玫瑰黄链霉菌Men-myco-93-63与变铅青链霉菌TK24的原生质体种间融合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玫瑰黄链霉菌Men-myco-93-63对多种植物病原真菌和细菌有较强的抑制作用,温室和大田试验表明该菌株的代谢产物对棉花黄萎病和瓜类白粉病有较好的防效作用,其有效成分和作用机理正在研究中。双亲株灭活原生质体融合摆脱了遗传标记给育种工作带来的束缚,使融合子的检出变得直观,是值得推广的一种选育高产菌株的方法。
     本文对玫瑰黄链霉菌Men-myco-93-63和变铅青链霉菌TK24的原生质体分别进行热灭活和紫外灭活,在PEG 4000介导下融合,所得“融合子”以棉花黄萎病菌和马铃薯疮痂病菌为指示菌筛选抗生素高产优质菌种,传代培养检测高产“融合子”的稳定性,并观察“融合子”的培养特征和形态特征;利用基因组酶切和可溶性蛋白质电泳验证融合子与亲本的遗传关系;通过摇瓶发酵获得高产融合菌株抗生素粗品的产量,得出增产率;以融合子RH19为代表,采用亲株的发酵培养基对融合子RH19进行摇瓶发酵实验,利用薄层色谱(TLC)和高效液相色谱(HPLC)分析融合菌株抗生素粗品。通过玫瑰黄链霉菌Men-myco-93-63与变铅青链霉菌TK24原生质体的种间融合实验,得到了十四株对棉花黄萎病菌和马铃薯疮痂病菌具有抑制作用的融合子,融合子RH19抑菌活性明显强于玫瑰黄链霉菌Men-myco-93-63。经过十次传代发现,融合子的遗传稳定性良好。高产融合子在固体R2YE培养基及液体燕麦培养基上均产生黄绿色色素,并且培养特征和形态特征明显不同于亲株。对基因组DNA进行酶切发现融合子的酶切片段与亲本不同;对“融合子”RH19及亲本的可溶性总蛋白进行了SDS-PAGE分析,发现“融合子”RH19的可溶性总蛋白图谱与双亲有一定的相似性又产生了新的条带;摇瓶发酵实验结果显示融合子粗提抗生素的产量为0.18g/L,而玫瑰黄链霉菌Men-myco-93-63为0.07g/L,增产了159%;TLC和HPLC结果表明此菌株能够产生亲本不能产生的新的次级代谢产物。本研究证实了玫瑰黄链霉菌Men-myco-93-63和变铅青链霉菌TK24之间发生了基因重组。该研究结果为放线菌防治作物病害提供了新资源,具有广泛的应用前景和重要的应用价值。
     探索了玫瑰黄链霉菌Men-myco-93-63和变铅青链霉菌TK24的原生质体电击融合方法的可行性,研究结果发现,电击融合并不能得到具有优良性状的融合子,电击条件有待于进一步进行摸索。
Streptomyces roseoflavus Men-myco-93-63 could inhibit many pathogen fungus and bacteria in lab. The fermentation liquid had a strong antibiosis activity against cotton verticillium wilt and cucurbits powdery mildew in greenhouse and field. The effective elements and function mechanism were under study. Parental strains of inactivated protoplasts fusion can get rid of the obstacles that genetic markers brought to breeding work, make the screening of fusants intuitive, and it is a good mearure of breeding high-yeilding strains and to be popularized.
     The research was carried out to inactivate protoplasts of Streptomyces roseoflavus Men-myco-93-63 and Streptomyces lividans TK24 using heat and UV, respectively, and two inactivated protoplasts were fused with PEG 4000. The high-yeilding fusants which have stronger inhibitory activity to Verticillium dahliae V41 and Streptomyces scabies H2 than Streptomyces roseoflavus Men-myco-93-63 were screened. The stability of fusants was detected by subcultured and the characteristics of culture and morphology was observed. The genetic relationship to parents was verified by genome digestion and electrophoresis of soluble proteins. The yield of antibiotics crude produced by high-yeilding strains was obtained by shaking fermentation and the increase rate was got. The shaking fermentation experiment of Fusant RH19 was carried out using the medium of parent, and the antibiotics crude of Fusant RH19 was analyzed with TLC and HPLC methods. We got 14 fusants which have inhibition effect to Verticillium dahliae V41 and Streptomyces scabies H2 through protoplast fusion between Streptomyces roseoflavus Men-myco-93-63 and Streptomyces lividans TK24. The inhibition effect of Fusant RH19 was significantly higher than Streptomyces roseoflavus Men-myco-93-63. The high-yielding fusant RH19 produced yellowish pigments in solid R2YE medium and liquid oats medium, and the characteristics of culture and morphology were different from parental strains. After subcultured 10 times, the fusants have stable heredity. The digestion of genome showed that the restriction fragments differ from that of parents. SDS-PAGE analysis showed that the soluble proteins of Fusant RH19 were different from that of parents, and noval bands were produced. The flasking fermentation experiment result showed that the yeild of antibiotics crude of Fusant RH19 was 0.18 g/L, and that of Streptomyces roseoflavus Men-myco-93-63 was 0.07 g/L, with 159% increase rate. TLC and HPLC results showed that Fusant RH19 produced new secondary metabolites that parent strain could not. This study confirmed that genome combination occured between Streptomyces roseoflavus Men-myco-93-63 and Streptomyces lividans TK24. The research results would provide new resources for prevention of crop diseases using actinomycosis, and it has a broad prospect of application and important application value.
     This study explored the feasibility of electroporation between Streptomyces roseoflavus Men-myco-93-63 and Streptomyces lividans TK24, the results showed that the method of protoplast fusion using electroporation could not obtain recombinants which has superior character, the condition of electroporation was to be groped.
引文
[1] Nair, M. G., Chandra, A., Thorogood D. L. Gopalamicin, anantifungal macrolide produced by soil actinomycete [J]. Journal of Agricultural and Food Chemistry. 1994, 42: 2 308-2 310.
    [2] Eckwall E. C., Schottel J. L. Isolation and characterization of an antibiotic produced by the scab disease-suppressive Streptomyces diastatochromogenes strain PonSSII [J]. Journal of Industrial Microbiology and Biotechnology, 1997, 19(3): 220-225.
    [3]薛德林,胡江春,马成新,等.海洋放线菌MB-97生物制剂在克服大豆连作障碍中的应用[J].现代化农业, 2003, (12): 19-21.
    [4]沈寅初.新农药研究与开发[M].北京:化学工业出版社, 1995: 308-320.
    [5] Knight S. C., Anthony V. M., Brady A. M., et al. Rationale and Perspectives on the development of fungicides [J]. Annual Review of Psychology, 1997, 35: 349-372.
    [6]洪华珠,杨红.杀虫微生物纲要[M].武昌:华中师范大学出版社, 1997.
    [7] Aoki A. R., Fukuda Nkayabu T., Ishibeshi K., et al. DE Pat 2329486 (Sankyo Co. Ltd) [P]. 1973, (Priority, 08, June 1972).
    [8] Bibb M. J., Schottel J. L., Cohen S. N. A DNA cloning system for interspecies gene transfer in antibiotic-producing Streptomyces [J]. Nature, 1980, 284: 526-531.
    [9] Hopwood D. A., Bibb M. J., Chater K. F, et al. Genetic Manipulation of Streptomyces. A Laboratory Manual [M]. England:John Innes Foundation Press, 1985.
    [10]柴荣耀,金敏忠.水稻稻瘟病菌形成有性世代的培养条件初步研究[J].浙江农业科学.1992, (3): 140-141.
    [11]李成云,李家瑞,岩野正敬,等.云南省稻瘟病菌的交配型[J].西南农业学报. 1991, 4(1): 69-72.
    [12]丁成翔.水稻稻瘟病害拮抗链霉菌原生质体融合育种研究[D].四川成都:四川大学硕士论文, 2007.
    [13] Hopwood D. A., Wright H. M. Bacterial protoplast fusion: recombination in fused protoplasts of Streptomyces coelicolor [J]. Journal of General and Applied Microbiology, 1978, 162: 307-317.
    [14] Pesti M., Konszky E., Polga J., et al. Fifth international protoplast symposium [C], 1979: 54.
    [15]孙胜,袁丽蓉.生米卡链霉菌与北里链霉菌种间原生质体融合重组的研究[J].中国抗生素杂志. 1989, 14(5): 344-348.
    [16] Okada Y. Analysis of giant polynuclear cell formation caused by HVJ virus from Ehrlich's ascites tumor cells.I.Microscopic observation of giant polynuclear cell formation [J]. Experimental Cell Research, 1962, 26(8): 98-107.
    [17] Yang J., Shen M. H. Polyethylene glycol-mediated cell fusion [J]. Methods in Molecular Biology, 2006, 325: 59-66.
    [18] Fodor K., Alfoldi L. Fusion of protoplasts of Bacillus megaterium [J]. Proceedings of the National Academy of Sciences of the United States of America, 1976, 73(6): 2 147-2 150.
    [19] Hollaender A. The method of cell fusion with the electric pulse [M]. New York, Plenum Press. 1982, 59-67.
    [20] Zimmermannu, Pillwat G. Sixth international biophysics congress [C]. Kyoto, 1978, IV-19(H): 140.
    [21] Senda M. The cell fusion of plant with the electric pulse [J]. Plant Cell Physical, 1979, 20: 1 441-1 443.
    [22]余荔华,刘进元,赵南明.克氏固氮菌与枯草芽孢杆菌的原生质体电融合[J].清华大学学报:自然科学版, 1999, 39(6): 46-51.
    [23] Dai M. H., Ziesman S., Ratcliffe T., et al. Visualization of protoplast fusion and quantitation of recombination in fused protoplasts of auxotro-phic strains of Escherichia coli [J]. Metabolic engineering, 2005, 7(1): 5-52.
    [24]金玉娟,刘自镕,任建平.芽孢杆菌和欧文氏菌的原生质体融合的研究[J].微生物学杂志, 2002, 22(3): 10-11.
    [25]王宪,范云六.通过原生质体融合产生的苏云金杆菌的新菌株[J].生物工程学报, 1987 (3): 29-37
    [26] Bradshaw R. E., Peberdy J. F. Protoplast fusion in Aspergillus: selection of interspecific heterokaryons using antifungal inhibitors [J]. Journal of Microbiological Methods. 1984, 3(1): 27-32.
    [27]杨合同, MaartenH.Ryder,唐文华,等.原生质体融合技术改良植病生防木霉菌株[J].中国生物防治, 2005, 21(4): 247-253.
    [28] Fodor, K., Demiri, E., Alfoldi, L. Polyethylene glycol-induced fusion of heat inactivated and living protoplasts of Bacillus megaterium [J]. Journal of Bacteriology. 1978, 135: 68-70.
    [29] Hopwood D. A., Helen M. Wright. Protoplast Fusion in Streptomyces: Fusions involving ultraviolet-irradiated protoplasts [J]. Journal of General Microbiology, 1981, 126: 21-27.
    [30]周东坡,张宝国.通过灭活原生质体融合选育啤酒酵母新菌株[J].微生物学报, 1999, 39(5): 454-460.
    [31]骆健美,李建姝,王艳婷,等.褐黄孢链霉菌双亲灭活原生质体融合的研究[J].现代化工, 2008, 28(增刊): 349-353.
    [32]陈五岭,张芳琳,景建洲,等.灭活原生质体融合技术选育苏云金杆菌新菌种-原生质体融合条件的研究[J].西北大学学报, 1998, 28(2): 147-149.
    [33]黎永学,张德纯,李代昆.双歧杆菌和酿酒酵母原生质体融合子筛选方法的探讨[J].食品科学, 2006, 27(2): 84-86.
    [34]黄勤妮,刘佳,宋秀珍,等.大肠杆菌和枯草芽孢杆菌的原生质体融合[J].首都师范大学学报, 2002, 23(1): 55-59.
    [35]王怡平,荚荣,陈伟元,等.球形红假单胞菌和荚膜红假单胞菌的原生质体融合[J].青岛海洋大学学报, 2000, 30(2): 297-302.
    [36] Chen W., Ohmiya K., Shimizu S. Intergeneric protoplast fusion between Fusobacterium varium and Enterococcus faecium for enhancing dehydrodivanillin degradation [J]. Applied andEnvironmental Microbiology, 1987, 53(3): 542-548.
    [37]汪治清,张月琴.拟无枝酸菌B37与游动放线菌E92-70属间融合[J].中国抗生素杂志, 1996, 21(3): 161-167.
    [38]朱振华,胡欣荣,陈五岭,等. He-Ne激光在异种间原生质体融合中的应用[J].光子学报, 2007, 36(1): 144-147.
    [39]石海波,雷虹,张铁丹,等.通过抗药性筛选产生广谱高效肽类天然防腐剂的融合菌株[J].中国食品添加剂, 2006,专论综述: 82-85.
    [40]彭帮柱,岳田利,袁亚宏.原生质体融合法构建增香型苹果酒酿造酵母的研究[J].中国食品学报, 2006, 6(6): 70-77.
    [41]颜念龙,邱思鑫,何红,等.原生质体融合构建防病、杀虫和内生多功能工程菌[J].农业生物技术学报, 2004, 12(6): 704-708.
    [42] Hopwood D. A, Wright H. M., Bill M. J., et al . Genetic recombination through protoplast fusion in streptomyces [J]. Nature, 1977, 268: 171-173.
    [43]张瑾阳,李焕娄.细胞电融合技术及其在微生物遗传育种中的应用[M].国外医药抗生素分册, 1993, 14(3): 1-4.
    [44]曾洪梅,张震霖.原生质体融合提高农抗武夷菌素的效价[J].微生物学报, 1995, 35(5): 375-380.
    [45] Xu B., Jin Z. H., Wang H. Z., et al. Evolution of Stretomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling [J]. Applied Microbiology and Biotechnology, 2008, 80: 261-267.
    [46]贺敏霞,史济平,褚志文.诺卡氏菌原生质体融合重组研究[J].生物工程学报, 1989, 5(4): 303-308.
    [47]林荣团,杨毓芬.天然无抗菌活性链霉菌种间原生质体融合与活性重组体的分离[J].生物工程学报, 1990, 6(2): 134-139.
    [48] Hopwood D. A, Malpartida F, Kieser H. M., et al. Production of 'hybrid' antibiotics by genetic engineering[J]. Nature, 1985, 314(6012): 642-644.
    [49] Arai T. Studies of flavomycin taxonomic investigations on the strain, production of the antibiotic and application of cup method to the assay[J]. Journal of antibiotics, 1951, 4: 215-220.
    [50] Meng Q F, Yang W X, Liu D Q, et al. Field Evaluation of antagonistic Streptomyces Men-myco-93-63 preparation in biocontrol of cotton Verticillium Wilt. Proceedings of the 15th International Plant Protection Congress[J]. Beijing: Foreign Languages Press, 2004.
    [51]邸垫平.玫瑰黄链霉菌Men-myco-93-63活性组分的制备及相关基因克隆研究[D].保定:河北农业大学, 2006.
    [52]梁蕾.玫瑰黄链霉菌Men-myco-93-63阻断突变体的筛选及分析[D].保定:河北农业大学, 2007.
    [53]郭艳平.玫瑰黄链霉菌Men-myco-93-63诱变菌株的筛选及其活性成分的研究[D].保定:河北农业大学, 2007.
    [54]刘金艳.玫瑰黄链霉菌Men-myco-93-63转化体系的建立[D].保定:河北农业大学, 2007.
    [55]孙伟明.玫瑰黄链霉菌Men-myco-93-63抗生素生物合成基因相关线性质粒的研究[D].保定:河北农业大学, 2009.
    [56]沈凤英.玫瑰黄链霉菌Men-myco-93-63接合转移体系及nsdA基因的研究[D].保定:河北农业大学, 2009.
    [57] Kieser T, Bibb M. J, Buttner M. J., et al. Practical Streptomyces Genetics [M]. Norwich: The John Innes Foundation, 2000.
    [58]单文荣,刘花粉,李俊霞,等.菌饼法筛选不同活性物对棉花黄萎病菌抑制效果研究[J].中国棉花, 2010, 37(8): 16-18.
    [59]萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T. (金冬雁,黎孟枫,等译).分子克隆实验指南[M].第2版,北京:科学出版社, 1992.
    [60]阎逊初.放线菌的分类和鉴定[M].北京:科学出版社, l992.
    [61]毛雨,王丹,黄占斌,等.微生物原生质体融合育种技术及其应用[J].中国生物工程杂志, 2010, 30(1): 93-97.
    [62]陈丽萍.原生质体融合提高植物内生放线菌抗菌活性[D].保定:河北农业大学, 2008.
    [63] Kaneko H., Sakaguchi K. Fusion of protoplasts and genetic recombination of Breiibacteriurm flavum. Agricultural and Biological Chemistry [J]. 1979, 43: 1 007-1 013.
    [64] Sehaeffer P., Hotchkiss R. D. Fusion of bacterial Protoplasts.Method in Cell Biology [M].1978, 20: 149-158.
    [65]高炳淼,唐天乐,长孙东亭,等.毕赤酵母高效电转化条件的研究[J].中国海洋药物, 2010, 29(2): 1-5.
    [66]汪和睦,王洲.细胞电穿孔与电融合的机理及应用[J].生物化学与生物物理展, 1994, 21(4): 322-326.
    [67]王金盛,宫明,李春波.利用电场原生质体融合技术选育高产耐高温酵母融合株[J].中国调味品, 1998, (9): 11-13.
    [68]金冬雁,黎孟枫,等泽.分子克隆实验指南[M].第2版.北京:科学出版社, 1993. 801.
    [69]张瑾阳,吕婉瑜,韩卫华,等.金色链霉菌原生质体电融合[J].中国抗生素杂志, 1993, 18(3): 163-168.
    [70] Okamu.I.,廖福荣.抗生素链霉菌与弗氏链霉菌原生质体的种间电融合[J].国外医药.抗生素分册, 1990, 11(4): 256-258.
    [71]魏明宝,魏丽芳,李军,等.细胞电融合构建高效蒽降解重组菌株的研究[J].农业环境科学学报, 2006, 25(增刊): 725-728.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700