飞秒激光诱导等离子体光谱时空特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去二十多年的时间里,关于利用飞秒激光诱导等离子体发射光谱来研究激光等离子体的基本特性的研究一直持续着,由于飞秒激光特有的时间特性,从而使得飞秒激光诱导等离子体具有着特殊的时空特性,本文的工作由此展开。
     1、首次对空气中飞秒激光诱导等离子体光谱的角分布特性进行了研究,发现正一价氮气分子的391.5nm谱线和氮原子的744.2nm谱线存在着不同的角分布。两条谱线存在类似的变化趋势,通过偶极子辐射的角分布特性和诱导形成的等离子体的荧光的分布建立了计算模型,并与实验结果符合的很好。随后根据实验结果和计算结果的对比,得到了氮气分子与原子的极化度随等离子体通道位置的关系曲线,发现在空气等离子体中氮气分子的极化度大于氮原子极化度,两者存在类似的变化趋势的同时又存在着明显的差异,其原因在于空气中的氮原子或者离子都是由激光电离激发后的氮气分子解离而来,且解离后的原子或离子的初始动量存在特有的角分布。
     2、首次对飞秒脉冲激光在不同配比,不同气压下(低于一个标准大气压)的氮气与氩气的混合气体中,等离子体光谱的时间演化特性进行了研究。实验结果表明氮气分子谱线与氮离子谱线光谱的持续时间都在20ns左右,且有着不同的气压特性,其中氮离子谱线只出现在气压低于6的情况下,气压大于10kPa时,氮气分子谱线才会出现,并随着气压的增大,谱线强度也在增大。而正一价氮气谱线却存在于整个实验中的气压测量范围内。利用氮离子谱线计算了不同配比的气体中等离子体温度和电子密度随时间的变化曲线,发现等离子体的温度会在10ns时间内快速上升,然后保持在7000K左右,且不会随氩气配比的增加而变化。气压从1kPa增加到6kPa时,等离子体的电子密度是增加的;在时间方面,气压不变的情况下,电子密度迅速达到最大,随后缓慢的降低。随着氮气中氩气含量的增加,在1kPa和2kPa时,电子密度会减小,但是当气压为4kPa和6kPa时,则有着相反的变化趋势。在大于10kPa时,氮气分子谱线会随着随氩气配比的增加而增加。
     三、分别对低于一个标准大气压的空气和氩气的环境气体条件下的飞秒激光诱导镍等离子体光谱进行了实验研究。结果表明,在两种环境气体中,镍等离子体光谱均表现为连续谱和原子线状谱的叠加。随着环境气压的降低,由于电子密度的下降,从而使得低压条件下的谱线比高压条件下的潜线具有更好的分辨。同时,谱线强度经历了由缓慢增强发展到迅速降低的演化过程。另外,论文还讨论了环境气体成分对谱线强度的影响。
     以上的研究成果有利于人们更深入地理解飞秒脉冲激光诱导等离子体的基本特性及其变化情况。对目前飞秒脉冲激光的发展和应用提供了有益的支持。
In the last20years, the study of the characteristics of the laser-induced plasma has been always carried out intensively by the femtosecond laser-induced breakdown spectroscopy (LIBS) technique. Due to the time characteristics of femtosecond laser pulse, the femtosecond laser-induced plasma emission spectroscopy has special spatiotemporal characteristics. That is the initial motivation of this paper.
     First, For the first time, the angular distribution of femtosecond laser-induced plasma emission spectroscopy involving pulse filamentation in air was experimentally and theoretically investigated. The391.5nm spectral line of N2+and744.2nm spectral line of N2have similar angular distribution behaviors. By using the angular distribution of dipole radiation and laser-induced plasma fluorescence distribution, we build up an analysis model to calculate the the angular distribution of femtosecond laser-induced plasma emission spectroscopy, which is in good agreement with the experimental results. Then, based on the comparison of experimental data and the calculated one, the polarization of the nitrogen molecules and atoms as a function of the position of plasma channel was derived. In the plasma generated during pulse filamentation, the polarization of nitrogen molecules is larger than that of nitrogen atoms. There are similar polarization trend between nitrogen molecules and nitrogen atoms but with obvious difference, because the nitrogen atoms are all from the dissociation of nitrogen molecules and they initial momentum has certain angular distribution.
     Second:Study of temporal characterization of femtosecond pulse laser induced spectroscopy in five kinds of mixed gas with different pressure (Less than a standard atmospheric pressure). The time-domain evolution of plasma spectroscopy was experimentally investigated in different ratio of nitrogen with argon in different gas pressures. The results show that the decay time of spectral lines of nitrogen molecules and nitrogen ions are approximate20ns. The spectral lines of N+only appear under6kPa and the spectral lines of N2are absent when the pressures are lower than10kPa. The intensity of spectral lines of N2is increased with rising of gas pressure. However, the spectral lines of N2+exist during the whole pressure region. Then we calculated the plasma density and temperature as a function of time by using the spectra of NII. The plasma temperature rapidly goes up during10ns and then remains a constant of about7000K, which does not change with the ratio of argon. The plasma density increases when the pressure changes from1kPa to6kPa. In the time domain under certain pressure, the plasma density reaches the maximum and then gradually decays. With the increasing ratio of Ar, the plasma density decreases under pressure of1kPa and2kPa, but reverse under pressure of4kPa and6kPa. When the pressure is larger than lOkPa, the intensity of spectral lines of N2is increased with the increasing ratio of argon.
     Third, The spectra of Ni plasma induced by femtosecond laser pulses at sub-atmospheric pressure environment has been studied experimentally in air and argon gas, respectively. The results show that the spectra of laser-induced plasmas are composed of continuous spectra and atomic line spectra in these two surrounding gases. With the reduction of surrounding gas pressure, the spectra at lower surrounding pressure show higher resolution due to the decrease of electron density, compared to that at higher pressure. Besides, the intensity of line spectra undergoes the transition from slow increase to rapid decrease. Additionally, the effect of the composition of the surrounding gas on the intensity is also briefly discussed in this paper.
     The research results presented in this dissertation are useful for further understanding of the characteristics of femtosecond laser-induced plasma emission spectroscopy, and give support for application of femtosecond laser.
引文
[1]http://zh.wikipedia.org/wiki/Wikipedia.
    [2]Townes, Charles H. How the Laser Happened:Adventures of a Scientist. Oxford University Press.1999
    [3]Maiman, T. H. Stimulated optical radiation in ruby. Nature.1960,187 (4736):493-494.
    [4]DeMaria, A. J., Stetser, D. A., and Heynau, H. Self Mode-Locking of Lasers with Saturable Absorbers Appl.Phys. Lett.1966,8 (7):174-176.
    [5]Shank, C. V and Ippen, E. P. Subpicosecond kilowatt pulses from a mode-locked cw dye laser Appl.Phys. Lett.1974,24 (8):373-375.
    [6]Haus, H. A. Theory of Mode-Locking with a Fast Saturable Absorber. Appl. Phys.1975,46 (7):3049-3058.
    [7]Haus, H. A. Theory of Mode-Locking with a Slow Saturable Absorber IEEE J. Quantum Electron.1975,11 (9):736-746.
    [8]Fork, R. L., Greene, B. I., and Shank, C. V. Generation of Optical Pulses Shorter than 0.1 psec by Colliding Pulse Mode-Locking Appl. Phys. Lett.1981,38 (9):671-672.
    [9]Weiner, A. M. and Ippen, E. P. Novel transient scattering technique for femtosecond dephasing measurements. Opt. Lett.1984,9 (2):53-55.
    [10]Mollenauer, L. F. and Stolen, R. H. The soliton laser. Opt. Lett.1984,9(1):13-15.
    [11]Haus. H. A. Parameter ranges for CW passive modelocking. IEEE J. Quantum Electron.1976, 212:169-176.
    [12]Kean, P. N., Zhu, X.., Crust, D. W., Grant, Langford, R. S., N., and Sibbett, W. Enhanced mode locking of colorcenter lasers. Opt. Lett.1989,14 (1):39-41.
    [13]Spence, D. E., Kean, P. N., and Sibbett, W. Sub-100fs Pulse Generation from a Self-Modelocked Titanium:Sapphire Laser, in Conference on Lasers and Electro-optics, CLEO, Techical Digest Series (Optical Society of America) 1990,619-620.
    [14]Spence, D. E., Kean, P. N., and Sibbett, W.60-fsec pulse generation from a self-mode-locked Ti:sapphire laser.Opt. Lett.1991,16 (1):42-44.
    [15]张志刚.飞秒激光技术.北京:科学出版社.2011
    [16]张志刚,徐敏.飞秒激光脉冲技术的发展和应用.激光杂志.1999,20(5):7-14.
    [17]Chichkov, B. N., Momma, C., Nolte, S., Alvensleben, F. von, and Tunnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys.1996, A63:1092115.
    [18]Liu, X., Du, D., and Mourou, G. Laser ablation and micro2machining with ultrashort laser pulses. IEEE J. QuantumElectron.1997, QE233:170621716.
    [19]Perry, M. D., and Mourou, G. Terawatt to petawatt subpicosecond lasers. Science.1994, 264:9172924.
    [20]Denk, W., Strickler, J. M., and Webb, W. W. Two photon laser scanning fluorescence microscopy. Science.1990,248:73276.
    [21]Brech, F. and Cross, L. Optical microemission stimulated by a ruby laser. Appl. Spectrosc. 1962,16:59.
    [22]Debras-Guedon, J. and N. Liodec. De l'utilisation du faisceau d'un amplificateur a ondes lumineuses par emission induite de rayonnement (laser a rubis). comme source energetique pour l'excitation des spectres d'emission des elements. C.R. Acad. Sci.1963,257: 3336-3339.
    [23]Maker, P.D., R.W. Terhune and C.M. Savage. Optical third harmonic generation. Proceedings of the 3rd International Conference on Quantum Electronics. Paris. New York. Columbia University Press.1964, Vol.2:1559.
    [24]Runge, E.F., Minck, R.W. and Bryan, F.R. Spectrochemical analysis using a pulsed laser source. Spectrochim. Acta.1964,20:733-735.
    [25]Evtushenko, T.P., et al. Investigation of air sparks by two synchronized lasers. Sov. Phys.-Tech. Phys.1966,11:818-822.
    [26]Young, M., Hercher, M. and Yu, C.Y. Some characteristics of laser-induced air sparks. J. Appl. Phys.1966,37:4938-4940.
    [27]Schroeder, W.W., Niekirk, J.J. van, Dicks, L., Strasheim, A. and Piepen, H.V.D. A new electronic time resolution system for direct reading spectrometers and some applications in the diagnosis of spark and laser radiations. Spectrochim. Acta Part B 1971,26:331-340.
    [28]Raizer, Y.P. Breakdown and heating of gases under the influence of a laser beam. Sov. Phys. Uspekhi 1966,8:650-673.
    [29]Afanasev, Yu, V. and Krokhin, O.N. Vaporization of matter exposed to laser emission. Soviet Physics JETP 1967,25:639-645.
    [30]Biberman, L.M. and Norman, G.E. Continuous spectra of atomic gases and plasma.Sov. Phys. Uspekhi.1967,10:52-54.
    [31]Buravlev, Yu. M., Nadezhda, B.P. and Babanskaya, L.N. Use of a laser in spectral analysis of metals and alloys. Zavodskaya Laoratoriya.1974,40:165-171.
    [32]Marich, K.W., Carr, P.W. Treytl, W.J. and Glick, D. Effect of matrix material on laser-induced elemental spectral emission. Anal. Chem.1970,42:1775-1779.
    [33]Treytl, W.J., Orenberg, J.B., Marich, K.W., Saffir, A.J. and Glick, D. Detection limits in analysis of metals in biological materials by laser microprobe optical emission spectrometry. Anal. Chem.1972,44:1903-1904.
    [34]Generalov, N.A., Zimakov, V.P., Kozlov, G.I., Masyukov, V.A. and Raiser, Y.P. Continuous optical discharge. JETP Lett.1970,11:302-306.
    [35]Keefer, D.R. Experimental study of a stationary laser-sustained air plasma. J. Appl. Phys. 1974,46:1080-1083.
    [36]Ready, J.F. Effects of High-power Laser Radiation. New York:Academic Press. NY.1971.
    [37]Ready, J.F. LI A Handbook of Laser Materials Processing, Orlando:Laser Institute of America. 2011.
    [38]Buzukov, A.A., Popov, Y.A. and Teslenko, VS. Experimental study of explosion caused by focusing monopulse laser radiation in water. Zhurnal Prikladnoi Makhaniki I Tekhnicheskoi Fiziki.1969,10:17-22.
    [39]Lauterborn, W. High-speed photography of laser-induced breakdown in liquids. Appl. Phys. Lett.1972,21:27-29.
    [40]Teslenko, V.S. Investigation of photoacoustic and photohydrodynamic parameters of laser breakdown in liquids. Sov. J. Quant. Electro.1977,7:981-984.
    [41]Lencioni, D.E. The effect of dust on 10.6μm laser-induced air breakdown Appl. Phys. Lett. 1973,23:12-14.
    [42]Belyaev, E.B., Godlevskii, A.P. and Kopytin, Y.D. Laser spectrochemical analysis of aerosols. Sov. J. Quant. Electro.1978,8:1459-1463.
    [43]Edwards, A.L. and Fleck, J.A. Two-dimensional modeling of aerosol-induced breakdown in air. J. Appl. Phys.1979,50:4307-4313.
    [44]Ivanov, Y.V. and Kopytin, Y.D. Selective interaction of a train of laser pulses with an aerosol medium. Sov. J. Quant. Electro.1982,12:355-357.
    [45]Measures, R.M. and Kwong, H.S. TABLASER:trace (element) analyzer based on laser ablation and selectively excited radiation. Appl. Opt.1979,18:281-286.
    [46]Loree, T.R. and Radziemski, L.J. Laser-induced breakdown spectroscopy:timeintegrated applications. Plasma Chem. Plasma Proc.1981,1:271-280.
    [47]Radziemski, L.J. and Loree, T.R. Laser-induced breakdown spectroscopy:timeresolved spectrochemical applications. Plasma Chem. Plasma Proc.1981,1:281-293.
    [48]Radziemski, L.J., Cremers, D.A. and Loree, T.R. Detection of beryllium by laserinduced breakdown spectroscopy. Spcctrochim. Acta Part B 1983,38:349-353.
    [49]Cremers, D.A. and Radziemski, L.J. Direct detection of beryllium on filters using the laser spark. Appl. Spectrosc.1985,39:57-60.
    [50]Millard, J.A., R.D. Dalling and Radziemski, L.J. Time resolved laser-induced breakdown spectrometry for the rapid determination of beryllium in beryllium-copper alloys. Appl. Spectrosc.1986,40:491-494.
    [51]Adrain, R.S. Some industrial uses of laser induced plasmas. New York:John Wiley & Sons, Inc.1982.
    [52]Belyaev, E. B., et al. Nature of the acoustic emission during laser breakdown of gaseous disperse systems. Sov. Tech. Phys. Lett.1982,8:144-147.
    [53]Kitamori, T., Yokose, K., Suzuki, K., Sawada, T. and Gohshi, Y. Laser breakdown acoustic effect of ultrafine particle in liquids and its application to particle counting. Jpn. J. Appl. Phys. 1988,27:L983-L985.
    [54]Diaci, J. and Mozina, J. A study of blast waveforms detected simultaneously by a microphone and a laser probe during laser ablation. Appl. Phys. A 1992,55:352-358.
    [55]Radziemski, L.J. and Cremers, D.A. Laser-induced Plasmas and Applications, New York: Marcel Dekker.1989.
    [56]Radziemski, L.J. Review of selected analytical applications of laser plasmas and laser ablation,1987-1994. Microchem. J.1994,50:218-234.
    [57]Song, K., Lee, Y.I. and Sneddon, J. Applications of laser-induced breakdown spectrometry (LIBS).Appl. Spectrosc. Rev.1997,32:183-235.
    [58]Rusak, D.A., Castle, B.C., Smith, B.W. and Winefordner, J.D. Recent trends and the future of laser-induced breakdown spectroscopy. Trends Anal. Chem.1998,17:453-461.
    [59]Hou, X.D. and Jones, B.T. Field instrumentation in atomic spectroscopy. Microchem. J.2000, 66:115-145.
    [60]Grant, K.J., Paul, G.L. and ONeill, J.A. Quantitative elemental analysis of iron ore by laser-induced breakdown spectroscopy. Appl. Spectrosc.1991,45:701-705.
    [61]Sabsabi, M. and Cielo, P. Laser-induced breakdown spectroscopy on aluminum alloy targets. SPIE 1992,2069:191-201.
    [62]Lazzari, C., Rosa, M., Rastelli, S., Ciucci, A., Palleschi, V. and Savetti, A. Detection of mercury in air by time resolved laser-induced breakdown spectroscopy technique. Laser Part. Beams 1994,12:525-530.
    [63]Cremers, D.A., Barefield, J.E. and Koskelo, A.C. Remote elemental analysis by laser-induced breakdown spectroscopy using a fiberoptic cable. Appl. Spectrosc.1995,49:857-860.
    [64]Marquardt, B.J., Goode, S.R. and Angel, S.M. In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe. Anal. Chem.1996,68: 977-981.
    [65]Blacic, J.D., Pettit, D.R. and Cremers, D.A. Laser-induced breakdown spectroscopy for remote elemental analysis of planetary surfaces. Proceedings of the International Symposium on Spectral Sensing Research, Maui, HI.1992,15-20.
    [66]Kane, K.Y., Cremers, D.A., Elphic, R.C. and Mckay, D.S. An in situ technique for elemental analysis of lunar surfaces. Joint Workshop on New Technologies for Lunar Resource Assessment.1992.
    [67]Knight, A.K., Scherbarth, N.L., Cremers, D.A. and Ferris, M.J. Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration. Appl. Spectrosc.2000,54:331-340.
    [68]Davies, C.M., Telle, H.H. and Williams, A.W. Remote in situ analytical spectroscopy and its applications in the nuclear industry. Fresenius J. Anal. Chem.1996,355:895-899.
    [69]Mao, X.L., Shannon, M.A., Fernandez, A.J. and Russo, R.E. Temperature and emission spatial profiles of laser-induced plasmas during ablation using time-integrated emission spectroscopy. Appl. Spectrosc.1995,49:1054-1062.
    [70]Castle, B.C., Talabardon, K., Smith, B.W. and Winefordner, J.D. Variables influencing the precision of laser-induced breakdown spectroscopy measurements. Appl. Spectrosc.1998,52: 649-657.
    [71]Ciucci, A., Corsi, M., Palleschi, V., Ratelli, S., Salvetti, A. and Tognoni, E. New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl. Spectrosc. 1999,53:960-964.
    [72]Harith, M.A., Palleschi, V. and Radziemski, L.J. Special Issue,1st Euro- Mediterranean Symposium on Laser-induced Breakdown Spectroscopy. Spectrochim. Acta Part B 2002,57: 1107-1249.
    [73]Thiem, T.L., Salter, R.H., Gardner, J.A., Lee, Y.I. and Sneddon, J. Quantitative simultaneous elemental determinations in alloys using LIBS in an ultra-high-vacuum. Appl. Spectrosc. 1994,48:58-64.
    [74]Simeonsson, J.B. and Miziolek, A.W. Time-resolved emission studies of ArF laser produced microplasmas. Appl. Opt.1993,32:939-947.
    [75]Poulain, D.E. and Alexander, D.R. Influences on concentration measurements of liquid aerosols by laser-induced breakdown spectroscopy. Appl. Spectrosc.1995,49:569-579.
    [76]Vadillo, J.M. and Laserna, J.J. Depth-resolved analysis of multilayered samples by laser-induced breakdown spectrometry. J. Anal. At. Spectrom.1997,12:859-862.
    [77]Pallikaris, I.G., Ginis, H.S., Kounis, G.A., Anglos, D., Papazoglou, T.G. and Naoumidis, L.P. Corneal hydration monitored by laser-induced breakdown spectroscopy. J. Refr. Surgery 1998,14:655-660.
    [78]Georgiou, S., Zafiropulos, V., Anglos, D., Balas, C., Tornari, V. and Fotakis, C. Excimer laser restoration of painted artworks:procedures, mechanisms and effects. Appl. Surf. Sci.1998, 129:738-745.
    [79]Sattman, R., Moench, I., Krause, H., Noll, R., Couris, S., Hatziapostolou, A., Mavromanolakis, A., Fotakis, C., Larrauri, E. and Miguel, R. Laser-induced breakdown spectroscopy for polymer identification. Appl. Spectrosc.1998,52:456-461.
    [80]Samek, O., Beddows, D.C.S., Telle, H.H., Morris, G.W., Liska, M. and Kaiser, J. Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy. Appl. Phys.A.1999,69:179-182.
    [81]Eppler, A.S., Cremers, D.A., Hickmott, D.D., Ferris, M.J. and Koskelo, A.C. Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy. Appl. Spectrosc.1996,50:1175-1181.
    [82]Miles, B. and Cortes, J. Subsurface heavy-metal detection with the use of a laserinduced breakdown spectroscopy (LIBS) penetrometer system. Field Anal. Chem. Technol.1998,2: 75-87.
    [83]Theriault, G.A., Bodensteiner, S. and Lieberman, S.H. A real-time fiber-optic LIBS probe for the in situ delineation of metals in soils. Field Anal. Chem. Technol.1998,2:117-125.
    [84]Vadillo, J.M., Milan, M. and Laserna, J.J. Space and time-resolved laser-induced breakdown spectroscopy using charge-coupled device detection. Fresenius J. Anal. Chem.1996,355: 10-15.
    [85]Barnard, T.W., Crockett, M.J., Ivaldi, J.C. and Lundberg, P.L. Design and evaluation of an echelle grating optical system for ICP-OES. Anal. Chem.1993,65:1225-1230.
    [86]Harnley, J.M. and Fields, R.E. Solid-state array detectors for analytical spectrometry. Appl. Spectrosc.1997,51:334A-351A.
    [87]Bauer, H.E., Leis, F. and Niemax, K. Laser induced breakdown spectrometry with an echelle spectrometer and intensified charge coupled device detection. Spectrochim. Acta Part B 1998, 53:1815-1825.
    [88]Davis, L.M., Li, L.Q. and Keefer, D.R. Picosecond resolved evolution of laser breakdown in gases. J. Phys. D:Appl. Phys.1993,26:222-230.
    [89]Kagawa, K., Kawai, K., Tani, M. and Kobayashi, T. XeCl excimer laser-induced shock wave plasma and its application to emission spectrochemical analysis. Appl. Spectrosc.1994,48: 198-205.
    [90]Chikov, B.N., Momma, C., Nolte, S., Alvensleben, F. and Tunnerman, A. Femtosecond, picosecond, and nanosecond laser ablation of solids. Appl. Phys.A.1996,63:109-115.
    [91]Angel, S.M., Stratis, D.N., Eland, K.L., Lai, T., Berg, M.A. and Gold, D.M. LIBS using dual-and ultra-short laser pulses. Fresenius J. Anal. Chem.2001,369:320-327.
    [92]Barrette, L. and Tunnel, S. On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy:graphite vs total carbon detection. Spectrochim. Acta Part B 2000,56:715-724.
    [93]Buckley, S.G., Johnsen, H.A., Hencken, K.K.R. and Hahn, D.W. Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals. Waste Manage.2000,20:455-462.
    [94]Palanco, S. and Laserna, J.J. Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities. J. Anal. At. Spectrom.2000,15:1321-1327.
    [95]St-Onge, L. and Sabsabi, M. Towards quantitative depth-profile analysis using laserinduced plasma spectroscopy:investigation of galvannealed coatings on steel. Spectrochim. Acta Part B 2000,55:299-308.
    [96]Yamamoto, K.Y., Cremers, D.A., Ferris, M.J. and Foster, L.E. Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument. Appl. Spectrosc.1996,50:222-233.
    [97]Vadillo, J.M. and Laserna, J.J. Laser-induced plasma spectrometry:truly a surface analytical tool. Spectrochim. Acta Part B.2004,59:147-161.
    [98]Kraushaar, M., Noll, R. and Schmitz, H.U. Slag analysis with laser-induced breakdown spectrometry. Appl. Spectrosc.2003,57:1282-1287.
    [99]Hybl, J.D., Lithgow, G.A. and Buckley, S.G. Laser-induced breakdown spectroscopy detection and classification of biological aerosols. Appl. Spectrosc.2003,57:1207-1215.
    [100]Whitehouse, A.I., Young, J., Botheroyd, I.M., Lawson, S., Evans, C.P. and Wright, J. Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B.2001,56:821-830.
    [101]Vertes, A., Gijbels, R. and Adams, F. Laser Ionization Mass Analysis, New York:John Wiley & Sons, Ltd.1993.
    [102]Sagdeev, R.Z., Managadze, G.G., Shutyaev, I.Yu., Szego, K. and Timofeev, P.P. Methods of remote surface chemical analysis for asteroid missions. Adv. Space Res.1985 5:111-120.
    [103]Clark Ⅲ, B.C. A.K. Baird, H.J. Rose Jr, P. Toulmin Ⅲ, R.P. Christian, W.C. Kelliher, A.J., Castro, Rowe, C.D., Keil, K. and Huss, G.R. The Viking X ray fluorescence experiment: analytical methods and early results. J. Geophys. Res.1977,82:4577-4594.
    [104]Economou, T. Chemical analyses of Martian soil and rocks obtained by the Pathfinder alpha proton x-ray spectrometer. Radiat. Phys. Chem.2001,61:191-197.
    [105]Rieder, R., Gellert, R., Bruckner, J., Klingelhofer, G., Dreibus, G., Yen, A. and Squyers, S.W. The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers. J. Geophys. Res. B.2003,108 (E12):8066.
    [106]徐克尊.高等原子分子物理学.安徽:中国科学技术大学出版社.2012
    [107]李安模,魏继中.原子吸收及原子荧光光潜分析.北京:科学出版社,2000:24—25
    [108]Griem, H. R. Plasma Spectroscopy, Maryland:McGraw-Hill.1964.
    [109]Griem, Spectral Line Broadening by Plasmas, New York:Academic Press.1974.
    [110]Chin, S. L., Wang, T. J., Marceau, C., Wu, J., Liu, J. S., Kosareva, O., Panov, N., Chen, Y. P, Daigle, J. F., Yuan, S., Azarm, A., Liu, W. W., Seideman, T., Zeng, H. P., Richardon, M., Li, R. and Xu, Z. Z. Advances in Intense Femtosecond Laser Filamentation in Air. Laser Phys. 2012,22:1-53
    [111]Geints, Yu. E., Kabanov, A. M., Zemlyanov, A. A., Bykova, E. E., Bukin, O. A. and Golik, S. S. Kerr-driven nonlinear refractive index of air at 800 and 400nm measured through femtosecond laser pulse filamentation. Appl. Phys. Lett.2011,99:181114
    [112]Marburger, J. H. Self-focusing:Theory. Prog. Quantum Electron.1975,4:35.
    [113]Couairon, A. and Berge, L. Light filaments in air for ultraviolet and infrared wavelengths. Phys. Rev. Lett.2002,88:135003.
    [114]Shi, L. P., Li, W. X., Wang, Y. D., Lu, X., Ding, L. E. and Zeng, H. P. Generation of high-density electrons based on plasma grating induced bragg diffraction in air. Phys. Rev. Lett.2011,107:095004.
    [115]Theberge, F., Liu, W. W., Simard, P. T., Becker, A. and Chin, S. L. Plasma density inside a femtosecond laser filament in air:Strong dependence on external focusing. Phys. Rev. E. 2006,74:036406.
    [116]Liu, X. L., Lu, X., Liu, X., Xi, T. T., Liu, F., Ma, J. L. and Zhang, J.Tightly focused femtosecond laser pulse in air:from filamentation to breakdown. Opt. Express.2010,18: 26007.
    [117]Kozlov, K. V., Wagner, H. E., Brandenburg, R. and Michel, P. Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure. J. Phys. D:Appl. Phys.2001,34:3164-3176.
    [118]http://www.nist.gov/pml/data/asd.cfm.
    [119]Aragon, C. and Aguilera, J. A. Characterization of laser induced plasmas by optical emission spectroscopy:A review of experiments and methodsSpectrochim. Acta, Part B. 2008,63:893.
    [120]Lofthus, A. and Krupenie, P. H. The spectrum of molecular nitrogen. J. Phys. Chem. Ref. Data.1977,6:113.
    [121]Shimizu, K., Ishii, T. and Blajan, Marius. Emission spectroscopy of pulsed power microplasma for atmospheric pollution control. IEEE Trans. Ind. Appl.2010,46:1125-1131.
    [122]Meyand, R. G., Hanght, A. F. LIBS analysis of geomaterials:Geochemical fingerprinting for the rapid analysis and discrimination of minerals. Phys. Rev. Lett.1963,11:401.
    [123]Brown, R. T., Smith, D. C. Laser-induced gas breakdown in the presence of preionization. Appl. Phys. Lett.1973,22:245.
    [124]Harmon, R. S., Remus, J., McMillan, N. J., McManus, C., Collins, L., Gottfried, J. L. DeLucia, F. C., Miziolek, A. W. LIBS analysis of geomaterials:Geochemical fingerprinting for the rapid analysis and discrimination of minerals. Appl. Geochem.2009,24:1125.
    [125]Martin, M. Z., Wullschleger, S. D., Garten, C. T., Jr, Anthony, V. Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils. Appl. Opt.2003,42:2072.
    [126]Baudelet, M., Guyon, L., Yu, J., Wolf, J. P., Amodeo, T., Frejafon, E., Laloi, P. Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria:A comparison to the nanosecond regime. J. Appl. Phys.2006,99: 084701.
    [127]Suliyanti, M, M,, Sardy, S., Kusnowo, A., Pardede, M., Hedwig, R., Kurniawan, K. H., Lie, T. J., Kurniawan, D. P., Kagawa, K.. Preliminary analysis of c and H in a "Sangiran" Fossil using laser-induced plasma at reduced pressure. J. Appl. Phys.2005,98:093307.
    [128]Zhang, Z., Lu, X., Liang, W. X., Hao, Z. Q., Zhou, M. L., Wang, Z. H., Liu, X., Zhang, J. Triggering and guiding HV discharge in air by filamentation of single and dual fs pulses. Opt. Express.2009,17:3461.
    [129]刘小亮,孙少华,曹瑜,孙铭泽,刘情操,胡碧涛.飞秒激光低压N2等离子体特性的实验研究.物理学报.2013,62:045201.
    [130]林兆祥,吴金泉,龚顺生.延迟双脉冲激光产生的空气等离子体的光谱研究.物理学报.2006,55:5892.
    [131]Cowpe, J. S., Astin, J. S., Pilkington, R. D., Hill, A. E. Application of response surface methodology to laser-induced breakdown spectroscopy:Influences of hardware configuration. Spectrochim. Acta, Part B.2007,62:1335.
    [132]Cowpe, J. S., Pilkington, R. D. Ultra-Torr based feed-through design for coupling optical fibre bundles into vacuum systems. Vacuum.2008,82:1341.
    [133]Dreyer C B, Mungas G S, Thanh P, Radziszewski J G. Study of sub-mJ-excited laser-induced plasma combined with Raman spectroscopy under Mars atmosphere-simulated conditions. Spectrochim. Acta, Part B.2007,62:1448.
    [134]Effenberger, A.J. J. Scott, J. R. Sensors.2010,10:4907.
    [135]Iida, Y. Effects of atmosphere on laser vaporization and excitation processes of solid samples. Spectrochim. Acta, Part B.1990,45:1353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700