激光诱导击穿光谱技术的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光诱导击穿光谱技术(Laser Induced BreakdownSpectroscopy,简称LIBS)是一种全新的物质元素分析方法。与传统光谱分析方法相比,LIBS技术具有如下特点:具有全元素和远程分析能力;样品无需预处理且分析速度快;能够分析任何物理状态的材料;既可以表面分析也可以逐层分析等。LIBS技术的分析结果不仅依赖于被测物质的物理化学特性,而且也依赖于激光器的参数,同时被测物质所处环境也直接影响分析结果。为了促进LIBS技术的实用化,激光诱导等离子体的特性有待深入研究。
     本论文首先回顾了LIBS技术国内外研究现状及存在的问题,同时介绍了激光诱导击穿光谱技术用于物质分析的理论基础,重点研究了激光诱导等离子体的数据处理方法,激光诱导等离子体特征参数随激光功率密度的变化规律以及特征参数的空间分布规律,重点研究了三种不同的定量分析方法。最后一部分研究内容是基于LIBS技术分析了秦岭岩石成分、实验室热水壶水垢成分、鸡蛋壳元素成分和氯化铜溶液成分,同时利用LIBS技术对紫铜和黄铜以及一元硬币和五角硬币的成分进行了对比研究。论文的最后对研究内容进行了总结和展望。本论文的主要工作和创新结果包括以下几个方面:
     介绍了激光诱导等离子体的产生机理及特点,分析了信背比与时间延迟的关系,提出了提高信噪比的方法。重点分析了背景辐射的产生机理,并采用多项式拟合扣除等离子连续背景辐射的方法。采用了一种改进的迭代Boltzmann方法精确求解等离子体的电子温度,利用电子密度与谱线的Stark展宽之间的近似线性关系简易求解等离子体的电子密度。
     通过改变激光脉冲能量得到不同激光功率密度,利用激光维持爆轰波模型(LSDW)和激光维持辐射波模型(LSRW)解释了激光诱导等离子体辐射强度随功率密度的变化规律。实验发现,功率密度由3.7GW/cm2变到15.9GW/cm2时,等离子体的特征参数的增长率大于功率密度由15.9GW/cm2增强到21.9GW/cm2时的增长率。
     在等离子体空间分布方面,实验发现在距离靶面1.5mm高度处等离子体谱线的信号最强,靶面附近和等离子体顶端的信号强度较弱。与等离子谱线强度的分布相似,实验证明等离子体的电子温度在距离靶面1.5mm处达到最大,而在等离子体两端处较低。通过测量铝原子谱线394.40nm的Stark展宽,实验发现在样品表面,激光产生的等离子体局限于较小区域,电子密度达到0.29*1017cm~(-3),随着等离子体的膨胀,电子密度逐渐降低,在等离子体的顶端,电子密度值降低到0.17*1017cm~(-3)。
     基于定性和定量分析,实验证明,在误差范围内,激光诱导产生的等离子体基本满足局部热力学平衡模型(Local Thermodynamic Equilibrium Model,简称LTE)和光学薄(Optically thin)模型。
     以铝合金标样E311、E312、E313、E314、E315和E316为研究对象,采用传统定标方法和内标法,分别对元素硅、铁、铜、锰、镁、镍、锌和钛进行了定量分析。实验证明:对于含量较低的元素,内标法强于传统标准曲线法。基于传统定标方法,元素硅、铁、铜、锰、镁、镍、锌和钛的探测限(Wt%)分别是0.0412、0.0894、0.0601、0.0172、0.0334、0.0477、0.0196和0.0050。鉴于实际应用中很难找到对应的标样,论文初步研究了自由定标方法。
     利用LIBS技术,探测出秦岭岩石中含有元素钙、铁、碳、钠、硅、铝、铜和镁,利用迭代Boltzmann方法求得秦岭岩石等离子体的电子温度是16853K,电子密度是2.86*1018cm-3。利用LIBS技术研究了办公室水壶中水垢等离子体,并探测出钙、镁、碳、硅和铝元素,计算得到水垢等离子体的特征参数分别是4793K和6.1*1018cm-3。通过激光诱导鸡蛋壳等离子体的分析,钙元素、铁元素、碳元素和硅元素得到证认,通过钙元素谱线的分析求得鸡蛋壳等离子体的电子温度是7250K,电子密度是6.1*1016cm-3。利用LIBS技术我们还分析了氯化铜溶液的元素成分及其特征参数。此外,利用LIBS技术,我们还对比研究了紫铜与黄铜、一元硬币与五角硬币等离子体的光谱,比较了它们的特征参数并分析了它们不同的物理原因。
Laser-Induced Breakdown Spectroscopy (LIBS) is a relatively new powerfulspectrochemical analytical technique. Compared with conventional spectroscopictechniques, LIBS offers many well-known advantages such as its versatility, nosample preparation, non-contact optical nature, simplicity and rapid analysis and soon. However, the interaction of focused laser radiation with materials is socomplicated that the plasma formation is still not explained satisfactorily so far.Previous works have demonstrated that the characteristics of laser-induced plasma notonly depend on laser beam properties (pulse duration, laser power and wavelength),but also on the physical and chemical properties of the sample, as well as the sampleenvironment. For the practical application of this technique, the characteristics ofLIBS need further study.
     Firstly, the present conditions and theoretical foundation of LIBS were given.Then, the data processing methods, variations of the plasma parameters (line intensity,electron temperature and electron number density) with the laser power density andtheir spatial distributions were studied. At the same time, three quantitative analysismethods (traditional calibration curve, internal standardization method andcalibration-free method) were analyzed based on a set of six standard samples ofaluminum alloy. Using LIBS, the elemental compositions of the Qin Mountain rock,water scale, egg shell, CuCl2, copper and brass, oneyuan coin and wujiao coin werestudied and their plasma parameters were calculated also. The following works weredone in this thesis.
     The physics of plasma relevant to laser-induced breakdown spectroscopy hasbeen discussed. The relationship of the ratio of signal to background emissionwas analyzed and the method of improving SNR was provided. In order tocalculate and subtract the continuum emission more precisely, the polynomialfunction was used to fit the background. An iterative Boltzmann plot method wasused to calculate the laser-ablated plasma temperature, and the electron numberdensity in plasma was determined based on Stark broadening.
     To study the effect of the laser irradiance on the plasma parameters, the aluminum alloy was irradiated with different laser power densities (3.7,6.3,9.7,12.4,15.9,19,21.9GW/cm2). The emission curves showed a rapid linear increase at lowpower densities, and started to bend when the6.3GW/cm2was reached with aflat region. When the laser power densities above9.7GW/cm2, a new increase ofthe emission intensities was produced. The laser-supported detonation wave atlow power densities and the laser-supported radiation wave at high powerdensities were used to explain the behavior of the laser-induced plasma,respectively. The electron temperature and electron density increased morequickly when the laser power density changed from15.9GW/cm2to21.9GW/cm2than from3.7GW/cm2to15.9GW/cm2.
     All the signals increased rapidly near the target surface, and reached themaximum at a distance about1.5mm from the target surface, then decreased withthe increasing of the distance. A slight decrease of temperature both at the plasmaedge and close to the target surface was observed, as was consistent with thespatial variation of the line emission intensity. The electron density at the distanceof0.1mm above the target surface was approximately0.29*1017cm-3anddecreased to about0.17*1017cm-3at the distance of4.0mm.
     Based on qualitative and quantitative analysis, the laser-induced plasma satisfiedLTE and optically thin models within experimental errors.
     With a set of six standard samples of aluminum alloy, calibration curves werepresented for samples containing Si, Fe, Cu, Mn, Mg, Ni, Zn, Ti using twoquantitative analysis methods (traditional calibration curve, internalstandardization method). Based on experimental results, the limits of detection(Wt%) of trace elements were0.0412,0.0894,0.0601,0.0172,0.0334,0.0477,0.0196and0.0050, respectively. At the same time, the calibration-free methodwas also studied.
     The composition of Qin Mountain rock was studied using a1064nm pulsedNd:YAG laser for the first time. Elements Ca, Mg, Cu, Fe, C, Na, Si and Al wereidentified qualitatively. The electron temperature and electron density wereinferred to be16835K and2.86*1018cm-3. Elements Ca, Mg, C, Si and Al wereidentified in the water scale by the analysis of the plasma spectra. The plasmatemperature4793K was inferred using the iterative Boltzmann plot method withten neutral calcium lines, while the electron density6.1*1018cm-3was obtainedfrom the Stark broadening of the profile of Mg I285.21nm. Based on the plasma spectra of egg shell, elements iron, oxygen, silicon, carbon and calcium wereidentified, and its parameters were7250K and6.1*1016cm-3, respectively.Using LIBS, the CuCl2, copper and brass, one-yuan coin and wu-jiao coin werealso studied.
引文
[1]辛仁轩.等离子体发射光谱分析.北京:化学工业出版社,2004.
    [2] B. C. Castle. LASER-INDUCED BREAKDOWN SPECTROSCOPY:FUNDAMENTALS, INSTRUMENTATION, AND APPLICATIONS. Dissertation forthe degree of doctor of philosophy,1998.
    [3] B. Kearton, and Y. Mattley. LASER-INDUCED BREAKDOWNSPECTROSCOPY: Sparking new applications. nature photonics,2008(2):537-540.
    [4] D. A. Cremers and L. J. Radziemski. Handbook of Laser-Induced BreakdownSpectroscopy. Chichester: John Wilkey&Sons Ltd,2006.
    [5] J. P. Singh and S. N. Thakur. LASER-INDUCED BREAKDOWNSPECTROSCOPY. First edition. Amsterdam: Elsevier,2007.
    [6] A. W. Miziolek, V. Palleschi, and I. Schechter. LASER-INDUCEDBREAKDOWN SPECTROSCOPY (LIBS). First edition. New York: CambridgeUniversity Press,2006.
    [7] L. X. Sun, H. B. Yu. Automatic Estimation of Varying Continuum BackgroundEmission in Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B2009(64):278-287.
    [8] C. Aragon, and J. A. Aguilera. Characterization of laser induced plasmas byoptical emission spectroscopy: A review of experiments and methods. Spectrochim.Acta Part B,2008(63):893-916.
    [9] E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti. Quantitativemicro-analysis by laser-induced breakdown spectroscopy: a review of theexperimental approaches. Spectrochim. Acta Part B,2007(57):1115-1130.
    [10] R. E. Russo, X. L. Mao, H. C. Liu, J. Gonzalez, and S. S. Mao. Laser ablation inanalytical chemistry-a review. Talanta,2002(57):425-451.
    [11] C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga. Laser InducedBreakdown Spectroscopy. J. Braz. Chem. Soc.,2007(18):463-512.
    [12] B. Salle, P. Mauchien and S. Maurice. Laser-Induced Breakdown Spectroscopyin open-path configuration for the analysis of distant objects. Spectrochim. Acta PartB,2007(62):739-768.
    [13] B. Salle, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice and G.. Manhes.Comparative study of different methodologies for quantitative rock analysis byLaser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere.Spectrochim. Acta Part B,2006(61):301-313.
    [14] M. A. Gondal and T. Hussain. Determination of poisonous metals in wastewatercollected from paint manufacturing plant using laser-induced breakdown spectroscopy.Talanta,2007(71):73-80.
    [15] M. T. Taschuk, Y. Y. Tsui and R. Fedosejevs. Detection and Mapping of LatentFingerprints by Laser-Induced Breakdown Spectroscopy. Appl. Spectrosc.,2006(60):1322-1327.
    [16] R. S. Harmon, F. C. Delucia, A. Lapointe, R. J. Winkel and A. W. Miziolek. LIBSfor landmine detection and discrimination. Anal. Bioanal. Chem.,2006(385):1140-1148.
    [17] A. J. Lopez, G. Nicolas, M. P. Mateo, V. Pinon, M. J. Tobar and A. Ramil.Compositional analysis of Hispanic Terra Sigillata by laser-induced breakdownspectroscopy. Spectrochim. Acta Part B,2005(60):1149-1154.
    [18] H. Balzer, M. Hoehne, R. Noll and V. Sturm. New approach to online monitoringof the Al depth profile of the hot-dip galvanised sheet steel using LIBS. Anal. Bioanal.Chem.,2006(385):225-233.
    [19] L. J. Radziemski. From LASER to LIBS, the path of technology development.Spectrochim. Acta Part B,2002(57):1109-1113.
    [20]袁冬青,周明,刘长隆,言峰,戴娟,任乃飞.激光感生击穿光谱技术(LIBS)的原理及影响因素.光谱学与光谱分析,2008(28):2019-2023.
    [21] N. M. Shaikh, B. Rashid, S. Hafeez, S. Mahmood, M. Saleem and M. A. Baig.Diagnostic of cadmium plasma produced by laser ablation. J. Appl. Phys.,2006(100):073102-1-073102-8.
    [22] L. M. Cabalin and J. Laserna. Experimental determination of laser inducedbreakdown thresholds of metals under nanosecond Q-switched laser operation.Spectrochim. Acta Part B,1998(53):723-730.
    [23] R. E. Russo, X. L. Mao, O. V. Borisov and H. C. Liu. Influence of wavelength onfractionation in laser ablation ICP-MS. J. Anal. Atomic Spectrometry,2000(15):1115-1120.
    [24] V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax and R.Hergenroder. A comparison of nanosecond and femtosecond laser-induced plasmaspectroscopy of brass samples. Spectrochim. Acta Part B,2000(55):1771-1758.
    [25] E. F. B. Campbell, D. Ashkenasi and A. Rosenfeld. Ultra-short-pulse laserirradiation and ablation of dielectrics. Lasers Mater. Sci,1999(301):123-144.
    [26] P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos and S.Couris. Calibration measurements in laser-induced breakdown spectroscopy usingnanosecond and picosecond lasers. Spectrochim. Acta Part B,2004(59):1885-1892.
    [27] K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode and S. M. Angel.Some comparisons of LIBS measurements using nanosecond and picosecond laserpulses. Appl. Spectrosc.,2001(55):279-285.
    [28] G. W. Rieger, M. Taschuk, Y. Y. Tsui and R. Fedosejevs. Comparative study oflaser-induced plasma emission from microjoule picosecond and nanosecond KrF-laserpulses. Spectrochim. Acta Part B,2003(58):497-510.
    [29] S. Hafeez, N. M. Shaikh, B. Rashid and M. A. Baig. Plasma properties oflaser-ablated strontium target. J. Appl. Phys.,2008(103):083117-1-073102-8.
    [30] G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti and E. Tognoni. Influenceof ambient gas pressure on laser-induced breakdown spectroscopy technique in theparallel double-pulse configuration. Spectrochim. Acta Part B,2004(59):1907-1917.
    [31] W. Sdorra, K. Niemax. Basic investigations for laser microanalysis: III.Applications of different buffer gases for laser-produced sample plumes. Mikrochim.Acta,1992(107):319-3277.
    [32] Y. Iida. Effects of atmosphere on laser vaporization and excitation processes ofsolid samples. Spectrochim. Acta Part B,1990(45):1353-1367.
    [33] S. L. Lui, N. H. Cheung. Resonance-enhanced laser-induced plasmaspectroscopy: ambient gas effects. Spectrochim. Acta Part B,2003(58):1613-1623.
    [34] J. A. Aguilera and C. Aragon. A comparison of the temperatures and electrondensities of laser-produced plasmas obtained in air, argon, and helium at atmosphericpressure. Appl. Phys. A [Suppl.],1999(69): S475-S478.
    [35] Y. I. Lee, T. L. Thiem, G. H. Kim, Y. Y. Teng and J. Sneddon. Interaction of anExcimer-Laser Beam with Metals. Part III: The Effect of a Controlled Atmosphere inLaser-Ablated Plasma Emission. Appl. Spectrosc.,1992(46):1597-1604.
    [36] M. A. Ismail, H. Imam, A. Elhassan, W. T. Youniss and M. A. Harith. LIBS limitof detection and plasma parameters of some elements in two different metallicmatrices. J. Anal. At. Spectrom.,2004(19):489-494.
    [37] S. H. Tavassoli and A. Gragossian. Effect of sample temperature on laser-inducedbreakdown spectroscopy. Optics&Laser Technology,2009(41):481-485.
    [38] L. St-Onge, V. Detalle and M. Sabsabi. Enhanced laser-induced breakdownspectroscopy using the combination of fourth-harmonic and fundamental Nd:YAGlaser pulses. Spectrochim. Acta Part B,2002(57):121-135.
    [39] V. N. Rai, J. P. Singh, F. Y. Yueh and R. L. Cook. Study of optical emission fromlaser-produced plasma expanding across and external magnetic field. Laser PartBeams,2003(21):65-71.
    [40] F. Colao, V. Lazic, R. Fantoni and S. Pershin. A comparison of single and doublepulse laser-induced breakdown spectroscopy of aluminum samples. Spectrochim.Acta Part B,2002(57):1167-1179.
    [41] M. Sabsabi and P. Cielo. Quantitative Analysis of Aluminum Alloys byLaser-Induced Breakdown Spectroscopy and Plasma Characterization. Appl.Spectrosc.,1995(49):499-507.
    [42] H. K. Li, M. Liu, Z. J. Chen and R. H. Li. Quantitative Analysis of impurities inaluminum alloys by laser-induced breakdown spectroscopy without internalcalibration. Trans. Nonferrous Met. Soc. China,2008(18):222-226.
    [43] A. S. Eppler, D. A. Cremers, D. D. Hickmott, M. J. Ferris and A. C. Koskelo.Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdownspectroscopy. Appl. Spectrosc.,1996(50):1175-1181.
    [44] A. Elhassan, A. Giakoumaki, D. Anglos, G. M. Ingo, L. Robbiola and M. A.Harith. Nanosecond and femtosecond Laser Induced Breakdown Spectroscopicanalysis of bronze alloys. Spectrochim. Acta Part B,2008(63):504-511.
    [45] A. Ciucci, M. Corsl, V. Palleschi, S. Rastelli, A. Salvetti and E. Tognoni. NewProcedure for Quantitative Elemental Analysis by Laser-Induced PlasmaSpectroscopy. Appl. Spectrosc.,1999(53):960-964.
    [46] V. S. Burakov and S. N. Raikov. Quantitative analysis of alloys and glasses by acalibration-free method using laser-induced breakdown spectroscopy. Spectrochim.Acta Part B,2007(62):217-223.
    [47] E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U.Panne and I. Gornushkin. A numerical study of expected accuracy and precision inCalibration-Free Laser-Induced Breakdown Spectroscopy in the assumption of idealanalytical plasma. Spectrochim. Acta Part B,2007(62):1287-1302.
    [48] M. Z. Martin, N. Labbe, T. G. Rials and S. D. Wullschleger. Analysis ofpreservative-treated wood by multivariate analysis of laser-induced breakdownspectroscopy spectra. Spectrochim. Acta Part B,2005(60):1179-1185.
    [49] C. A. Munson, F. C. De Lucia, T. Piehler, K. L. McNesby and A. W. Miziolek.Investigation of statistics strategies for improving the discriminating power oflaser-induced breakdown spectroscopy for chemical and biological warfare agentstimulants.
    [50] F. R. Doucet, T. F. Belliveau, J. L. Fortier and J. Hubert. Use of Chemometricsand Laser-Induced Breakdown Spectroscopy for Quantitative Analysis of Major andMinor Elements in Aluminum Alloys. Appl. Spectrosc.,2007(61):327-332.
    [51] S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield and R. C. Wiens. Multivariateanalysis of remote laser-induced breakdown spectroscopy spectra using partial leastsquares, principal component analysis, and related techniques. Spectrochim. Acta PartB,2009(64):79-88.
    [52] C. Bohling, D. Scheel, K. Hohmann, W. Schade, M. Reuter and G. Holl.Fiber-optic laser sensor for mine detection and verification. Appl. Opt.,2006(45):3817-3825.
    [53] P. Inakollu, T. Philip, A. K. Rai. F. Y. Yueh and J. P. Singh. A comparative studyof remote laser induced breakdown spectroscopy analysis for element concentrationsin aluminum alloy using artificial neural networks and calibration methods.Spectrochim. Acta Part B,2009(64):99-104.
    [54] I. B. Gornushkin, A. Y. Kazakov, N. Omenetto, B. W. Smith and J. D.Winefordner. Radiation dynamics of post-breakdown laser induced plasma.Spectrochim. Acta Part B,2004(59):401-418.
    [55] I. B. Gornushkin, A. Y. Kazakov, N. Omenetto, B. W. Smith and J. D.Winefordner. Experimental verification of a radiative model of laser-induced plasmaexpanding into vacuum. Spectrochim. Acta Part B,2005(60):215-230.
    [56] D. A. Rusak, B. C. Castle, B. W. Smith and J. D. Winefordner. Fundamental andApplications of Laser-Induced Breakdown Spectroscopy. Critical Reviews inAnalytical Chemistry,1997(27):257-290.
    [57] V. V. Golovlyov and V. S. Letokhov. Laser ablation of absorbing liquids. Appl.Phys. B,1993(57):417-423.
    [58] R. O. Esenaliev, A. A. Karabutov, N. B. Podymova and V. S. Letokhov. Laserablation of aqueous solutions with spatially homogeneous and heterogeneousabsorption. Appl. Phys. B,1994(59):73-81.
    [59] A. A. Oraevsky, S. L. Jacques and F. K. Tittel. Mechanism of laser ablation foraqueous media irradiated under confined stress conditions. J. Appl. Phys.,1995(78):1281-1290.
    [60] A. Michel and A. Chave. Analysis of laser-induced breakdown spectroscopyspectra: The case for extreme value statistics. Spectrochimica Acta B,2007(62):1370-1378.
    [61] B. Castle, K. Talabardon, B. Smith and J. Winefordner. Variables Influencing thePrecision of Laser-Induced Breakdown Spectroscopy Methods. Appl. Spectrosc.,1998(52):649-657.
    [62] L. M. Berman and P. J. Wolf. Laser induced breakdown spectroscopy of liquids:aqueous solution of nickel and chlorinated hydrocarbon. Appl. Spectrosc.,1998(52):438-443.
    [63] F. Y. Yueh, R. C. Sharma, J. P. Singh and H. Zhang. Evaluation of the Potential ofLaser Induced Breakdown Spectroscopy for Detection of Trace Element in Liquid. J.Air&Waste Manage. Assoc.,2002(52):1307-1315.
    [64] S. Nakamura, Y. Ito, K. Sone, H. Hiraga and K. I. Kanedo. Determination of aniron suspension in water by LIBS with two sequential laser pulses. Anal. Chem.,1996(68):2962-2986.
    [65] D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy andW. P. Roach. Experimental investigation of ultrashort pulse laser-induced breakdownthresholds in aqueous media. IEEE Journal of Quantum Electronics,1996(32):670-678.
    [66] C. A. Sacchi. Laser-induced electric breakdown in water. J. Optical Society ofAmerica,1991(8):337-345.
    [67] Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D.X. Hammer, B. A. Rockwell and C. R. Thompson. Theory and simulation on thethreshold of water breakdown induced by focused ultrashort laser pulses. IEEEJournal of Quantum Electronics,1997(33):127-137.
    [68] G. Acra, A. Cuicci, V. Pallesch, S. Rastelli and E. Tognoni. Trace ElementAnalysis in Water by Laser-Induced Breakdown Spectroscopy Technique. Appl.Spectrosc.,1997(51):1102-1105.
    [69] R. Knopp, F. Scherbaum and J. I. Kim. Laser induced breakdown spectroscopy(LIBS) as an analytical tool for the detection of metal ions in aqueous solutions.Fresenium J. Anal. Chem.,1996(355):16-20.
    [70] L. Paksy, B. Nemet, A. Lengyel, L. Kozma and J. Czekkel. Production control ofmetal alloys by laser spectroscopy of the molten metal. Spectrochimica Acta B,1996(51):279-290.
    [71] V. Lazic, F. Colao, R. Fantoni and V. Spizzicchino. Laser-induced breakdownspectroscopy in water: Improvement of the detection threshold by signal processing.Spectrochimica Acta B,2005(60):1002-1013.
    [72] O. Samek, D. Beddows, J. Kaiser, S. Kukhlevsky, M. Liska, H. Telle and J.Young. Application of laser-induced breakdown spectroscopy to in situ analysis ofliquid samples. Opt. Eng.,2000(39):2248-2262.
    [73] J. B. Simeonsson and A. W. Miziolek. Spectroscopic Studies of Laser-ProducedPlasmas Formed in CO and CO2Using193,266,355,532, and1064nm LaserRadiation. Appl. Phys. B,1994(59):1-9.
    [74] A. Takahashi and K. Nishijima. Numerical Analysis of Electrical BreakdownInduced by Laser Irradiation in N2/O2Gas Mixture. Jap. J. Appl. Phys.,1995(34):2471-2475.
    [75] Y. E. Gamal, M. S. Shafik and J. M. Daoud. A numerical investigation of thedependence of the threshold irradiance on the wavelength in laser-induced breakdownin N2. J. Phys. D: Appl. Phys.,1999(32):423-429.
    [76] S. Yalcin, D. R. Crosley, G. P. Smith and G. W. Faris. Influence of ambientconditions on the laser air spark. Appl. Phys. B,1999(68):121-130.
    [77] M. Hanafi, M. Omar and Y. E. Gamal. Study of laser-induced breakdownspectroscopy of gases. Radiat. Phys. Chem.,2000(57):11-20.
    [78] D. K. Ottesen, J. C. F. Wang, and L. J. Radziemski. Appl. Spectrosc.,1989(43):967-976.
    [79] M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E.Tognoni and C. Vallebona. Application of Laser-Induced Breakdown Spectroscopytechnique to hair tissue mineral analysis. Appl. Opt.,2003(42):6133-6137.
    [80] V. Sturm, L. Peter and R. Noll. Steel Analysis with Laser-Induced BreakdownSpectrometry in the Vacuum Ultraviolet. Appl. Spectrosc.,2000(54):1275-1278.
    [81] V. Sturm, J. Vrenegor, R. Noll and M. Hemmerlin. Bulk analysis of steel sampleswith surface scale layers by enhanced laser ablation and LIBS analysis of C, P, S, Al,Cr, Cu, Mn and Mo. J. Anal. At. Spectrom,2004(19):451-456.
    [82] C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N.Omenetto, S. Palanco, J. J. Laserna and J. D. Winefordner. Quantitation of low-alloysteel samples by powerchip laser induced breakdown spectroscopy. J. Anal. At.Spectrom,2005(20):552-556.
    [83] K. Loebe, A. Uhl and H. Lucht. Microanalysis of Tool Steel and Glass withLaser-Induced Breakdown Spectroscopy. Appl. Opt.,2003(42):6166-6173.
    [84] A. K. Rai, H. Zhang, F. Y. Yueh, J. P. Singh and A. Weisburg. Parametric study ofa fiber optic laser-induced breakdown spectroscopy probe for analysis of aluminumalloy. Spectrochim. Acta Part B,2001(56):2371-2383.
    [85] L. Niu, H. Cho, K. Song, H. Cha, Y. Kim and Y. Lee. Direct determination ofstrontium in marine algae samples by laser-induced breakdown spectrometry. Appl.Spectrosc.,2002(56):1511-1514.
    [86] R. Barbini, F. Colao, V. Lazic, R. Fantoni, A. Palucci and M. Angelone. On boardLIBS analysis of marine sediments collected during the XVI Italian campaign inAntarctica. Spectrochim. Acta Part B,2002(57):1203-1218.
    [87] M. A. Gondal and T. Hussain. Determination of poisonous metals in wastewatercollected from paint manufacturing plant using laser-induced breakdown spectroscopy.Talanta,2007(71):73-80.
    [88] M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers. M. J. Ferris, P. J.Unkefer, M. S. Lamb, K. L. Goddard and C. W. Meyer. Soil Sci. Soc. Am. J.,2003(67):1616-1619.
    [89] R. D. Harris, D. A. Cremers, M. H. Ebinger and B. K. Bluhm. Determination ofNitrogen in Sand Using Laser-Induced Breakdown Spectroscopy. Appl. Spectrosc.,2004(58):770-775.
    [90] M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E.Tognoni and C. Vallebona. Double pulse, calibration-free laser-induced breakdownspectroscopy: A new technique for in situ standard-less analysis of polluted soils.Appl. Geochem,2006(21):748-755.
    [91] I. Borgia, L. M. F. Burgio, M. Corsi, R. Fantoni, V. Palleschi, A. Salvetti, M. C.Squarcialupi and E. Tognoni. Self-calibrated quantitative elemental analysis bylaser-induced plasma spectroscopy: application to pigment analysis. J. Cult. Heritage,2000(1): S281-S286.
    [92] K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt and D. Anglos. Theapplication of LIBS for the analysis of archaeological ceramic and metal artifacts.Appl. Surf. Sci.,2002(197-198):156-163.
    [93] L. Fornarini, V. Spizzichino, F. Colao, R. Fantoni and V. Lazic. Influence of laserwavelength on LIBS diagnostics applied to the analysis of ancient bronzes. Anal.Bioanal. Chem.,2006(385):272-280.
    [94] K. Melessanaki, V. Papadakis, C. Balas and D. Anglos. Laser induced breakdownspectroscopy and hyper-spectral imaging analysis of pigments on an illuminatedmanuscript. Spectrochim. Acta Part B,2001(56):2337-2346.
    [95] S. Klein, T. Stratoudaki, V. Zafiropulos, J. Hildenhagen, K. Dickmann and T.Lehmkuhl. Laser-induced breakdown spectroscopy for on-line control of lasercleaning of sandstone and stained glass. Appl. Phys. A,1999(69):441-444.
    [96] S. Klein, J. Hildenhagen, K. Dickmann, T. Stratoudaki and V. Zafiropulos.LIBS-spectroscopy for monitoring and control of the laser cleaning process of stoneand medieval glass. J. Cult. Heritage,2000(1): S287-S292.
    [97] S. Klein, F. Fekrsanati, J. Hildenhagen, K. Dickmann, H. Uphoff, Y. Marakis, andV. Zafiropulos. Comparative study of different wavelengths from IR to UV applied toclean sandstone. Appl. Surf. Sci.,2001(171):242-251.
    [98] V. Tornani, V. Zafiropulos, A. Bonarou, N. A. Vainos and C. Fotakis. Moderntechnology in artwork conservation: a laser-based approach for process control andevaluation. J. Opt. and Lasers in Engineering,2000(34):309-326.
    [99] L. St-Onge, E. Kwong, M. Sabsabi and E. B. Vadas. Quantitative analysis ofpharmaceutical products by laser-induced breakdown spectroscopy. Spectrochim.Acta Part B,2002(57):1131-1140.
    [100] M. D. Mowery, R. Sing, J. Krisch, A. Razaghi, S. Bechard and R. A. Reed.Rapid at-line analysis of coating thickness and uniformity on tablets using laserinduced breakdown spectroscopy. J. Pharm. Biomed. Anal.,2002(28):935-943.
    [101] O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska and J. Kaiser.Quantitative analysis of trace metal accumulation in teeth using laser-inducedbreakdown spectroscopy. Appl. Phys. A,1999(69): S179-S182.
    [102] O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. Telle and S. Kukhlevsky.Clinical application of laser-induced breakdown spectroscopy to the analysis of teethand dental materials. J. Clin. Laser Med. Surg.,2000(18):281-289.
    [103] Q. Sun, M. Tran, B. W. Smith and J. D. Winefordner. Zinc analysis in humanskin by laser induced-breakdown spectroscopy. Talanta,2000(52):293-300.
    [104] Z. M. Martin, M. D. Cheng and R. C. Martin. Aerosol Measurement byLaser-Induced Plasma Technique: A Review. Aerosp. Sci. Technol.,1999(31):409-421.
    [105] R. E. Neuhauser, U. Panne and R. Niessner. Laser-Induces Plasma Spectroscopy(LIPS): A Versatile Tool for Monitoring Heavy Metal Aerosols. Analytica ChimicaActa,1999(392):47-54.
    [106] B. C. Windom, P. K. Diwakar and D. W. Hahn. Double-pulse LIBS for analysisof gaseous and aerosol systems: plasma-analyte interactions. Spectrochim. Acta PartB,2006(61):788-796.
    [107] F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A.LaPointe, R. J. Winkel and A. W. Miziolek. Laser-induced breakdown spectroscopy(LIBS): a promising versatile chemical sensor technology for hazardous materialdetection. IEEE Sens. J.,2005(5):681-689.
    [108] C. R. Dockery and S. R. Goode. Laser-induced breakdown spectroscopy for thedetection of gunshot residues on the hands of the shooter. Appl. Opt.,2003(42):6153-6158.
    [109] J. R. Almirall, S. Umpierrez, W. Castro, I. Gornushkin and J. Winefordner.Forensic elemental analysis of materials by laser induced breakdown spectroscopy(LIBS). Proc. SPIE,2005(5778):657-666.
    [110] B. Salle, D. A. Cremers, S. Maurice and R. C. Wiens. Laser-induced breakdownspectroscopy for space exploration applications: Influence of the ambient pressure onthe calibration curves prepared from soil and clay samples. Spectrochim. Acta Part B,2005(60):479-490.
    [111] L. Radziemski, D. A. Cremers, K. Benelli, C. Khoo and R. D. Harris. Use of thevacuum ultraviolet spectral region for laser-induced breakdown spectroscopy-basedMartian geology and exploration. Spectrochim. Acta Part B,2005(60):237-248.
    [112]满宝元,王公堂,刘爱华,王象泰.不同气压背景下激光烧蚀Al靶产生等离子体特性分析.光谱学与光谱分析,1998(18):411-415.
    [113]宋一中,李尊营,朱瑞富,王建华.低真空时激光诱导Al等离子体辐射分析.光谱学与光谱分析,2001(21):290-293.
    [114]赵书瑞,陈金忠,魏艳红,郭庆林.高能量激光诱导铝等离子体的发射光谱研究.光谱学与光谱分析,2003(23):560-562.
    [115]李静,林长贺,李胜利.激光等离子体光谱测量影响因素分析.光谱学与光谱分析,2005(25):1905-1907.
    [116]袁冬青,周明,刘长隆,言峰,戴娟,任乃飞.激光感生击穿光谱技术(LIBS)的原理及影响因素.光谱学与光谱分析,2008(28):2019-2023.
    [117]宋一中,贺安之.激光诱导Al等离子体的Doppler效应.光谱学与光谱分析,2005(25):655-659.
    [118]吴江来,傅院霞,李颖,卢渊,崔执凤,郑荣儿.水溶液中金属元素的激光诱导击穿光谱的检测分析.光谱学与光谱分析,2008(28):1979-1982.
    [119]亓洪兴,舒嵘,吕刚,何志平,马德敏,杨宜.基于激光诱导离解光谱的物质成分分析技术.激光与红外,2007(37):314-317.
    [120]汪家升,陆运章,李威霖,乔东坡,唐莹.激光诱导击穿光谱技术分析岩石和煤样品.冶金分析,2009(29):30-34.
    [121]王建伟,张娜珍,侯可勇,李海洋. LIBS技术在土壤重金属污染快速测量中的应用.化学进展,2008(20):1165-1171.
    [122]崔执凤,张先炎,姚关心,汪小丽,许新胜,郑贤锋,凤尔银,季学韩.铅黄酮合金激光诱导击穿谱特性的实验研究.原子与分子物理学报,2007(24):25-30.
    [123]张大成,马新文,朱小龙,李斌,祖凯玲.激光诱导击穿光谱应用于三种水果样品微量元素的分析.物理学报,2008(57):6348-6353.
    [124]孙兰香、于海斌、郭前进、丛智博,杨志家.激光诱导击穿光谱在物质成分定量分析方面的实验研究进展.仪器仪表学报,2008(29):2235-2240.
    [125]于乐、赵华凤、马晓红、刘阳、张敏、廖延彪.激光诱导击穿光谱土壤重金属污染检测方法研究.激光杂志,2008(29):64-65.
    [126]余亮英、陆继东、陈文、吴戈、沈凯、冯伟. Analysis of Pulverized Coal byLaser-Induced Breakdown Spectroscopy. Plasma Science\&Technology,2005(7):3041-3044.
    [127]涂彩、袁心强. LIBS分析软件的研究及其宝石学应用.宝石和宝石学杂志,2008(10):26-29.
    [128]赵刚、林菊平、贺廿六、高恒、杨闯.便携式激光生化探测仪.光学技术,2008(34):163-166.
    [129]生佳根、徐荣青、陆建、倪晓武.激光等离子体发射光谱的测试与分析.江苏科技大学学报(自然科学版),2005(19):57-60.
    [130]刘林美,林兆祥,李捷,张文艳.云台山地质的激光诱导击穿光谱研究.应用激光,2008(28):386-389.
    [131]李澜,陈冠英,张树东,董晨钟,苏茂根.激光能量对激光诱导Cu等离子体辐射强度、电子温度的影响.原子与分子物理学报,2003(20):343-346.
    [132]张延惠,宋一中.激光烧蚀金属靶时气体电离分析.光谱学与光谱分析,2000(20):25-27.
    [133]宋光乐,宋一中.激光诱导Al等离子体辐射空间分布.光谱学与光谱分析,2003(23):22-24.
    [134]李静,张鉴秋,孟祥儒.激光烧蚀硬铝产生等离子体温度和力学效应测量.强激光与粒子束,2007(19):249-252.
    [135]李娉,陆继东,谢承利,李捷,刘彦,余亮英.用激光诱导感生击穿光谱技术测量燃煤含碳量.应用光学,2007(28):756-759.
    [136]马德敏,马艳华,舒嵘,亓洪兴,何志平,吕刚,王建宇.激光诱导现场探测月壤成分的可行性分析.红外与激光工程,2007(36):656-658.
    [137]袁冬青,周明,沈坚,任乃飞,蔡兰.激光诱导等离子体技术(LIBS)在金属薄膜加工微检测中的应用研究.光谱学与光谱分析,2008(28):2232-2236.
    [138]宋冬婷,亓洪兴,舒嵘.基于激光诱导离解光谱的土壤重金属监测定量化方法研究.科学技术与工程,2008(8):4070-4077.
    [139] E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi. Calibration-FreeLaser-Induced Breakdown Spectroscopy: State of the art. Spectrochim. Acta Part B,2010(65):1-14.
    [140]林丽云,王声波,郭大浩,吴鸿兴.激光引发等离子体光谱法的研究进展与应用前景.激光与光电子学进展,2004(41):19-24.
    [141] Jose M. Vadillo, J. Javier Laserna. Laser-induced plasma spectrometry: truly asurface analytical tool. Spectrochim. Acta Part B,2004(59):147-161.
    [142] K. K. Herrera. From sample to signal in laser-induced breakdown spectroscopy:an experimental assessment of existing algorithms and theoretical modelingapproaches. Dissertation for the degree of doctor of philosophy,2008.
    [143] M. Von Allmen. Laser-beam interactions with materials: physical principles andapplications. New York: Springer-Verlag, Berlin,2006.
    [144] A. Bogaerts, Z. Y. Chen, R. Gijbels, A. Vertes. Spectrochim. Acta Part B,2003(58):1867-.
    [145] S. Amoruso, M. Armenante, V. Berardi, R. Bruzzese, N. Spinelli. Absorptionand saturation mechanisms in aluminum laser ablated plasmas. Appl. Phys. A,1997(65):265-271.
    [146] D. W. Blair. Mechamisms of Particulate Formation in Laser Plasma.Dissertation for the degree of doctor of philosophy,2003.
    [147] R. H. Huddlestone and S. L. Leondard. Plasma Diagnostic Techniques. NewYork: Academic Press,1965.
    [148]陆同兴,路轶群.激光光谱技术原理及应用.合肥:中国科学技术大学出版社,2006.
    [149] D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E.Tognoni. Spectrochim. Acta Part B,2002(57):339-.
    [150] W. F. Luo, J. Tang, C. X. Gao, H. J. Wang, W. Zhao. Spectroscopic analysisfor element concentrations in aluminum alloy using nanosecond laser-inducedbreakdown spectroscopy. Phys. Scr.,2010(81):065302(1-7).
    [151] W. F. Luo, X. X. Zhao, Q. B. Sun, C. X. Gao, J. Tang, H. J. Wang, W. Zhao.Characteristics of aluminum alloy plasma produced by a1064nm Nd: YAG laser withdifferent irradiances. Pramana-J. Phys.,2010(74):945-959.
    [152] W. F. Luo, Q. B. Sun, C. X. Gao, J. Tang, H. J. Wang, W. Zhao. PlasmaProperties of532nm Laser-Ablated Aluminum E414d Target with Different PowerDensities. Plasma Science and Technology,2010(12):385-390.
    [153] W. F. Luo, X. X. Zhao, Q. B. Sun, C. X. Gao, J. Tang, H. J. Wang, W. Zhao.Spatial diagnostics of532nm laser-induced aluminum plasma. Nuclear Inst. andMethods in Physics Research, A,2010: DOI10.1016/j.nima.2010.02.046.
    [154] W. F. Luo, J. Tang, H. J. Wang, W. Zhao. Measurements of electron numberdensity and plasma temperature using LIBS. JSPS-CAS Core University ProgramSeminar Proceedings of Japan-China Joint Seminar on Atomic and MolecularProcesses in Plasma,2010:225-230.
    [155] J. D. Ingle Jr, S. R. Crouch. Spectrochemical Analysis. New Jersey: Prentice-Hall,1988.
    [156] I. B. Gornushkin, L. A. King, B. W. Smith, N. Omenetto, J. D. Winefordner.Spectrochim. Acta Part B,1999(54):1207.
    [157]刘万东.等离子体物理导论.中国科学技术大学近代物理系,2002.
    [158] G. Bekefi, C. Deutsch, B. Yaakobi. Principles of Laser Plasmas. New York:Wiley,1976.
    [159] H. R. Griem. Plasma Spectroscopy. New York: McGraw-Hill Book Company,1964.
    [160] X. Z. Zeng, S. S. Mao, C. Liu, X. L. Mao, R. Greif, R. E. Russo. Plasmadiagnostics during laser ablation in a cavity. Spectrochim. Acta Part B,2003(58):867-877.
    [161] J. S. Cowpe, J. S. Astin, R. D. Pilkington, A. E. Hill. Temporally resolved laserinduced plasma diagnostics of single crystal silicon-Effects of ambient pressure.Spectrochim. Acta Part B,2008(63):1066-1071.
    [162] D. B. Hibbert, J. J. Gooding. DATA ANALYSIS FOR CHEMISTRY-AnIntroductory Guide for Students and Laboratory Scientists. Oxford University Press,2006.
    [163] N.Konievic, A.Lesage, J.R.Fuhr, W.L.Wiese. Experimental Stark Widths andShifts for Spectral Lines of Neutral and Ionized Atoms (A Critical Review of SelectedData for the Period1989Through2000). J. Phys. Chem. Ref. Data,2006(31)819-927.
    [164] U.Aydin, P.Roth, C.D.Gehlen, R.Noll. Spectral line selection for time-resolvedinvestigation of laser-induced plasmas by an interative Boltzmann plot method.Spectrochim. Acta Part B,2008(63):1060-1065.
    [165] J.A.Aguilera, C.Aragon, F.Penalba. Plasma shielding effect in laser ablation ofmetallic samples and its influence on LIBS analysis. Applied Surface Science,1998(127):309-314.
    [166] N.M.Shaikh,S.Hafeez,B.Rashid,M.A.Baig. Spectroscopic studies of laserinduced aluminum plasma using fundamental, second and third harmonics of aNd:YAG laser. Eur.Phys.J.D,2007(44):371-379.
    [167] B.Wollf-Rottke, J.Ihlemann, H.Schmidt, A.Scholl. Appl. Phys. A,1995(60):13.
    [168] N.M.Shaikh, B.Rashid, S.Hafeez, Y. Jamil, M.A.Baig. Measurement of electrondensity and temperature of a laser-induced zinc plasma. J.Phys.D: Appl. Phys.,2006(39):1384-1391.
    [169] S. S. Harilal, C. V. Bindhu, Riju C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan.J. Appl. Phys.,1997(82):2140-2146.
    [170] V. Rai, H. Zhang, F. Yueh, J. Singh, A. Kumar. Appl.Opt.,2003(18):3662-3669.
    [171] K. J. Grant, G. L. Paul. Appl. Spectrosc.,1990(44):1349.
    [172] W. Tawfik, Y. Mohamed. Progress in physics,2007(2):87.
    [173] G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti and E. Tognoni.Modi: a new mobile instrument for in situ standard-less LIBS analysis of CulturalHeritage. Optical Methods for Arts and Archaeology, Proceedings of SPIE,2005(5857):58570G-1-58570G-10.
    [174] B. Le. Drogoff, J. Margot, F. Vidal. Plasma Sources Science and Technology,2004(13):223-230.
    [175] P. Kepple, H. R. Griem. Phys. Rev.,1968(173):317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700