大气温度及气溶胶激光雷达探测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
边界层是最接近人类活动的地表层的气层,人类的日常活动直接影响到底层边界层的大气状态,边界层的物性又影响着人类的生存环境。因此研究边界层内的大气状态变化,对研究太阳辐射,地球动力学上的热量传递,解释地球温暖化现象,提高局部气象预报的准确度,进行大气污染的防治,特别对城市气象变化等研究有着很重要的意义。激光雷达作为一种主动遥感探测工具,具有探测范围大、空间分辨率高、能实时连续监测和测量精度高等特点,已广泛用于激光大气传输、全球气候预测、气溶胶辐射效应及大气环境等研究领域。
     论文的研究工作主要以边界层内的大气温度剖面及对流层内气溶胶剖面的光学特性精细探测技术为研究对象,重点探讨了利用转动喇曼散射激光雷达实现白天低层大气温度高精度探测的方法和关键技术;利用米散射激光雷达观测西安城区大气气溶胶时空变化特性及数据反演技术的研究;提出了高光谱分辨率激光雷达系统精确探测大气气溶胶光学特性的技术。
     为解决白天强烈太阳背景光及低层大气中的高密度气溶胶对激光雷达温度探测的影响,提高系统的信噪比,提出了一种新的紫外域波长转动喇曼散射测温激光雷达系统的分光方案。结合一个高光谱分辨率光栅和一个边缘反射镜有效滤除了大部分噪音信号;在2个喇曼通道中设置窄带干涉滤光片分别提取2个转动喇曼信号波长,并对剩余的米—瑞利散射光进行再次剔除,实现对噪音信号的高抑制率。理论分析与实验结果表明,所研究的系统和测试方法可以有效抑制系统噪音信号,能够实现白天低层大气温度分布的高精度测量,在激光输出功率250mJ,探测时间4分钟的情况下,温度探测误差小于1K时的探测高度白天可以达到1.8km,夜晚可以达到2.3km。
     针对西安城区大气气溶胶分布及变化规律的研究需要,以及沙尘暴的预警预测需求,开展米散射激光雷达大气气溶胶观测实验及光学特性的数据反演技术的研究,首次获得西安城区低层大气气溶胶浓度的高度分布数据。为实时观测气溶胶三维剖面特性,提出便携式小型可扫描的米散射激光雷达系统设计方案,用于探测对流层内大气气溶胶及卷云的光学特性以及大气水平能见度等。
     在分析研究现有气溶胶探测及数据反演技术的基础上,针对大气气溶胶高精度探测的难题,提出并建立了一种紫外域高光谱分辨率激光雷达系统方案。该系统利用高光谱分辨率光栅分离太阳背景光,以满足系统白天探测的要求;利用一个Fabry-Perot标准具分离出多普勒增宽的瑞利散射信号,因而气溶胶的浓度对探测结果不会产生影响;借助光栅的分光效应,该系统还能实现水蒸气的同时探测。
Atmospheric boundary layer, which is closest to the surface of the earth, influences the activity of human being. The human activities in day-to-day directly affect the state of the atmospheric boundary layer. Therefore the study of atmospheric boundary layer is though of very importance for the solar radiation and heat transfer geodynamics, explanation of global warming phenomenon, improvement of local weather forecast accuracy, prevention and treatment of air pollution, especially for urban meteorological change. Atmospheric lidar, as an active remote sensing tool, has been proved to be powerful in atmospheric measurement, with a large detection range, high spatial resolution, continuous monitoring with high accuracy and real-time. It has been widely used in the research fields of laser atmospheric transmission, global climate prediction, radiation effect of the atmospheric aerosol and environment monitoring.
     This thesis mainly focuses on the fine detection of atmospheric temperature profiles in the boundary layer and the aerosol profiles in the troposphere. Methods and key techniques of rotational Raman scattering lidar with high-accuracy detection of lower atmospheric temperature during daytime are studied. Characteristics of Xi'an urban aerosol spatial variations are also observed and analyzed with Mie scattering lidar. A kind of high-spectral-resolution lidar for accurate profiling of atmospheric aerosol optical properties is proposed.
     In order to eliminate the strong solar background during daytime and high-density aerosol influence on the temperature detection in the lower atmosphere, a new spectroscopic filter is proposed for the UV temperature lidar system based on rotational Raman scattering. With the help of combination of high-spectral-resolution grating and an edge-mirror, the major portion backgrounds yielded from the solar and Mie and Rayleigh scattering are blocked. To achieve a high noise suppression rate, narrow-band interference filter is used to reject the remaining Mie-Rayleigh scattering signal in each Raman scattering channel. Theoretical analysis and experimental results show that the lidar system and the detection methods can suppress system noise effectively. And the accurate profiling of the lower atmospheric temperature during daytime can be achieved. The temperature error less than 1K is obtained up to 2.3 km for nighttime and 1.8 km for daytime measurement with 250 mJ laser pulse energy and 4 minutes observation time.
     For the needs of urban aerosol profiling in Xi'an and sand storms forecasting, the research of the aerosol observation experiment by Mie lidar and corresponding data procession of aerosol optical properties has been developed. The aerosol distribution data in Xi'an was given firstly. For real-time observing three-dimensional profiles of aerosol, a small portable scanning lidar system was designed to detect the optical properties of atmospheric aerosols and cirrus, horizontal visibility and so on.
     For fine detection of atmospheric aerosol profiles, an UV high-spectral-resolution lidar system was proposed and established on the basis of analyzing the existing technique of aerosol detection and data inversion. The system uses a high-spectral resolution grating to split solar background spatially to meet the requirement of daytime detection. Since the system uses a Fabry-Perot etalon to split out the Doppler broadened Rayleigh scattering signal, the concentration of aerosols have no influence for the detection results. By use of the diffraction effect of the grating, the system may detect the water vapor profiles simultaneously.
引文
【1】 阎吉祥,龚顺生,刘智深.环境监测激光雷达[M].北京:科学出版社,2001:135-140,181.
    【2】 盛裴轩,毛节泰,李建国等.大气物理学[M].北京:北京大学出版社,2003:25-28.
    【3】 Y.Iwasaka,S.Hayashida.The Effects of the Vocanic Eruption of St.Helens on the Polarization Properties of Stratospheric Aerosol;Lidar Measurement at Nagoya[J].J.Meteor.Soc.Japan,1981,59(4):611-614.
    【4】 H.Jager,D.J.Hofmann.Midlatitude lidar backscatter to mass,area,and extinction conversion model based on in situ aerosol measurements from 1980 to 1987[J].Appl.Opt.,1991,30(1):127-.
    【5】 J.H.Qiu,L.Q.Yang.Lidar monitoring of Aerosol and Yellow sand in Beijing[J].IEEE,1999,37:1056-1057.
    【6】 Y.Sasano.Tropospheric aerosol extinction coefficient profiles derived from scanning lidar measurements over Taukuba,Japan,from 1990 to 1993[J].Appl.Opt.,1996,35(24):4941.
    【7】 C.Bockmann,U.Wandinger,A.Ansmann,et al..Aerosol lidar intercomparison in the framework of the EARLINET project 2.aerosol backscatter algorithms[J].Appl.Opt.,2004,43(4):977-989.
    【8】 J.W.Hair,L.M.Caldweil,D.A.Krueger et al..High-spectral-resolution lidar with iodine-vapor filters:measurement of atmospheric-state and aerosol profiles[J].Appl.Opt.,2001,40(30):5280-5294.
    【9】 D.S.Balis,V.Amiridis,C.Zerefos,et al..Raman lidar and sunphotometric measurements of aerosol optical properties over Thessaloniki,Greece during a biomass burning episode[J].Atmospheric Environment,2003,37(32):4529-4538.
    【10】 刘东,戚福第,金传佳等.合肥上空卷云和沙尘气溶胶退偏振比的激光雷达探测[J].大气科学,2003,27(6):1093-1100.
    【11】 杨辉,刘文清,刘建国等.激光雷达监测北京城区夏季边界层气溶胶[J].中国激光,2006,33(9):1255-1259.
    【12】 R.T.H.Collis,P.B.Russell,Lidar measurement of particles and gases by elastic backscattering and differential absorption,in Laser Monitoring of the Atmosphere[M].Hinkley E.D.,ed.Spring-verlag,New York,1976,chap.4:71-102.
    【13】 J.D.Klett.Stable analytical inversion solution for processing lidar returns[J].Appl.Opt.,1981,20(2):211-220.
    【14】 F.G.Fernald.Analysis of atmospheric lidar observations:some comments[J].Appl.Opt.,1984,23(5):652-655.
    【15】 N.Sugimoto,I.Matsui,Z.Liu,et al..Observation of aerosols and clouds using a two-wavelength polarization lidar during the Nauru99 experiment[J].Sea and Sky,2000,76:90-95.
    【16】 C.Y.She,R.J.Alvarez II,L.M.Caldwell,et al..High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles[J].Opt.Lett.,1992,17(7):541-543.
    【17】 J.E.Kalshoven,C.L.Korb,G.K.Schwemmer,et al..Laser remote sensing of atmospheric temperature by observing resonant absorption of oxygen[J].Appl.Opt.,1981,20(11):1967-.
    【18】 J.Bosenberg.Ground-based differential absorption lidar for water-vapor and temperature profiling:methodology[J].Appl.Opt.,1998,37(18):3845-3860.
    【19】 V.Wulfmeyer.Ground-based differential absorption lidar for water-vapor and temperature profiling:development and specifications of a high-performance laser transmitter[J].Appl.Opt.,1998,37(18):3804-3824.
    【20】 A.Behrendt,J.Reichardt.Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator[J].Appl.Opt.,2000,39(9):1372-1378.
    【21】 Y.Arshinov,S.Bobrovnikov,I.Scrikov,et al..Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer[J]Appl.Opt.,2005,44(17),3593-3603.
    【22】 G.Fiocco,G.B.Machelangeli,K.Maschberger,et al..Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar[J].Nature Phys.Sci.,1971,229,78-79.
    【23】 R.L.Schwiesow,L.Lading.Temperature profiling by Rayleigh-scattering lidar[J].Appl.Opt.,1981,20(11):1972.
    【24】 C.Y.She,R.J.Alvarez II,L.M.Caldwell,et al..High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles[J].Opt.Lett.,1992,17(7):541-543.
    【25】 H.Chen,M.A.White,D.A.Krueger,et al..Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver[J].Opt.Lett.,1996,21(15):1093-1095.
    【26】 D.Hua,M.Uchida,T.Kobayashi.Ultraviolet high- spectral resolution Rayleigh-Mie lidar with a dual-pass Fabry-Perot etalon for measuring atmospheric temperature profiles of the troposphere[J].Opt.Lett.,2004,29(10):1063-1065.
    【27】 D.Hua,T.Kobayashi.Ultraviolet Rayleigh-Mie lidar by use of a multicavity Fabry-Perot filter for accurate temperature profiling of the troposphere[J].Appl.Opt.,2005,44(30):6474-6478.
    【28】 D.Hua,M.Uchida,T.Kobayashi.Ultraviolet Rayleigh-Mie lidar with Mie-scattering correction by Fabry-Perot etalons for temperature profiling of the troposphere[J].Appl.Opt.,2005,44(7):1305-1314.
    【29】 J.A.Cooney.Measurement of atmospheric temperature profiles by Raman backscatter[J].J.Appl.Meteor.,1972,11:108-112.
    【30】 J.A.Cooney.Atmospheric temperature measurement using a pure rotational Raman lidar:comment[J].Appl.Opt.,1984,23(5):653-.
    【31】 Y.Arshinov,S.Bobrovnikov.Use of a Fabry-Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules[J].Appl.Opt.,1999,38(21):4635-4638.
    【32】 Y.Arshinov,S.Bobrovnikov,I.Serikov,et al..Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer[J].Appl.opt.,2005,44(17):3593-3603.
    【33】 A.Behrendt,J.Reichardt.Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator[J].Appl.Opt.,2000,39(9):1372-1378.
    【34】 A.Behrendt,T.Nakamura,M.Onishi,et al..Combined Raman lidar for the measurement of atmospheric temperature,water vapor,particle extinction coefficient,and particle backscatter coefficient[J].Appl.opt.,2002,41(36):7657-7666.
    【35】 宋正方.应用大气光学基础[M].北京:气象出版社,1990:13-14,157,208..
    【36】 J.A.Reagan,M.P.Mccormick,J.D.Spinhirne.Lidar sensing of aerosols and clouds in the troposphere and stratosphere[J].Proceedings of the IEEE,1989,77(3):433-447.
    【37】 U.S.Standard Atmosphere,U.S.Government Printing Office,Washington,D.C.,1976.
    【38】 朱金山,刘智深,郭金家.高光谱分辨率激光雷达(HSRL)大气温度测量模拟[J].中国海洋大学学报,2005,35(5):863-867.
    【39】 A.Cohen,J.A.Cooney,K.N.Geller.Atmospheric temperature profiles from lidar measurements of rotational Raman and elastic scattering[J].Appl.Opt.,1976,15(11):2896-2901.
    【40】 吴永华,胡欢陵,胡顺星,等.瑞利散射激光雷达探测平流层和中间层低层大气温度[J].大气科学,2002,26(1):23-29.
    【41】 吴永华,李陶,胡顺星,等.瑞利-拉曼散射激光雷达探测大气温度分布[J].中国激光,2004,31(7):851-856.
    【42】 P.D.Girolamo,A.Behrendt,V.Wulfmeyer.Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar:performance simulations[J].Appl.Opt.,2006,45(11):2474-2494.
    【43】 I.Balin,I.Serikov,S.Bobrovnikov,et al..Simultaneous measurement of atmospheric temperature,humidity and aerosol extinction and backscatter coefficients by a combined vibrational-pure-rotational Raman lidar[J].Appl.Phys.B,2004,79(6):775-782.
    【44】 D.Hua,T.Kobayashi.UV Rayleigh-Mie Raman lidar for simultaneous measurement of atmospheric temperature and relative humidity profiles in the troposphere[J].Jpn.J.of Appl.Phys.,2005,44(3):1287-1291.
    【45】 常岐海,杨国韬,宋娟,等.武汉中层大气温度特性的激光雷达观测研究[J].大气科学,2005,29(2): 314-320.
    【46】 S.E.Bisson,J.E.M.Goldsmith,M.G.Mitchell.Narrow-band,narrow-field-of view Raman lidar with combined day and night capability for tropospheric water-vapor profile measurements[J].Appl.Opt.,1999,38(9):1841-1849.
    【47】 吴永华,李陶,周军,等.Raman激光雷达探测对流层中上部大气温度分布[J].大气科学,2002,26(5):702-708.
    【48】 A.Behrendt,T.Nakamura,T.Tsuda.Combined temperature lidar for measurements in the troposphere,stratosphere,and mesosphere[J].Appl.Opt.,2004,43(14):2930-2939
    【49】 刘玉丽,张寅超,苏嘉,等.转动拉曼激光雷达探测大气温度的系统设计及模拟计算[J].光散射学报,2006,17(4):347-354.
    【50】 刘玉丽,张寅超,苏嘉,等.探测低空大气温度分布的转动拉曼激光雷达[J].光电工程,2006,33(10):43-48.
    【51】 C.M.Penney,R.L.St.Peters,M.Lapp.Absolute rotational Raman cross sections for N_2,O_2,and CO_2[J].J.Opt.Soc.Am.,1974,64(5):712-716.
    【52】 M.Becucci,S.Cavalieri,R.Eramo,et al..Accuracy of remote sensing of water temperature by Raman spectroscopy[J].Appl.Opt.,1999,38(6):928-931.
    【53】 G.Anderson,J.K.Brasseur,R.J.Knize,et al..Raman and Rayleigh holographic lidar[J].Appl.Opt.,2002,41(9):1798-1804.
    【54】 步鹏,杨经国,哈元清等.N_2和O_2纯转动拉曼光谱(PRRS)的温度特性[J].光散射学报,2002,14(3):183-185.
    【55】 M.Funda,C.Nagasawa,Y.Shibata,et al..Atmospheric temperature measurement with the rotational Raman lidar using Na Vapor filter[C].Proc.SPIE,2001,4153:183-190.
    【56】 T.Y.Nakajima,T.Imai,O.Uchino,et al..Influence of daylight and noise current on cloud and aerosol observations by spaceborne elastic scattering lidar[J].Appl.Opt.,1999,38(24):5218-5228.
    【57】 A.Behrendt,J.Reichardt.Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator[J].Appl.Opt.,2000,39(9):1372-1378.
    【58】 G.Vaughan,D.P.Wareing,S.J.Pepler,et al..Atmospheric temperature measurements made by rotational Raman scattering[J].Appl.Opt.,1993,32(15):2758-2764.
    【59】 J.Zeyn,W.Lahmann,C.Weitkamp.Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar[J].Opt.Lett.,1996,21(16):1301-1303.
    【60】 刘君,华灯鑫,李言.大气边界层白天温度测量用转动拉曼激光雷达[J].光学学报,2007,27(5):755-759.
    【61】 M.P.Thekaekara.Extraterrestrial solar spectrum,3000-6100 A at 1-A intervals[J].Appl.Opt.,1974, 13(3):518-522.
    【62】 D.X.Hua,J.Liu,K.Uchida,et al..Daytime temperature profiling of planetary boundary layer with ultraviolet rotational Raman lidar[J].Japanese Journal of Applied Physics,2007,46(9A):5849-5852.
    【63】 K.Uchida,T.Hasegawa,D.Hua,et al..Rotational Raman temperature lidar and data calibration[C].Proceedings of 23rd International Laser Radar Conference.Nara,2006:219-222.
    【64】 周军,岳古明,戚福第等.大气气溶胶光学特性激光雷达探测[J].量子电子学报,1998,15(3):140-148.
    【65】 J.R.Campbell,D.L.Hlavka,E.J.Welton,et al..Full-time,eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites:instruments and data processing[J].Journal of Atmospheric & Oceanic Technology,2002,19(4):431-442.
    【66】 P.B.Savov,T.S.Skakalova,I.N.Kolev,et al..Lidar investigation of the temporal and spatial distribution of atmospheric aerosols in mountain valleys[J].Journal of applied meteorology,2002,41(5):528-541.
    【67】 毛敏娟,吴永华,戚福第等.车载式1064nm和532nm双波长米散射激光雷达[J].强激光与粒子束,2005,17(5):677-680.
    【68】 P.B.Savoy,T.S.Skakalova,I.N.Kolev,et al..Lidar investigation of the temporal and spatial distribution of atmospheric aerosols in Mountain Valleys[J].J.Appl.Meteor.,2002,41:528-541.
    【69】 杨昭,李强,孙东松.基于1064nm米散射激光雷达的大气消光特性的研究[J].激光技术,2006,30(2):170-173.
    【70】 杨辉,刘文清,刘建国等.城市对流层气溶胶观测分析与研究[J].激光技术,2006,30(2):174-176.
    【71】 李洪敬,孙东松,杨春沪等.苏州城区1064nm激光雷达大气消光特性的观测[J].激光与红外,2005,35(5):323-326.
    【72】 杨辉,刘文清,刘建国等.激光雷达监测北京城区夏季边界层气溶胶[J].中国激光,2006,33(9):1255-1259.
    【73】 袁松,辛雨,周军.合肥市郊低层大气的激光雷达探洲研究[J].大气科学,2005,29(3):387-395.
    【74】 王志华,王宏波,何捷等.Mie散射激光雷达研究大气边界层特性[J].光散射学报,2006,18(2):147-150.
    【75】 M.Sicard,P.Chazette,J.Pelon,et al..Variational method for the retrieval of the optical thickness and the backscatter coefficient from multiangle lidar profiles[J].Appl.Opt.,2002,41(3):493-502.
    【76】 贺应红,郑玉臣,程娟等.Mie散射大气激光雷达回波信号消光系数边界值估算[J].光散射学报,2004,16(2):149-152.
    【77】 王向川,饶瑞中.大气气溶胶利云雾粒子的激光雷达比[J].中国激光,2005,32(10):1321-1324.
    【78】 刘君,华灯鑫,李言.紫外域激光雷达探测西安城区上空气溶胶时空剖面[J].光子学报,2007,36(8):1534-1537.
    【79】 叶笃正,丑纪范,刘纪远等.关于我国华北沙尘天气的成因与治理对策[J].地理学报,2000,55(5):513-521.
    【80】 石广玉,赵思维.沙尘暴研究中的若干科学问题[J].大气科学,2003,27(4):591-606.
    【81】 刘引鸽.气象气候灾害与对策[M].北京:中国环境科学出版社,2005:117-132.
    【82】 S.Ott.Analysis of a trans-Atlantic Saharan dust outbreak based on satellite and GATE data,Mon[J].Wea.Rev,1991,119(8):1832-1850.
    【83】 Y.P.Shao,M.Raupach.Preliminary assessment of wind erosion patterns in the Murray-Darling Hasin[J].Aust.J.Soil Res.,1994,34:309-342.
    【84】 Y.Iwsaka,G.Y.Shi,et al..Number concentration and size distribution of aerosols in the free atmosphere over the desert areas in the Asian continent:Balloon-borne measurements in summer and fall[J].Journal of Arid Land Studies,2002,11:347-353.
    【85】 周明煜,曲绍厚,宋锡铭等.北京地区一次沙暴过程的气溶胶特征[J].环境科学学报,1981,1:207-218.
    【86】 曲绍厚等.北京地区一次沙尘暴过程的来源[J].环境科学学报,1984,4:80-85.
    【87】 石广玉,许梨,陈纪平等.北京地区1991年春夏之交的大气气溶胶光学特性测量[C].第四届全国气溶胶学术会议论文集,合肥,1992:33-37.
    【88】 邱金恒,赵燕增,汪宏七.激光探测沙暴过程中的气溶胶消光系数分布[J].大气科学,1984,8(2):205-210.
    【89】 邱金恒,孙金辉.沙尘暴的光学遥感及分析[J].大气科学,1994,18(1):1-10.
    【90】 方宗义等.用气象卫星遥感监测沙尘暴的方法和初步结果[J].第四纪研究,2001,21:48-55.L.Q.Yang,J.H.Qiu,S.P.Zheng,et al..Lidar measurement of aerosol,ozone and clouds in Beijing[J].Proceedings of SPIE,2002,4893:45-52.
    【91】 李铁锁,白雪椿,马涛等.利用激光雷达观测黄沙气溶胶[J].内蒙古环境保护,2005,17(3):36-38.
    【92】 姚济敏,张文煜,袁九毅等.典型干旱区沙尘气溶胶光学厚度及粒度谱分布的初步分析[J].中国沙漠,2006,26(1):77-80.
    【93】 全浩.关于中国西北地区沙尘暴及其黄沙气溶胶高空传输路线的探讨[J].环境科学,1993,14(5):60-65.
    【94】 邱金桓,赵燕曾,汪宏七.激光探测沙尘暴过程中的气溶胶消光系数分布[J].大气科学,1984,8:205-210.
    【95】 钟志庆,周军,戚福第等.探测大气气溶胶消光系数的便携式米散射激光雷达[J].强激光与粒子 束,2003,15(12):1145-1147.
    【96】 宋小全,贺岩,刘金涛等.白天工作条件下大气激光雷达探测的实验研究[J].中国海洋大学学报,2001,31(4):593-599.
    【97】 谢晨波,韩永,李超等.车载式激光雷达测量大气水平能见度[J].强激光与粒子束,2005,17(7):971-975.
    【98】 薛国刚,孙东松,闫长春等.小型气溶胶激光雷达及其信号校准[J].激光与红外,2005,35(3):151-153.
    【99】 钟志庆,周军.微脉冲激光雷达探测信号的数值模拟计算[J].量子电子学报,2003,20(5):618-622.
    【100】 张大毛,徐赤东,虞统等.扫描式微脉冲激光雷达的研制和应用[J].大气与环境光学学报,2006,1(1):47-52.
    【101】 O.Uchino,I.Tabata.Mobile Lidar for simultaneous measurements of ozone,aerosols,and temperature in the stratosphere[J].Appl.Opt.,1991,30(15):2005-2012.
    【102】 B.R.Lienert,J.N.Porter,S.K.Sharma.Real time analysis and display of scanning lidar scattering data[J].Marine Geodesy,1999,22:259-265.
    【103】 J.N.Porter,B.R.Lienert,S.K.Sharma,et al..A small portable Mie-Rayleigh lidar system to measure aerosol optical and spatial properties[J].J.Atmos.Ocean.Tech.,2002,19:1873-1877.
    【104】 刘君,华灯鑫,李言等.小型米散射激光雷达系统设计[J].西安理工大学学报,2007,23(1):1-5.
    【105】 J.D.Spinhirme,S.Chudamani,J.F.Cavanaugh et al..Aerosol and cloud backscatter at 1.06,1.54,and 0.53mm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar[J].Appl.Opt.,1997,36(15):3475-3490.
    【106】 M.McGill,D.Hlavka,W.Hart et al..Cloud physics lidar:instrument description and initial measurement results[J].Appl.Opt.,2002,41(18):3725-3734.
    【107】 P.B.Russell,T.J.Swissler,M.P.McCormick.Methodology for error analysis and simulation of lidar aerosol measurements[J].Appl.Opt.,1979,18(22):3783-.
    【108】 S.T.Shipley,D.H.Tracy,E.W.Eloranta et al..High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols.1:Theory and instrumentation[J].Appl.Opt.,1983,22(23):3716-3724.
    【109】 C.Y.She,R.J.Alvarez II,L.M.Caldwell,et al..High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles[J].Opt.Lett.,1992,17(7):541-543.
    【110】 P.Piironeu,E.W.Eloranta.Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter[J].Opt.Lett.,1994,19(3):234-236.
    【111】 J.T.Sroga,E.W.Eloranta,S.T.Shipley,et al..High spectral resolution lidar to measure optical scattering properties of atmosphere aerosols.2:Calibration and data analysis[J].Appl.Opt.,1983,22(23):3725-3732.
    【112】 C.J.Grund,E.W.Eloranta.University of Wisconsin high spectral resolution lidar[J].Opt.Eng.,1991,30(1):6-12.
    【113】 J.A.Gelbwachs,C.Klein,J.Wessel.Infrared detection by an atomic vapor quantum counter[J].IEEE J.Quant.Elec.,1978,14(2):77-79.
    【114】 Y.Iwasaki,M.Imaki,T.Kobayashi.Ultraviolet high-spectral resolution lidar for measuring atmospheric optical parameters of aerosols and clouds[C].Proceedings of 23rd International Laser Radar Conference.Nara,Japan,2006:231-232.
    【115】 Z.Y.Liu,I.Matsui,N.Sugimoto.High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements[J].Opt.Eng.,1999,38(10):1661-1670.
    【116】 X.Q.Song,Z.S.Liu.High-spectral-resolution lidar(HSRL)observation of aerosol optical properties in the troposphere region over Qingdao[C].Proceedings of 21rd International Laser Radar Conference.Quebec,Canada,2006:231-232.
    【117】 O.J.Dick,T.M.Shay.Ultrahigh-noise rejection optical filter[J].Opt.Lett.,1991,16(11):867-869.
    【118】 J.A.Gelbwachs.Atomic resonance filters[J].IEEE J.Quant.Elec.,1988,24(7):1266-1277.
    【119】 P.Yeh.Dispersive magnetooptic filters[J].Appl.Opt.,1982,21(11):2069-2075.
    【120】 J.Yue,C.Y.She,J.W.Hair,et al..A comparative study on Fabry-Perot interferometer and iodine vapor filter for direct-detection Doppler wind measurements with a Cabanne-Mie lidar[C].Proceedings of 23rd International Laser Radar Conference.Nara,Japan,2006:235-238.
    【121】 J.Liu,X.Q.Song,D.X.Hua,et al..High-spectral-resolution lidar for accurate observation of aerosol,cirrus clouds and water vapor profiles at Xi'an China[C].Proceedings of 23rd International Laser Radar Conference.Nara,Japan,2006:233-234.
    【122】 J.Liu,D.X.Hua,Y.Li.Development of a high-spectral-resolution lidar for accurate profiling of the urban aerosol spatial variations[C].Journal of Physics:Conference Series,48,2006:745-749.
    【123】 钟锡华.现代光学基础[M].北京:北京大学出版社,2003:198-205.
    【124】 J.A.Harrison,M.Zahedi,J.W.Nibler.Use of seeded Nd:YAG lasers for high-resolution spectroscopy[J].Opt.Lett.,1993,18(2):149-151.
    【125】 A.Arie,R.L.Byer.Frequency stabilization of the 1064-nm Nd:YAG lasers to Doppler-broadened lines of iodine[J].Appl.Opt.,1993,32(36):7382-7386.
    【126】 R.M.Williams,J.F.Kelly,J.S.Hartman,et al..Kilohertz linewidth from frequency-stabilized mid-infrared quantum cascade lasers[J].Opt.Lett.,1999,24(24):1844-1846.
    【127】 T.J.Kane,A.C.Nilsson,R.L.Byer.Frequency stability and offset locking of a laser-diode-pumped Nd:YAG monolithic nonplanar ring oscillator[J].Opt.Lett.,1987,12(3):175-177.
    【128】 T.Day,E.K.Gustafson,R.L.Byer.Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot interferometer[J].IEEE J.Quant.Electron.,1992,28(4):1106-1117.
    【129】 卜令兵,刘继桥,陈卫标.光谱稳定性对直接探测多普勒测风激光雷达的影响研究[J].光子学报,2007,36(2):335-339.
    【130】 黄见洪,史斐,郭少锋.基于CPLD设计实现单横单纵激光器种子注入纵模锁定[J].应用激光,2006,26(6):443-445.
    【131】 王景峰,张海洋,赵长明等.种子注入固体激光相干探测实验研究[J].中国激光,2007,34(2):186-190.
    【132】 M.Imaki,Y.Takegoshi,T.Kobayashi.Ultraviolet High-Spectral-Resolution Lidar with Fabry-Perot Filter for Accurate Measurement of Extinction and Lidar Ratio[J].Japanese Journal of Applied Physics,2005,44(5A):3063-3067.
    【133】 周炳琨,高以智,陈家骅.激光原理[M].北京:国防工业出版社,1984:36-38.
    【134】 蓝信钜等.激光技术[M].北京:科学出版社,2001:171-182.
    【135】 郭少锋,林文雄,黎全等.种子注入式单纵单横电光调Q激光器[J].中国激光,2006,33(12):1585-1589.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700