LIBS在金属元素定量分析中的应用及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光诱导击穿光谱学(Laser Induced Breakdown Spectroscopy,简称LIBS)是基于高功率脉冲激光与物质相互作用产生瞬态等离子体,通过分析等离子体发射光谱中原子、离子特征谱线,实现对待测物定性与定量分析的一种光谱技术。作为一项化学成分分析技术,LIBS的突出优势在于可对多种元素同时探测,且无需对样品预处理,可满足实时快速、无接触现场原位探测的需求。近年来,LIBS在海洋资源调查和海洋化学环境检测领域的潜在应用推进了水下LIBS的研究进程。如何做到精确定量是将LIBS实用化所面临的最大挑战。本论文作为LIBS技术应用于海洋探测的预研工作,以金属元素作为探测目标,以定量分析作为研究对象,从光谱探测方案、定量分析方法以及影响因素三方面对应用LIBS进行金属元素探测中的相关问题进行了研究。
     论文的前三章介绍了选题背景和意义,从LIBS定量分析的依据、影响因素、定量分析方法等方面综述了国内外研究进展,并介绍了本论文所用实验仪器及实验方法。论文的第四、第五和第六章是论文的主体——作者完成的主要工作,包括:光谱探测方案比较、各类定量分析方法评估和影响因素讨论。
     第四章是基于LIBS定量分析的光谱探测方案研究,以钢铁合金中的Mo元素为探测对象。首先采用CCD对激光诱导等离子体的空间分辨光谱进行探测,通过对空间分辨光谱特性的研究,确定了最佳探测距离,并应用于合金中Mo元素的定量分析。然后采用PMT和Boxcar组合探测激光诱导等离子体的时间分辨光谱,将最佳探测延时的时间分辨光谱应用于Mo元素的定量分析。结果表明,基于空间分辨光谱的分析结果优于基于时间分辨光谱的分析结果,基于这两种方案对Mo元素的相对误差分别为2.13%和5.57%。由此可见,LIBS应用于金属元素的定量分析中可选择CCD探测的空间分辨光谱探测方案。
     在第四章研究工作的基础上,第五章研究了基于LIBS的金属元素定量分析方法。以Mn元素为探测对象,利用CCD探测空间分辨光谱,分别采用传统强度定标方法、内定标方法、多元线性回归方法、多元非线性回归方法和偏最小二乘法对钢铁合金中Mn元素进行定量分析。结果表明,传统强度定标方法难以有效地对多组分多基体体系钢铁合金中金属元素定量分析,采用多元定标方法,能有效提高定量分析的精度。以IMn、IFe为变量应用了不近似的二元二阶非线性回归方法,对两个待测样定量分析的相对误差分别为9.69%和9.38%,在标准样品数量受限的情况下,应根据回归系数及其显著性来进行近似处理。以IMn、IFe和CCr作为变量进行三元二阶非线性回归,对两个待测样定量分析的误差最小,分别为3.29%和3.08%,在回归分析过程中,采用了平方项的降维近似。利用PLS方法,直接以Mn元素的特征光谱进行模型训练,对两个待测样品的预测浓度相对误差分别为6.62%和1.49%。各种方法所得的结果表明,采用三元二阶非线性回归方法的误差最小,PLS的预测方法分析速度最快,但分析精度有待提高。
     第六章主要是应用LIBS进行定量分析的影响因素研究,包括对激光烧蚀效果有重大影响的聚焦透镜焦点到样品表面的距离(LTSD)、对待测谱线光强有削弱效应的激光诱导等离子体的自吸收特性、以及在水下探测条件下需要考虑的光在水中的传输衰减对探测效果的影响。结果表明,LIBS光谱信号的信背比、元素特征谱线的强度和多次测量的相对标准偏差均会随LTSD发生变化,如果对系列样品进行定量分析时,应尽量保证每个样品LTSD不变,以减小定量分析的误差。对空气和水中激光诱导等离子体特性的分析结果表明,通过选择合适的谱线,采用较大的激光脉冲能量和较长的探测延时可以有效减小自吸收现象对LIBS光谱探测的影响。基于不同波长激光在水中传输特性,建立了入水前激光脉冲能量最佳值Eiopt(r)与探测距离r的关系式,并针对原位探测的实际情况,模拟分析了原位探测距离对入水前烧蚀激光脉冲能量的影响。当用1064nm激光进行LIBS水下探测时,探测距离以不大于5cm为宜,当探测距离增至10cm时,则需要考虑选择532nm激光作为烧蚀光源。
     第七章是论文工作总结,并针对海洋应用的实际问题,对下一步工作的努力方向进行了展望。
Laser-induced breakdown spectroscopy (LIBS) is a newly developed technique forelement analysis. It was based on analyzing the atomic lines or ionic lines in the transientplasma emission produced by the ablation of investigated substance with a high power laserpulse. The excellent advantages of LIBS include simultaneous multi-element detection,in-situ and stand-off analysis capability without any sample pretreatment. In recentlyyears, the potential application of LIBS in the field of ocean resources investigation andocean chemistry environmental monitoring has promoted the research progress ofunderwater LIBS. While in practice, how to realize analysis quantitatively with areasonable accuracy is a big challenge. In this thesis, taking metal elements as theinvestigating target and quantitative analysis as the technical focus, several experimentalinvestigations were carried out, with the special attention paid to the suitable spectrumdetection scheme, comparison of quantitative analysis method and the impact factoraroused in the procedure of LIBS.
     The thesis begins with an overview of LIBS and its potential significance in oceanapplications. A detailed review on the development of quantitative analysis using LIBS isgiven in Chapter2to show the basis of LIBS, various methods used in quantitative analysisand the impact factors aroused in the procedure of LIBS. The Chapter3is the descriptionof the relevant instrumentation and samples used in the experimental investigations. Thebulk of author’s contribution, within the general group effort, was to perform theexperiments which are described in Chapters4,5and6.
     Chapter4deals with the suitable detection scheme for quantitative analysis using LIBS.Element Mo in steel alloy samples was taken as the detection target. Using CCD detect,laser-induced Mo plasma emission were spatially resolved. Based on the obtainedspatially resolved spectra, the optimum detection range was determined and applied to thequantitative analysis of Mo element in alloy. The time-resolved laser-induced plasmaemission spectra were taken by a PMT in conjunction with a Boxcar system. Theoptimum detection time delay was determined and used in the quantitative analysis of Mo.It was found that the achieved results based on spatially resolved spectra was better thanthat based on time-resolved spectra, with the relative errors of2.13%for CCD detectionscheme and5.57%for PMT+Boxcar detection scheme. The obtained results suggestedthat CCD detection scheme could be taken as a suitable scheme for quantitative analysisusing LIBS.
     Based on CCD detection scheme, various methods were applied to the quantitativeanalysis of Mn element in steel alloy samples and detailed performance is given in Chapter5. The analysis was carried out with the methods based on direct intensity calibration,internal calibration, multiple linear regression, non-linear multivariate regression and partialleast squares respectively. It turned out that the direct intensity calibration method hardlyserve the quantitative analysis purpose for multi-components steel alloy samples. Withthe internal calibration of Fe I404.581nm line, the reasonable analysis results wereobtained with the relative error of3.54%and9.70%fro two target samples. Using IMn,IFeas variables, the results achieved by non-linear multivariate regression were found notgood with higher relative errors of9.69%and9.38%. With the introduction of IMn, IFeand CCras variables in non-linear multivariate regression analysis, the quantitative analysisresults were improved with the relative error down to3.29%or even less, withconsideration of dimension reduction in binary quadric terms. Regarding the analysisspeed, the method based on partial least squares(PLS) turned to be the best among all themethods applied, although the analysis accuracy was not stable and expected to beimproved further. Based on PLS, the concentrations of Mn in two target samples weredetermined with the relative errors of6.62%and1.49%respectively.
     There are many impact factors aroused in the procedure of LIBS, the relevantinvestigation is described in Chapter6with brief discussion. The focal lens to sampledistance(LTSD) is a key factor in the ablation process. It was found that thesignal-to-background ratio of LIBS signal hence the resultant analysis accuracy would bechanged with LTSD varied. It was suggested that LTSD must be kept the same during allthe spectra taken to minimize variation. The self-absorption of laser-induced plasma isanother impact factor in the analysis using LIBS. The obtained results showed that theimpact of self-absorption would be reduced effectively by the means of investigated lineselection, ablation using larger laser pulse energy and detection with longer detection delay.In the case of LIBS under water, the light attenuation should be take into considerations.A relationship between laser pulse energy before getting into water Eiopt(r) and thedetection range reached has been established. The simulation results suggested that toachieve effective LIBS detection,1064nm laser beam was better choice within thedetection range of5cm. On increasing the detection distance beyond10cm,532nm laserbeam may have better performance..
     Finally, a summery of the work so far the author has done and some suggestions forpossible future development are given in Chapter7.
引文
[1] R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A.Miziolek.,“Laser-induced breakdown spectroscopy—an emerging chemical sensor technology forreal-time field-portable, geochemical, mineralogical, and environmental applications,” Appl.Geochem.2006,21:730-747.
    [2] S. Koch1, W. Garen1, Detection of chromium in liquids by laser induced breakdownspectroscopy (LIBS), Appl. Phys. A,2004,79:1071–1073.
    [3] M. Lawrence-Snyder, J. Scaffidi, et al. Laser-induced breakdown spectroscopy of high-pressurebulk aqueous solutions. Applied Spectroscopy,2006,60(7):786-790.
    [4] A. Michel, M. Lawrence-Snyder, et al. Laser-induced breakdown spectroscopy of bulk aqueoussolutions at oceanic pressures: evaluation of key measurement parameters. Applied Optics,2007,46(13):2507-2515
    [5] Anna P. M. Miche, Alan D. Chave. Double pulse laser-induced breakdown spectroscopy of bulkaqueous solutions at oceanic pressures: interrelationship of gate delay, pulse energies, interpulsedelay, and pressure. Applied Optics,2008,47(31): G131-143.
    [6] Anna P. M. Michel,Alan D. Chave1. Single pulse laser-induced breakdown spectroscopy of bulkaqueous solutions at oceanic pressures: interrelationship of gate delay and pulse energy.APPLIED OPTICS,2008,47(31): G122-130
    [7] Brewer, P. G.; Malby, G.; Pasteris, J. D.; White, S. N.; Peltzer, E. T.; Wopenka, B.; Freeman, J.;Brown, M. O., Development of a laser Raman spectrometer for deep-ocean science. Deep-SeaResearch I2004,51,739-753.
    [8] Pasteris, J. D.; Wopenka, B.; Freeman, J. J.; Brewer, P. G.; White, S. N.; Peltzer, E. T.; Malby, G.,Spectroscopic success and challenges: Raman spectroscopy at3.6km depth in the ocean. AppliedSpectroscopy2004,58,(7),195A-208A.
    [9] Hester, K. C.; White, S. N.; Peltzer, E. T.; Brewer, P. G.; Sloan, E. D., Raman spectroscopicmeasurements of synthetic gas hydrates in the ocean. Marine Chemisry2006,98,(2-4),304-314.
    [10] Hester, K. C.; Dunk, R. M.; Walz, P. M.; Peltzer, E. T.; Sloan, E. D.; Brewer, P. G., Directmeasurements of multi-component hydrates on the seafloor: Pathways to growth. Fluid PhaseEquilibria2007,261,(1-2),396-406.
    [11] White, S. N.; Dunk, R. M.; Peltzer, E. T.; Freeman, J. J.; Brewer, P. G., In situ Raman analyses ofdeep-sea hydrothermal and cold seep systems (Gorda Ridge and Hydrate Ridge). Geochem.Geophys. Geosyst.2006,7, Q05023.
    [12]中国海洋大学校报, http://ouceducnxiaobao.cuepa.cn/show_more.php?doc_id=155151.2009.
    [13] D. Cremers, L. Radziemski. Handbook of Laser-Induced Breakdown Spectroscopy. John Wiley&Sons, Ltd.2006
    [14] A. Kaminska, M. Sawczak, K. Komar, G. S liwinski. Application of the laser ablation forconservation of historical paper documents. Applied Surface Science.2007,253:7860~7864
    [15] S. Gaspard, M. Oujja, E. Rebollar, C. Abrusci, F. Catalina, M. Castillejo. Characterization ofcinematographic films by Laser Induced Breakdown Spectroscopy. Spectrochimica Acta Part B.2007,62:1612~1617
    [16] J.A. Aguilera, C. Aragón, G. Cristoforetti, E. Tognoni, Application of calibration-free laserinduced breakdown spectroscopy to radially resolved spectra from a copperbased alloy laserinduced plasma, Spectrochim. Acta Part B64(2009)685–689.
    [17] PrasanthiInakollu, Thomas Philip, Awadhesh K. Rai, Fang-Yu Yueh, Jagdish P. Singh. Acomparative study of laser induced breakdown spectroscopy analysis for element concentrationsin aluminum alloy using artificial neural networks and calibration methods. SpectrochimicaActaPart B,2009,64(1):99-104.
    [18] G.P. Gupta, B.M. Suri, A. Verma, M. Sundararaman, V.K. Unnikrishnan, K. Alti, V.B. Kartha, C.Santhosh. Quantitative elemental analysis of nickel alloys using calibration-based laser-inducedbreakdown spectroscopy. Journal of Alloys and Compounds,2011,509(9):3740-3745.
    [19] W.L. Yip, N.H. Cheung. Analysis of aluminum alloys by resonance-enhanced laser-inducedbreakdown spectroscopy: How the beam profile of the ablation laser and the energy of the dyelaser affect analytical performance. SpectrochimicaActa Part B,2009,64(4):315-322.
    [20] I. Rauschenbach, V. Lazic, S. G. Pavlov, et al., Laser induced breakdown spectroscopy on soilsand rocks: Influence of the sample temperature, moisture and roughness, Spectrochimica ActaPart B: Atomic Spectroscopy,2008,63(10):1205-1215
    [21] Dário Santos, Ricardo Elgul Samad, Lílian Cristina Trevizan, et al., Evaluation of FemtosecondLaser-Induced Breakdown Spectroscopy for Analysis of Animal Tissues, Appl. Spectrosc.,2008,62(10):1137-1143
    [22] Fang-Yu Yueh, Hongbo Zheng, Jagdish P. Singh, et al. Preliminary evaluation of laser-inducedbreakdown spectroscopy for tissue classification Spectrochimica Acta Part B,2009,64:1059~1067.
    [23] R. Noll, Volker Sturm, Umit Aydin, Daniel Eilers, Christoph Gehlen, Manuela Hohne, AndreLamott, Joachim Makowe, Jens Vrenegor. Laser-induced breakdown spectroscopy—Fromresearch to industry, new frontiers for process control. Spectrochimica Acta Part B.2008(63):1159-1166.
    [24] V. Sturm, H. U. Schmitz, T. Reuter, R. Fleige, R. Noll. Fast vacuum slag analysis in a steel worksby laser-induced breakdown spectroscopy. Spectrochimica Acta Part B.2008,63(10):1167-1170.
    [25]姚宁娟,陈吉文,杨志军,王海舟.一种用于冶金炉前快速分析的新仪器——激光诱导击穿光谱仪.光谱学与光谱分析,2007,27(7):1452-1454.
    [26] C. Lopez-Moreno, S. Palanco and J. J. Laserna, Remote laser-induced plasma spectrometry forelemental analysis of samples of environmental interest, Journal of Analytical AtomicSpectrometry,2004,19(11):1479-1484
    [27] Linda G.Blevins, Christopher R. Shaddix, Shane M. Stickafoose. Laser-induced breakdownspectroscopy at high temperatures in industrial boilers and furnaces. Applied optics,200342(30):6107-6118
    [28] Cristina Lopez-Moreno, Santiago Palanco, J. Javier Laserna, et al., Test of a stand-offlaser-induced breakdown spectroscopy sensor for the detection of explosive residues on solidsurfaces, Journal of Analytical Atomic Spectrometry,2006,21(1):55-60
    [29] M. Bengtsson, R. Gr nlund, M. Lundqvist, et al., Remote Laser-Induced BreakdownSpectroscopy for the Detection and Removal of Salt on Metal and Polymeric Surfaces, Appl.Spectrosc.,2006,60(10):1188-1191
    [30] E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, I.Gornushkin, A numerical study of expected accuracy and precision in calibration-freelaser-induced breakdown spectroscopy in the assumption of ideal analytical plasma, Spectrochim.Acta Part B62(2007)1287–1302
    [31]王哲,冯杰,李政,倪维斗.提高激光诱导等离子光谱仪测量精度,清华大学学报,2010,50(8):1263-1266
    [32]陆同兴,路轶群.激光光谱技术原理及应用.中国科学技术大学出版社.2009
    [33]辛仁轩.等离子体发射光谱分析.化学工业出版社.2005
    [34]满宝元,苗勇.不同气压背景下激光烧蚀Al靶的发射光谱.科学通报,1997,42(9):998-1001.
    [35]满宝元,王公堂.不同气压背景下激光烧蚀Al靶产生等离子体特性分析.光谱学与光谱分析,1998,18(4):411-415.
    [36]崔执凤,杜传梅,方霞,冯源,管士诚,张先燚,季学寒,凤尔银.激光诱导Ni等离子体电子温度、电子密度的空间演化特性研究.安徽师范大学学报:自然科学版,2007,30(3):233-237.
    [37]马妮娜,余小敏,李家泽.激光诱导钛产生等离子体的光谱分析及电子温度的测量,光学技术2005(31):796-798
    [38] K. Novotny, A. Staňková. Analysis of powdered tungsten carbide hard-metal precursors andcemented compact tungsten carbides using laser-induced breakdown spectroscopy.Spectrochimica Acta Part B,2007,62:1567-1574
    [39] A. Santagata, R. Teghil, A. De Giacomo. Optical emission spectroscopy investigation of anultra-short laser induced titanium plasma reheated by a ns laser pulse. Applied Surface Sceence,2007,253:7792-7797
    [40] V.S. Burakov, S.N. Raikov. Quantitative analysis of alloys and glasses by a calibration-freemethod using laser-induced breakdown spectroscopy. Spectrochimica Acta Part B,2007,62:217~223
    [41]姜琛昱,张贵忠,傅饶,陆茵菲,汪淼,姚建铨.基于常规组合光谱仪下的LIBS快速铅检测研究.光谱学与光谱分析,2010(10):1652-1656.
    [42] A.S. Eppler, D.A.Cremers, D.D.Hickmott, et al. Matrix effects in the detection of Pb andBa in soils using laser-induced breakdown spectroscopy. Applied spectroscopy,1996,50(9):1175-1181
    [43] Jes′us M. Anzano, Mark A. Villoria, Antonio Ru′z-Medina, Roberto J. Lasheras.Laser-induced breakdown spectroscopy for quantitative spectrochemical analysis ofgeological materials: Effects of the matrix and simultaneous determination. AnalyticaChimica Acta,2006,575:230–235
    [44] A.Ciucci, M.Corsi, V.Palleschi, S.Rastelli, A.Salvetti, E.Tognoni. New procedure for quantitativeelemental analysis by laser-induced plasma spectroscopy. Applied Spectroscopy.1999,53:960-964
    [45] J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, S. M. Clegg.Remote laser-induced breakdown spectroscopy analyses of Dar al Gani476and Zagami Martianmeteorites. JOURNAL OF GEOPHYSICAL RESEARCH,2006,111, E05006,1-9
    [46] J. A. Bolger. Semi-quantitative Laser-Induced Breakdown Spectroscopy for Analysis of MineralDrill Core. Applied Spectroscopy,2000,54(2):181-189
    [47]张锐,黄碧霞,何友昭编著.原子光谱分析.合肥:中国科学技术大学出版社.1991
    [48] M. Sabsabi, P. Cielo. Quantitative analysis of aluminum alloys by laser-induced breakdownspectroscopy and plasma characterization. Appl. Spectrosc,1995,49:499-507.
    [49] C. Aragon, JA Aguilera, F. Pe alba. Applied spectroscopy.1999,53:1259
    [50] N.Omenetto, J.D.Winefordner, C.Th, J.Alkemade, An expression for the atomic fluorescence andthermal-emission intensity under conditions of near saturation and arbitrary self-absorption,Spectrochimica Acta Part B,30(1975):335–341
    [51] I.B.Gornushkin, J.M.Anzano, L.A.King, B.W.Smith, N.Omenetto, J.D.WinefordnerU. Curve ofgrowth methodology applied to laser-induced plasma emission spectroscopy. Spectrochimica ActaPart B,54(1999):491-503.
    [52] C.Aragon, J.Bengoechea, J.A.Aguilera, Influence of the optical depth on spectral line emissionfrom laser-induced plasmas, Spectrochim. Acta Part B,56(2001):619–628
    [53] A.M.El Sherbini, Th.M.El Sherbini, H.Hegazy, G.Cristoforetti, S. Legnaioli, V.Palleschi, L.Pardini,A.Salvetti, E.Tognoni. Evaluation of self-absorption coefficients of aluminum emission lines inlaser-induced breakdown spectroscopy measurements. Spectrochimica Acta Part B.60(2005):1573-1579
    [54] V.Lazic, R.Barbini, F.Colao, R.Fantoni, A.Palucci, Self-absorption model in quantitative laserinduced breakdown spectroscopy measurements on soils and sediments, Spectrochim. Acta Part B,56(2001):807–820
    [55] I.B.Gornushkin, C.L.Stevenson, B.W.Smith, N.Omenetto, J.D.Winefordner, Modeling aninhomogeneous optically thick laser induced plasma: a simplified theoretical approach,Spectrochim. Acta Part B,56(2001):1769–1785.
    [56] H.Amamou, A.Bois, B.Ferhat, R.Redon, B.Rossetto, M.Ripert, Correction of the self-absorptionfor reversed spectral lines: application to two resonance lines of neutral aluminum, J.Quant.Spectrosc. Radiat. Transfer77(2003):365–372
    [57]强希文,张建全,刘峰.激光等离子体的辐射与自吸收现象研究.激光杂志,1999,20(6):20-23
    [58]强希文,朱润合.激光等离子体的非线性逆轫致吸收.激光杂志,2000,21(2):28-29
    [59]侯华明,李颖,激光诱导Ni等离子体的自吸收时间分辨特性研究,光谱学与光谱分析,2011,31(3):595-599
    [60] Lanxiang SUN, Haibin YU. Correction of self-absorption effect in calibration-free laser-inducedbreakdown spectroscopy by an internal reference method. Talanta,2009,79(2):388-395
    [61]崔执凤,张先燚,姚关心,汪小丽,许新胜,郑贤锋,凤尔银,季学韩铅黄铜合金中痕量元素定量分析的激光诱导击穿谱研究物理学报,2006,9(55):4506~4513.
    [62] Jens Vrenegor, Reinhard Noll, Volker Sturm. Investigation of matrix effects in laser-inducedbreakdown spectroscopy plasmas of high-alloy steel for matrix and minor elementsSpectrochimica Acta Part B,2005,60:1083~1091.
    [63] Awadhesh K Rai, Hansheng Zhang, Fang Yu Yueh, Jagdish P Singh, Arel Weisburg. Parametricstudy of a fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminumalloys. Spectrochimica Acta Part B.2001,56(12):2371-2383.
    [64] L. Fornarini, F. Colao, R. Fantoni, V. Lazic, V. Spizzicchino. Calibration analysis of bronzesamples by nanosecond laser induced breakdown spectroscopy: A theoretical and experimentalapproach. Spectrochimica Acta Part B.2005,60(7-8):1186-1201.
    [65] V.L. Lednev, S.M. Pershin, Plasma stoichiometry correction method in laser induced breakdownspectroscopy, Laser Phys.18(2008)1–5.
    [66] K. Herrera, E. Tognoni, N. Omenetto, I.B. Gornushkin, B.W. Smith, J.D. Winefordner,Comparative study of two standard-free approaches in laser-induced breakdown spectroscopy asapplied to the quantitative analysis of aluminum alloy standards under vacuum conditions, J. Anal.At. Spectrom.24(2009)426–438
    [67] K. Herrera, E. Tognoni, B.W. Smith, N. Omenetto, J.D. Winefordner, Semiquantitative analysisof metal alloys, brass and soil samples by calibration-free laser-induced breakdown spectroscopy:recent results and considerations, J. Anal. At. Spectrom.24(2009)413–425
    [68] Lanxiang SUN, Haibin YU. Automatic Estimation of Varying Continuum Background Emissionin Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy,2009,64(3):278-287.
    [69] M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, A fast and accurate method forthe determination of precious alloys caratage by laser induced plasma spectroscopy, Eur. Phys. J.D13(2001)373–377.
    [70] M.V. Bel'kov, V.S. Burakov, V.V. Kiris, N.M. Kozhukh, S.N. Raikov, Spectral standard-freelaser microananlysis of gold alloys, J. Appl. Spectrosc.72(2005)376–381
    [71] A. De Giacomo, M. Dell'aglio, O. De Pascale, R. Gaudiuso, R. Teghil, A. Santagata, G.P. Parisi,Ns-and Fs-LIBS of copper-based-alloys: a different approach, Appl. Surf. Sci.253(2007)7677–7681.
    [72] F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G.G. Ori, L. Marinangeli, A. Baliva,Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rockanalogues, Planet. Space Sci.52(2004)117–123.
    [73] B. Salle, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, G. Manhes. Comparative study ofdifferent methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopyin a simulated Martian atmosphere. Spectrochimica Acta Part B.2006(61):303-313.
    [74] L. Wang, C. Zhang, Y. Feng, Controlled calibration method for laser induced breakdownspectroscopy, Chinese Optics Letters6(2008)5–8
    [75] M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E.Tognoni, C.Vallebona, Application of laser-induced breakdown spectroscopy technique to hair tissue mineralanalysis, Appl. Opt.42(2003)6133–6137.
    [76] E. Tognoni, G. Cristoforetti, S. Legnaioli, et al., Calibration-Free Laser-Induced BreakdownSpectroscopy: State of the art, Spectrochimica Acta Part B: Atomic Spectroscopy,2010,65(1):1-14
    [77] D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, Aprocedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,Spectrochimica Acta Part B,2002,57:339~353
    [78] S. Palanco, J. J. Laserna. Full automation of a laser-induced breakdown spectrometer for qualityassessment in the steel industry with sample handling, surface preparation and quantitativeanalysis capabilities. J. Anal. At. Spectrom.,2000,15,1321-1327
    [79] Stéphane Laville, Mohamad Sabsabi, Fran ois R. Doucet. Multi-elemental analysis of solidifiedmineral melt samples by Laser-Induced Breakdown Spectroscopy coupled with a linearmultivariate calibration. Spectrochimica Acta Part B62(2007)1557–1566
    [80]孙兰香,于海斌,辛勇,丛智博.采用激光诱导击穿光谱技术测定合金钢中的锰和硅的含量.光谱学与光谱分析.201030(12):3186-3190
    [81] D.L. Death, A.P. Cunningham, L. J. Pollard. Multi-element analysis of iron ore pellets byLaser-induced Breakdown Spectroscopy and Principal Components Regression. SpectrochimicaActa Part B.2008,63:763-769.
    [82] M.C. Ortiz, L. Sarabia, A. Jurado-López, M.D. Luque de Castro. Minimum value assured by amethod to determine gold in alloys by using laser-induced breakdown spectroscopy and partialleast-squares calibration model. AnalyticaChimicaActa,2004,515(1):151-157.
    [83] FabianoBarbieri Gonzaga, CelioPasquini. A Complementary Metal Oxide Semiconductor sensorarray based detection system for Laser Induced Breakdown Spectroscopy: Evaluation ofcalibration strategies and application for manganese determination in steel. SpectrochimicaActaPart B,2008,63(1):56-63.
    [84] QuienlyGodoi, Flavio O. Leme, Lilian C. Trevizan, Edenir R. Pereira Filho, Iolanda A. Rufini,Dario Santos Jr., Francisco J. Krug. Laser-induced breakdown spectroscopy and chemometrics forclassification of toys relying on toxic elements. SpectrochimicaActa Part B,2011,66(2):138-143.
    [85] Ryan B. Anderson, Richard V. Morris, Samuel M. Clegg, James F. Bell III, Roger C. Wiens, SethD. Humphries, Stanley A. Mertzman, Trevor G. Graff, Rhonda McInroy. The influence ofmultivariate analysis methods and target grain size on the accuracy of remote quantitativechemical analysis of rocks using laser induced breakdown spectroscopy. Icarus,2011,215(2):608-627.
    [86] A. Koujelev, M. Sabsabi, V. Motto-Ros, S. Laville, S.L. Lui. Laser-induced breakdownspectroscopy with artificial neural network processing for material identification. Planetary andSpace Science,2010,58(4):682-690.
    [87] Markandey M. Tripathi, Kemal E. Eseller, Fang-Yu Yueh, Jagdish P. Singh. Multivariatecalibration of spectra obtained by Laser Induced Breakdown Spectroscopy of plutonium oxidesurrogate residues. Spectrochimica Acta Part B,2009,64:1212-1218
    [88] Edilene C. Ferreira, Débora M.B.P. Milori, Ednaldo J. Ferreira, Robson M. Da Silva, LadislauMartin-Neto. Artificial neural network for Cu quantitative determination in soil using a portableLaser Induced Breakdown Spectroscopy system. SpectrochimicaActa Part B,2008,63(10):1216-1220.
    [89] Jennifer L. Gottfried, Russell S. Harmon, Frank C. De Lucia J r, Andrzej W. Miziolek.Multivariate analysis of laser-induced Breakdown Spectroscopy chemical signatures forgeomaterial classification. Spectrochimica Acta Part B.2009,55:636-640
    [90] Gabriele Cristoforetti, Stefano Legnaioli, Giulia Lorenzetti, Vincenzo. Classical UnivariateCalibration and Partial Least Squares for Quantitative Analysis of Brass Samples by LaserInduced Breakdown Spectroscopy. Spectrochimica Acta Part B.2010,40:410-424.
    [91] W. Wessel,, A. Brueckner-Foit, J. Mildner. Use of femtosecond laser-induced breakdownspectroscopy (fs-LIBS) for micro-crack analysis on the surface. Engineering Fracture Mechanics,2010,77:1874-1883.
    [92] D.K. Das, J.P. McDonald, S.M. Yalisove. Depth-profiling study of a thermal barrier coatedsuperalloy using femtosecond laser-induced breakdown spectroscopy. Spectrochimica Acta Part B,2008,63:27-36
    [93] V. Margetic, K. Niemax, R. Hergenr¨oder. A study of non-linear calibration graphs for brasswith femtosecond laser-induced breakdown spectroscopy. Spectrochimica Acta Part B,2001,56:1003-1010
    [94] A. Santagata, R. Teghil, G. Albano. fs/ns dual-pulse LIBS analytic survey for copper-basedalloys. Applied Surface Science,2007,254:863–867
    [95] A. De Giacomo, M. Dell’Aglio, A. Santagata, R. Teghil. Early stage emission spectroscopystudy of metallic titanium plasma induced in air by femtosecond-and nanosecond-laser pulses.Spectrochimica Acta Part B,2005,60:935-947
    [96] John T. Schiffern, David W. Doerr, Dennis R. Alexander. Optimization of collinear double-pulsefemtosecond laser-induced breakdown spectroscopy of silicon. Spectrochimica Acta Part B,2007,62:1412-1418
    [97] G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni. Effect of target compositionon the emission enhancement observed in Double-Pulse Laser-Induced Breakdown Spectroscopy.Spectrochimica Acta Part B,2008,63:312-323
    [98] Sung-Chul Choi, Myoung-Kyu Oh, Yonghoon Lee. Dynamic effects of a pre-ablation spark inthe orthogonal dual-pulse laser induced breakdown spectroscopy. Spectrochimica Acta Part B,2009,64:427-435
    [99] Li Xiafen, Weidong Zhou, Li Kexue, Huiguo Qian, Zhijun Ren. Laser ablation fast pulsedischarge plasma spectroscopy analysis of Pb, Mg and Sn in soil. Optics Communications,2012285:54-58
    [100] John T. Schiffern, David W. Doerr, Dennis R. Alexander. Optimization of collineardouble-pulse femtosecond laser-induced breakdown spectroscopy of silicon. SpectrochimicaActa Part B,2007,62:1412-1418
    [101] M.T. Taschuk, Y. Godwal a, Y.Y. Tsui. Absolute characterization of laser-induced breakdownspectroscopy detection systems. Spectrochimica Acta Part B,2008,63:525-535
    [102] Jie Li, JidongLu, ZhaoxiangLin, ShunshengGong. Effects of experimental parameters onelemental analysis of coal by laser-induced breakdown spectroscopy. Optics&LaserTechnology,2009,41:907-913
    [103] Tanguy Amodeo, Christophe Dutouquet, Fran ois Tenegal. On-line monitoring of compositenanoparticles synthesized in a pre-industrial laser pyrolysis reactor using Laser-InducedBreakdown Spectroscopy. Spectrochimica Acta Part B,2008,63:1183-1190
    [104] Yong-Il Kim, Dong-JinYoon, Seung-SeokLee. Application of laser-induced breakdownspectroscopy for detecting leakage of boric acid. NDT&E International,2011,44:311-314
    [105] F.J. Fortes, T. Ctvrtnícková, M.P. Mateo. Spectrochemical study for the in situ detection of oilspill residues using laser-induced breakdown spectroscopy. Analytica Chimica Acta,2010,683:52-57
    [106] Q.L. Ma, V. Motto-Ros, W.Q. Lei, M. Boueri, L.J. Zheng. Multi-elemental mapping of aspeleothem using laser-induced breakdown spectroscopy. Spectrochimica Acta Part B,2010,65:707-71
    [107] NIST: http://physics.nist.gov/PhysRefData/ASD/lines_form.html.
    [108] Kurucz database: http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html.
    [109] Samuel M. Clegg, Elizabeth Sklute, M. Darby Dyar, James E. Barefield, Roger C. Wiens.Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial leastsquares, principal component analysis, and related techniques. Spectrochimica Acta Part B,2009,64:79-88
    [110] F. Sorrentino, G. Carelli, F. Francesconi, M. Francesconi, P. Marsili, G. Cristoforetti, S. Legnaioli,V. Palleschi, E. Tognoni. Fast analysis of complex metallic alloys by double-pulsetime-integrated Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta Part B.2009(64):1068-1072.
    [111]许禄,邵学广.化学计量学方法(第二版).北京:科学出版社,2004
    [112] Cleon Barnett, Erica Cahoon, José R. Almirall. Wavelength dependence on the elementalanalysis of glass by Laser Induced Breakdown Spectroscopy. Spectrochimica.Acta B.2008,63:1016-1023
    [113]林兆祥,李捷,陆继东,等。透镜到样品表面距离对LIBS测量的影响。华中科技大学学报,2009,37(4):17-20
    [114]郑贤峰,李春燕,等。铅黄铜合金中激光诱导击穿光谱特性的实验研究。原子与分子物理学报,2004,(S1):101-103
    [115]朱德华,倪晓武等.实验参数对激光诱导铝合金产生等离子体光谱的影响.光谱学与光谱分析.2011,31(2):319-322
    [116]侯华明,空气和水中激光诱导金属镍靶等离子体辐射特性研究,硕士论文,中国海洋大学,2011
    [117] A. De Giacomo, M. Dell'Aglio, O. De Pascale, M. Capitelli, From single pulse to double pulsens-Laser Induced Breakdown Spectroscopy under water: Elemental analysis of aqueous solutionsand submerged solid samples, Spectrochimica Acta Part B62(2007)721–738
    [118] F. Docchio, P. Regondi, M.R. Capon, J. Melleiro, Study of the temporal and spatial dynamics ofplasmas induced in liquids by nanosecond Nd:YAG laser pulses.1: analysis of the plasma startingtimes2: plasma luminescence and shielding, Appl. Opt.27(1988)3661–3674.
    [119] S. Koch1, W. Garen1, Detection of chromium in liquids by laser induced breakdownspectroscopy (LIBS), Appl. Phys. A,2004,79:1071–1073.
    [120] Nilesh K. Rai, Awadhesh K. Rai, Akshaya Kumar, et al. Detection sensitivity of laser-inducedbreakdown spectroscopy for Cr II in liquid samples Applied Optics,2008,47(31):105~111.
    [121]吴江来,傅院霞,李颖,等.水溶液中金属元素的激光诱导击穿光谱的检测分析,光谱学与光谱分析,2008,28(9):1979.
    [122] WU jiang-lai, LU yuan, LI ying, et al. Time resolved laser-induced breakdown spectroscopy ofcalcium in water Optoelectronics Letters,2011,7(1):65-68.
    [123]吴江来,水下金属元素的激光诱导击穿光谱特性研究,中国海洋大学硕士论文,2008
    [124] FENG shi-zuo, LI feng-qi and LI shao-jing. An Introduction to Marine Science. Beijing:Higher Education press,2006,377.
    [125] A. Miziolek, V. Palleschi and I. Schechter. LIBS Fundamentals and Applications. New York:Cambridge University Press,2006,132.
    [126] J. A.Curcio and C. C. Petty. Journal of the Optical Society of America,1951,41(5):302.
    [127] Xin Zhang, Peter M. Walz, William J. Kirkwood, Keith C. Hester, William Ussler, Edward T.Peltzer, Peter G. Brewer. Development and deployment of a deep-sea Raman probe formeasurement of pore water geochemistry. Deep-Sea Research,2010,57:297-306
    [128] Jill Dill Pesteris, Brigitte Wopenka, et al. Raman Spectroscopy in the Deep Ocean: Successesand Challenges. Applied Spectroscopy,2004,7(58):195-208.
    [129] Alana D. Sherman, Peter M. Walz, Peter G. Brewer. Two Generations of Deep-Ocean RamanIn-Situ Spectrometers. Sea Technology,2007,2:10-13.
    [130] Gregor Rehder, Stephen H. Kirby, William B. Durham, Laura A. Stern, Edward T. Peltzer, JohnPinkston, Peter G. Brewer. Dissolution rates of pure methane hydrate and carbon-dioxidehydrate in undersaturated seawater at1000-m depth. Geochimica et Cosmochimica Acta,200468(2):285-292.
    [131] Gregor Rehder, Ira Leifer, Peter G. Brewer, Gernot Friederich, Edward T. Peltzer. Controls onmethane bubble dissolution inside and outside the hydrate stability field from open ocean fieldexperiments and numerical modeling. Marine Chemistry,2009,114:19-30.
    [132] Tina M. Battaglia, Eileen E. Dunn, Marvin D. Lilley. Development of an in situ fiber opticRaman system to monitor hydrothermal vents. Analyst,2004,129:602-606

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700