [85] Alak A M, Vo-Dinh T. Surface-enhanced Raman spectrometry of organo-phosphorus chemicalagents [J]. Anal. Chem.,1987,59(17):2149-2153.
    [86] Gao R, Choi N, Chang S I, Kang S H, Son J M, Cho S I, Lim D W, Choo J. Highly sensitivetrace analysis of paraquat using surface-enhanced Raman scattering microdroplet sensor [J].Anal. Chim. Acta,2010,681:87–91.
    [87] Tang H R, Li Q Q, Ren Y L, Geng J P, Cao P, Sui T, Wang X, Du Y P. Surface enhancedRaman spectroscopy signals of mixed pesticides and their identification [J]. Chin. Chem. Lett.,2011,22:1477–80.
    [88]常晶晶.古代壁画中颜料及染料的拉曼光谱研究[D].长春:吉林大学理论化学研究所,2010.
    [89] Brossuau C L, Casadio F, Van Duyne R P. Revealing the invisible: using surface-enhancedRaman spectroscopy to identify minute remnants of color in Winslow Homer’s colorless skies[J]. J Raman Spectrosc.,2011,42:1305-1310.
    [90] Jurasekova Z, Puerto E, Bruno G, Garcia-Ramos J V, Sanchez-Cortes S, Domingo C.Extractionless non-hydrolysis surface-enhanced Raman spectroscopic detection of historicalmordant dyes on textile fibers [J]. J Raman Spectrosc.,2010,41:1455-1461.
    [91]黎敏,廖延彪.光纤传感器及其应用技术[M].湖北:武汉大学出版社,2008:1-3.
    [92] Wang X D, Wolfbeis O S. Fiber-optic chemical sensors and biosensors (2008-2012)[J]. Anal.Chem.,2013,85:487-508.
    [93] Borisov S M, Wolfbeis O S. Optical biosensors [J]. Chem. Rev.,2008,108:423-461.
    [94] Wolfbeis O S. Fiber-optic chemical sensors and biosensors [J]. Anal. Chem.,2004,76:3269-3284.
    [95] Wolfbeis O S. Fiber-optic chemical sensors and biosensors [J]. Anal. Chem.,2000,72:81R-89R.
    [96] Wang X D, Chen H X, Zhao Y, Chen X, Wang X R, Optical oxygen sensors move towardscolorimetric determination [J]. Trends Anal. Chem.,2010,29:319-338.
    [97] Chipman L, Huettel M, Berg P, Meyer V, Klimant I, Glud R, Wenzhoefer F. Oxygen optodes asfast sensors for eddy correlation measurements in aquatic systems [J]. Limnol. Oceanogr.,2012,10:304-316.
    [98] Wu S Z, Cheng W P, Qiu Y, Li Z P, Shuang S M, Dong C A. Fiber optic pH sensor based onmode-filtered light detection [J]. Sens. Actuators B,2010,144:255-259.
    [99] Han J, Burgess K. Fluorescent indicators for intracellular pH [J]. Chem. Rev.,2009,110:2709-2728.
    [100] Saikia R, Buragohain M, Datta P, Nath P, Barua K. Fiber-optic pH sensor based on SPR ofsilver nanostructured film [J]. AIP Conf. Proc.,2009,1147,249-255.
    [101] Long F, Wu S, He M, Tong T, Shi H. Ultrasensitive quantum dots-based DNA detection andhybridization kinetics analysis with evanescent wave biosensing platform [J]. Biosens.Bioelectron.,2011,26:2390-2395.
    [102] Leung A, Shankar P M, Mutharasan R. Label-free detection of DNA hybridization usinggold-coated taperd fiber optic biosensors (TFOBS) in a flow cell at1310nm and1550nm [J].Sens. Actuators B,2008,131:640-645.
    [103] Knez K, Janssen K P F, Pollet J, Spasic D, Lammertyn J. Fiber-optic high-resolution geneticscreening using gold-labeled gene probes [J]. Small,2012,8:868-872.
    [104] Filip D, Jeroen P, Kris J, Bert V, Karel K, Dragana S, Jeroen L. Real-time monitoring of DNAhybridization and melting processes using a fiber optic sensor [J]. Nanotechnology,2012,23:065503.
    [105] Stoddart P R, White D J. Optical fibre SERS sensors [J]. Anal. Bioanal. Chem.,2009,394:1761-1774.
    [106] Deiss F, Sojic N, White D J, Stoddart P R. Nanostructured optical fibre arrays for high-densitybiochemical sensing and remote imaging [J]. Anal. Bioanal. Chem.,2010,396:53-71.
    [107] Schwab S D, McCreery R L. Versatile, efficient Raman sampling with fiber optics [J]. Anal.Chem.,1984,56:2199-2204.
    [108] Bello J M, Narayanan V A, Stokes D L, Vo-Dinh T. Fiber-optic remote sensor for in situsurface-enhanced Raman scattering analysis [J]. Anal. Chem.,1990,62:2437-2441.
    [109] Han Y, Tan S L, Oo M K K, Pristinski D, Sukhishvili S, Du H. Towards full-lengthaccumulative surface-enhanced Raman scattering-active photonic crystal fibers [J]. Adv. Mater.,2010,22:2647-2651.
    [110] Tiwari V S, Khetani A, Naji M, Anis H. Study of surface enhanced Raman scattering (SERS)within hollow core photonic crystal fiber [J]. Proceedings of IEEE Sensors,2009:367-370.
    [111] Yang X, Shi C, Wheeler D, Newhouse R, Chen B, Zhang J Z, Gu C. High-sensitivity molecularsensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering [J]. J.Opt. Soc. Am. A,2010,27:977-984.
    [112] Lesuffleur A, Kumar L K S, Brolo A G, Kavanagh K L, Gordon R. Apex-enhanced Ramanspectroscopy using double-hole arrays in a gold film [J]. J. Phys. Chem. C,2007,111:2347-2350.
    [113] Lewis I R, Griffiths P R. Raman spectrometry with fiber-optic sampling [J]. Appl. Spectrosc.,1996,50: A12-A30.
    [114] Viets C, Hill W. Single-fibre surface-enhaced Raman sensors with angled tips [J]. J. RamanSpectrosc.,2000,31:625-631.
    [115] Viets C, Hill W. Fibre-optic SERS sensors with conically etched tips [J]. J. Mol. Struct.,2001,536-534:163-166.
    [116] Zhang Y, Gu C. Surface-enhaced Raman scattering sensor based on D-shaped fiber [J]. Appl.Phys. Lett.,2005,87:123105.
    [117] Viets C, Hill W. Conparison of fibre-optic SERS sensors with differently prepared tips [J].Sensor. Actuat. B-Chem.,1998,51:92-99.
    [118] Fan M, Wang P, Escobedo C, Sinton D, Brolo A G. Multilayer silver nanoparticles-modifiedoptical fiber tip for high performance SERS remote sensing [J]. Biosens. Bioelectron.,2010,25:2270-2275.
    [119] Luotti A, Zerbi G. Fiber-optic SERS sensor with optimized geometry [J]. Sens. and Actua. B,2007,121:356-364.
    [120] Lucotti A, Pesapane, Zerbi G. Use of a geometry optimized fiber-optic surface-enhancedRaman scattering sensor in trace detection [J]. Appl. Spec.,2007,61:260-268.
    [121] Pesapan A, Lucotti A, Zerbi G. Fiber-optic SERS sensor with optimized geometry: testing andoptimization [J]. J. Raman Spectrosc.,2010,41:256-267.
    [122] Smythe E J, Dickey M D, Bao J M, Whitesides G M, Capasso F. Optcial antenna arrays on afiber facet for in situ surface-enahced Raman scattering detection [J]. Nano Lett.,2009,9:1132-1138.
    [123] Lipomi D J, Martinez R V, Kats M A, Kang S H, Kim P, Aizenbery J, Capasso F, Whitesides GM. Patterning the tips of optical fibers with metallic nanostructures using nanoskiving [J].Nano Lett.,2011,11:632-636.
    [124] Zheng X L, Guo D W, Shao Y L, Jia S J, Xu S P, Zhao B, Xu W Q, Corredor C, Lombardi J R.Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERSchemical sensor [J]. Langmuir,2008,24:4394–4398.
    [125] Liu T, Xiao X S, Yang C X. Surfactantless photochemical deposition of gold nanoparticles onan optical fiber core for surface-enhanced raman scattering [J]. Langmuir,2011,27:4623-4626.
    [126] Li M S, Yang C X. Laser-Induced Silver Nanoparticles Deposited on Optical Fiber Core forSurface-Enhanced Raman Scattering [J]. Chin. Phys. Lett.,2010,24:044202.
    [127] Phillip H P, George K. Fiber-optic evanescent field absorption sensor [J]. Appl. Phys. Lett.,1987,51:12-14.
    [128]庄须叶,吴辉,王淑荣,张平,刘永顺.基于微加工工艺的光纤消逝场传感器及其长度特性研究[J].物理学报,2009,58(4):2501-2505.
    [129]罗吉,庄须叶,倪祖高,姚军.光纤消逝场传感器结构的分析与应用[J].微纳电子技术,2011,48(6):376-390.
    [130] Shao Y L, Xu S P, Zheng X L, Wang Y, Xu W Q. Optical fiber LSPR biosensor prepared bygold nanoparticle assembly on polyelectrolyte multilayer [J]. Sensor,2010,10:3585-3596.
    [131]庄须叶,王浚璞,邓勇刚,黄涛,姚军.光纤传感技术在管道泄漏检测中的应用与进展[J].光学技术,2011,37(5):543-550.
    [132] Buerck J, Roth S, Kraemer K, Mathieu H. OTDR fiber-optical chemical sensor system fordetection and location of hydrocarbon leakage [J]. J. Hazard. Mater.,2003,102:13-28.
    [133] Su L, Lee T H, Elliott S R. Evanescent-wave excitation of surface-enhanced Raman scatteringsubstrates by an optical-fiber taper [J]. Opt. Lett.,2009,34:2685-2687.
    [134] Yan H, Liu J, Yang C X, Jin G F, Gu C, Hou L T. Novel index-guided photonic crystal fibersurface-enhanced Raman scattering probe [J]. Opt. Express,2008,16:8300-8305.
    [135] Russell P. Photonic crystal fibers [J]. Science,2003,299:358-362.
    [136] Knight J C. Photonic crystal fibers [J]. Nature,2003,424:847-851.
    [137] Knight J C, Broeng J, Birks T A, Russell P S J. Photonic band gap guidance in optical fibers [J].Science,1998,282:1476.
    [138] Yan H, Gu C, Yang C X, Jin G F, Zhang J T, Hou L T, YaoY. Hollow core photonic crystal fibersurface-enhanced Raman probe [J]. Appl. Phys. Lett.,2006,89:204101.
    [139] Yan H, Liu J, Yang C X, Jin G F, Gu C, Hou L T. Novel index-guided photonic crystal fibersurface-enhanced Raman scattering probe [J]. Opt. Express,2008,16:8300-8305.
    [140] Zhang Y, Shi C, Gu C, Seballos L, Zhang J Z. Liquid core photonic crystal fiber sensor basedon surface enhanced Raman scattering [J]. Appl. Phys. Lett.,2007,90:193504.
    [141] Shi C, Lu C, Gu C, Tian L, Newhouse R, Che S W, Zhang J Z. Inner wall coated hollow corewaveguide sensor based on double substrate surface enhanced Raman scattering [J]. Appl.Phys. Lett.,2008,93:153101.
    [142]徐蔚青,徐抒平,吕志成,王魁香,赵冰,樊玉国. SERS活性液芯光纤的制备及超灵敏检测应用[J].高等学校化学学报,2003,11(24):2083-2085.
    [143] Mak J S W, Rutledge S A, Abu-Ghazalah R M, Eftekhari F, Irizar J, Tam N C M, Zheng G,Helmy A S. Recent developments in optofluidic-assisted Raman spectroscopy [J]. Prog. Quant.Electron.,2013,37:1-50.
    [144] Hattori Y, Komachi Y, Asakura T, Shimosegawa T, Kanai G I, Tashiro H, Sato H. In vivoRaman study of the living rat esophagus and stomach using a miro-Raman probe under anendoscope [J]. Appl. Spectrosc.,2007,61:579-584.
    [145] Katagiri T, Yamamoto Y S, Ozaki Y, Matsuura Y, Sato H. High axial resolution Raman probemade of a single hollow optical fiber [J]. Appl. Spectrosc.,2009,63:103-107.
    [146] Suzuki T, Kitahama Y, Matsuura Y, Ozaki Y, Sato H. Development of a flexible fibersurface-enhanced Raman scattering (SERS) probe using a hollow optical fiber and goldnanoparticles [J]. Appl. Spectrosc.,2012,66:1022-1026.
    [1] Sato H, Tanaka T, Ikeda T, Wada S, Tashiro H, Ozaki Y. Biomedical applications of a newportable Raman imaging probe [J]. J. Mol. Struct.,2001,598:93-96.
    [2] Yamamoto Y S, Oshima Y, Shinzawa H, Katagiri T, Matsuura Y, Ozaki Y, Sato H.Subsurface sensing of biomedical tissues using a miniaturized Raman probe: study ofthin-layered model samples [J]. Anal. Chim. Acta.,2008,619:8-13.
    [3] Mitsuoka H, Morita S I, Suzuki T, Matsuura Y, Katsumoto Y, Sato H. Opticalcharacterization of a hollow fiber Raman probe toward non-invasive measurements of livingtissues [J]. Appl. Phys. Express,2009,2:027001.
    [4] Komachi Y.; Katagiri, T.; Sato, H.; Tashiro, H. Improvement and analysis of a micro Ramanprobe [J]. Appl. Opt.,2009,48:1683-1696.
    [5] Katagiri T, Yamamoto Y S, Ozaki Y, Matsuura Y, Sato H. High axial resolution Ramanprobe made of a single hollow optical fiber [J]. Appl. Spectrosc.,2009,63:103-107.
    [6] Wolfbeis O S. Fiber-optic chemical sensors and biosensors [J]. Anal. Chem.,2000,72:81R-89R.
    [7] Wolfbeis O S. Fiber-optic chemical sensors and biosensors [J]. Anal. Chem.,2002,74:2663-2678.
    [8] Emory S R, Nie S M. Near-field surface-enhanced Raman spectroscopy on single silvernanoparticles [J]. Anal. Chem.,1997,69:2631-2635.
    [9] Xu W Q, Xu S P, Hu B, Wang K X, Xie Y T, Fan Y G. Studies on the SERS-active opticfiber probe [J], Chem. J. Chinese U.,2004,25:114-117.
    [10] Niidome Y, Hori A, Takahashi H, Goto Y, Yamada S. Laser-induced deposition of goldnanoparticles onto glass substrates in cyclohexane [J]. Nano Lett.,2001,1:365-369.
    [11] Takahashi H, Niidome Y, Sato T, Yamada S. Effects of capping thiols on the laser-inducedfusion of gold nanoparticles and deposition onto glass substrates in cyclohexane [J]. Colloid.Surface. A.,2004,247:105-113.
    [12] Bjerneld, E. J.; Murty, K. V. G. K.; Prikulis, J. and K ll, M. Laser-induced growth of Agnanoparticles from aqueous solutions [J], ChemPhysChem,2002,3:116-119.
    [13] Bjerneld E J, Svedberg F, K ll M. Laser-induced growth and deposition of noble-metalnanoparticles for surface-enhanced Raman scattering [J]. Nano Lett.,2003,3:593-596.
    [14] Xu B B, Ma Z C, Wang L, Zhang R, Niu L G, Yang Z, Zhang Y L, Zheng W H, Zhao B, XuY, Chen Q D, Xia H, Sun H B. Localized flexible integration of high-efficiency surfaceenhanced Raman scattering (SERS) monitors into microfluidic channels [J]. Lab on a Chip,2011,11:3347-3351.
    [15] Xu B B, Zhang R, Liu X Q, Wang H, Zhang Y L, Jiang H B, Wang L, Ma Z C, Ku J F, XiaoF S, Sun H B. On-chip fabrication of silver microflower arrays as a catalytic microreactor forallowing in situ SERS monitoring [J]. Chem. Commun.,2012,48:1680-1682.
    [16] Zheng X L, Zhao X J, Guo D W, Tang B, Xu S P, Zhao B, Xu W Q, Lombardi J R.Photochemical formation of silver nanodecahedra: structural selection by the excitationwavelength [J]. Langmuir,2009,25:3802-3807.
    [17] Jia S J, Xu S P, Zheng X L, Zhao B, Xu W Q. Preparation of SERS optical fiber sensor vialaser-induced deposition of Ag film on the surface of fiber tip [J]. Chem. J. Chinese U.,2006,27:523-526.
    [18] Liu T, Xiao X, Yang C. Surfactantless photochemical deposition of gold nanoparticles on anoptical fiber core for surface-enhanced Raman scattering [J]. Langmuir,2011,27:4623-4626.
    [19] Li M S, Yang C X. Laser-induced silver nanoparticles deposited on optical fiber core forsurface-enhanced Raman scattering [J]. Chinese Phys. Lett.,2010,27:044202.
    [20] Han X X, Kitahama Y, Itoh T, Wang C X, Zhao B, Ozaki Y. Protein-mediated sandwichstrategy for surface-enhanced Raman scattering: application to versatile protein detection [J].Anal. Chem.,2009,81:3350-3355.
    [21] Liu Y, Xu S P, Xuan X Y, Zhao B, Xu W Q. Long-range surface plasmon field-enhancedRaman scattering spectroscopy based on evanescent field excitation [J]. J. Phys. Chem. Lett.,2011,2:2218-2222
    [1] Doering W E, Nie S M. Spectroscopic tags using dye-embedded nanoparticles andSurface-enhanced Raman Scattering [J]. Anal. Chem.,2003,75:6171-6176.
    [2] Haynes C L, McFarland A D, Van Duyne R P. Surface-enhanced Raman Spectroscopy [J]. Anal.Chem.,2005,77:338A-346A.
    [3] Wustholz K L, Henry A, McMahon J M, Freeman R G, Valley N, Piotti M E, Natan M J,Schatz G C, Van Duyne R P. Structure-activity relationships in gold nanoparticles dimmers andtrimers for Surface-enhanced Raman Spectroscopy [J]. J. Am. Chem. Soc.,2010,132:10903-10910.
    [4] Doering W E, Nie S M. Single-molecule and single-nanoparticle SERS: examining the roles ofsurface active sites and chemical enhancement [J]. J. Phys. Chem. B2002,106:311-317.
    [5] Camargo P H C, Rycenga M, Au L, Xia Y N. Isolating and probing the hot spot formedbetween two silver nanocubes [J]. Angew. Chem. Int. Ed.,2009,48:2180-2184.
    [6] Lee P C, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols [J],J. Phys. Chem.,1982,86:3391-3395.
    [7] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse goldsuspensions [J], Nature Phys. Sci.,1973,241:20-21.
    [8] Shi C, Yan H, Gu C, Ghosh D, Seballos L, Chen S W, Zhang J Z, Che B. A double substrate"sandwich" structure for fiber surface enhanced Raman scattering detection [J]. Appl. Phy.Lett.,2008,92:103107.
    [9] Zamuner M, Talaga D, Deiss F, Guieu V, Kuhn A, Ugo P, Sojic N. Fabrication of amacroporous microwell array for Surface-Enhanced Raman Scattering [J]. Adv. FunctionalMater.,2009,19:3129-3135.
    [10] Choi D, Choi Y, Hong S, Kang T, Lee L P. Self-organized gexagonal-nanopore SERS array [J].Small,2010,6:1741-1744.
    [11] Mao Z, Song W, Xue X G, Ji W, Li Z S, Che L, Mao H J, Lv H M, Wang X, Lombardi J R,Zhao B. Interfacial charge-transfer effects in eemiconductor–molecule–metal structures:influence of contact variation [J]. J. Phys. Chem. C,2012,116:14701-14710.
    [12] Peters E C, Svec F, Frechet J M J. Rigid macroporous polymer monoliths [J]. Adv. Mater.,1999,11:1169-1181.
    [13] Liu J, Chen C F, Chang C C, Chu C C, DeVoe D L. Polymer microchips integratingsolid-phase extraction and High-Performance Liquid Chromatography using reversed-phasepolymethacrylate monoliths [J]. Anal. Chem.,2009,81:2545-2554.
    [14] Liu J, Chen C F, Chang C W, DeVoe D L. Flow-through immunosensors usingantibody-immobilized polymer monoliths [J]. Biosens. Bioelectron.,2010,26:182.
    [15] Peterson D S, Rohr T, Svec F, Frechet J M. Enzymatic microreactor-on-a-chip: proteinmapping using trypsin immobilized on porous polymer monoliths molded in channels ofmicrofluidic devices [J]. J. Anal. Chem.,2002,74:4081–4088.
    [16] Rohr T, Yu C, Davey M H, Svec F, Frechet J M. Porous polymer monoliths: simple andefficient mixers prepared by direct polymerization in the channels of microfluidic chips [J]. J.Electrophoresis,2001,22:3959–3967.
    [17] Chen G F, Svec F, Knapp D R. Light-actuated high pressure-resisting microvalve for on-chipflow control based on thermo-responsive nanostructured polymer [J]. Lab Chip,2008,8:1198–1204.
    [18] Koerner T, Turck K, Brown L, Oleschuk R D. Porous polymer monolith assisted electrospray[J]. Anal. Chem.,2004,76:6456–6460.
    [19] Lin L, Chen H, Wei H B, Wang F, Lin J M. On-chip sample pretreatment using a porouspolymer monolithic column for solid-phase microextraction and chemiluminescencedetermination of catechins in green tea [J]. Analyst,2011,136:4260-4267.
    [20] Guiochon G. Monolithic columns in high-performance liquid chromatography [J]. J.Chromatogr. A,2007,1168:101–168.
    [21] Svec F. Preparation and HPLC applications of rigid macroporous organic polymer monoliths[J]. J. Sep. Sci.,2004,27:747–766.
    [22] Svec F, Huber C G. Monolithic Materials: Promises, Challenges, Achievements [J]. Anal.Chem.,2006,78:2100–2107.
    [23] Liu J K, White I, Devoe D L. Nanoparticle-functionalized porous polymer monolith detectionelements for surface-enhanced Raman scattering [J]. Anal. Chem.,2011,83:2119-2124.
    [24] Li Q Q, Du Y P, Tang H R, Wang X, Chen G P, Iqbal J, Wang W M, Zhang W B. Ultrasensitive surface-enhanced Raman scattering detection based on monolithic column as a newtype substrate [J]. J. Raman Spectrosc.,2012,43:1392-1396.
    [25]李青青,杜一平,唐慧容,汪宣,陈贵平,王文明.基于整体柱的超灵敏表面增强拉曼检测[J].光散射学报,2012,24(3):245-250
    [26] Xu H, Bjerneld M K, Borjesson L. Spectroscopy of single hemoglobin molecules by surfaceenhaced Raman scattering [J]. Phys. Rev. Lett.,1999,83:4357-4360.
    [27] Camden J P, Dieringer J A, Wang Y, Masiello D J, Marks L D, Schatz G C, Van Duyne R P.Probing the structure of single-molecule surface-enhanced Raman scattering hot spots [J]. J.Am. Chem. Soc.,2008,130:12616-7.
    [28] Olk P, Renger J, Hartling T, Wenzel M T, Eng L M. Two particle-enhaced nano Ramanmicroscopy and spectroscopy [J]. Nano lett.,2007,7:1736-1740.
    [29] Lassiter J B, Aizpurua J, Hernandez L I, Brandl D W, Lai S, Hafner J H, Nordlander P, Halas NJ. Close encounters between two nanoshells [J]. Nano Lett.,2008,8:1212-1218.
    [30] Zhang Z L, Yang P F, Xu H X, Zheng H R. Surface enhanced fluorescence and Ramanscattering by gold nanoparticles dimmer and trimers [J]. J. Appl. Phys.,2013,113:033102.
    [31] Cao Q, Xu Y, Liu F, Svec F, Fréchet M J. Polymer monoliths with exchangeable chemistries:Use of gold nanoparticles as intermediate ligands for capillary columns with varying surfacefunctionalities [J]. Anal. Chem.,2010,82:7416-7421.
    [32] Lv Y Q W, Alejandro F M, Fréchet M J, Svec F. Preparation of porous polymer monolithsfeaturing enhanced surface coverage with gold nanoparticles [J]. J. Chromatogr. A.,2012,1261:121-128.
    [33] Svec F. Porous polymer monoliths: Amazingly wide variety of techniques enabling theirpreparation [J]. J. Chromatogr. A.,2010,1217:902-924.
    [34] Walsh Z, Abele S, Lawless B, Heger D, Klán P, Breadmore M C, Paull B, Macka M.Photoinitiated polymerization of monolithic stationary phases in polymide coated capillariesusing visible region LEDs [J]. Chem. Comm.,2008,48:6504-6506.
    [35] Gupta R, Weimer W A. High enhancement factor gold films for surface enhanced Ramanspectroscopy [J]. Chem. Phys. Lett.,2003,374:302-306.
    [36] Talley C E, Jusinski L, Hollars C W, Lane S M, Huser T. Intracellular pH sensors based onsurface-enhanced Raman scattering [J]. Anal. Chem.,2004,76:7064-7068.
    [37] Wang Y Q, Ma S, Yang Q Q, Li X J. Size-dependent SERS detection of R6G by silvernanoparticles immersion-plated on silicon nanoporous pillar array [J]. Appl. Surf. Sci.,2012,258:5881-5885.
    [1] Otto A, Mrozek I, Grabhorn H, Akemann W. Surface-enhanced Raman scattering [J]. J. Phys.Condens. Matter.,1992,4:1143-1212.
    [2] Moskovits M. Surface-enhanced spectroscopy [J]. Rev. Mod. Phys.,1985,57:783-826.
    [3] Nie S M, Emory S R. Probing single molecules and single nanoparticles by surface-enhancedRaman scattering [J]. Science,1997,275:1102-1106.
    [4] Xu H X, Aizpurua J, Kall M, Apell P. Electromagnetic contributions to single-moleculesensitivity in surface-enhanced Raman scattering [J]. Phys. Rev. E,2000,62:4318-4324.
    [5] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S. Single moleculedetection using surface-enhanced Raman scattering (SERS)[J]. Phys. Rev. Lett.,1997,78:1667-1670.
    [6] Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. Ultrasensitive chemical analysis byRaman spectroscopy [J]. Chem. Rev.,1999,99:2957-2975.
    [7] Xu H, Bjerneld E J, Kall M, Borjesson L. Spectroscopy of single hemoglobin molecules bysurface enhanced Raman scattering [J]. Phys. Rev. Lett.,1999,83:4357-4360
    [8] Kneipp K, Kneipp H, Kartha V B, Manoharan R, Deinum G, Itzkan I, Dasari R R, Feld M S.Detection and identification of a single DNA base molecule using surface-enhanced RamanScattering (SERS)[J]. Phys. Rev. E,1998,57:R6281-R6284.
    [9] Rebecca A J, Jennifer S, Steven R E. Single nanoparticles based optical pH probe [J]. Appl.Spectrosc.,2007,61:832-838.
    [10] Chao Y W, Zhou Q, Li Y, Yan Y R, Wu Y, Zheng J W J. Potential dependentsurface-enhanced Raman scattering of4-mercaptopyridine on electrochemically roughenedsilver electrodes [J]. Phys. Chem. C.,2007,111:16990-16995.
    [11] Zhang L, Bai Y, Shang Z G, Zhang Y K, Mo Y J. Experimental and theoretical studies ofRaman spectroscopy on4-mercaptopyridine aqueous solution and4-mercaptopyridine/Agcomplex system [J]. J. Raman Spectrosc.,2007,38:1106-1111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700