西北半干旱区卷云的激光雷达探测及其辐射效应的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卷云不仅通过其地气系统辐射收支效应从而对气候变化产生强烈地影响,而且在大气水循环以及对流层和平流层水汽交换中也扮演了重要的角色,但是西北半干旱地区缺乏对卷云的地基观测。利用兰州大学半干旱气候与环境观测站(SACOL,35.95°N,104.14°E)微脉冲激光雷达对中国西北半干旱中纬度地区卷云的几何和光学特征进行了观测分析,并利用辐射传输模式模拟研究了卷云的辐射效应。
     (1)利用微脉冲激光雷达(MPL-4B)和微波辐射计2007年4月至11月的观测数据统计分析了该地卷云特征,阐述了卷云宏观特征例如卷云高度,环境温度和几何厚度,以及云光学特征例如光学厚度,消光系数和激光雷达比。结果表明,卷云出现高度为5.8-12.7km,平均高度为9.0±1.0km。卷云几何厚度和光学厚度平均值分别为2.0±0.6km和0.394±0.267,光学厚度随几何厚度的增加呈线性增加。SACOL上空卷云主要由薄卷云和不透光卷云组成,其中不透光卷云主要出现在8-10km。卷云雷达比分布在5到70sr,平均值为22±16sr,考虑多次散射的雷达比平均值为26±16sr。薄卷云的激光雷达比大于不透光卷云的雷达比。激光雷达比随卷云光学厚度的增大呈指数减小的趋势,最大值出现在0.058-0.3之间。激光雷达比随卷云高度的增加先增加后减小,激光雷达比最大值出现在11-12km。
     (2)利用MPL-4B探测2007年6月1日一次卷云过程,分析讨论了卷云的结构、光学性质及其时间变化特征,并利用SBDART模式模拟研究了此次卷云过程对TOA和地面的辐射强迫特征。结果表明,卷云高度分布范围为7-10km,卷云经历了薄一厚一薄的过程,平均厚度为2.0±0.5kmm。卷云环境温度在-51~-39℃范围之内。卷云的光学厚度在0.084-1.649之间,光学厚度随几何厚度的增加而增大,平均光学厚度为0.651±0.403。卷云激光雷达比为174±17sr。薄卷云的激光雷达比要比厚卷云的大。光学厚度小于0.3的光学薄卷云出现高度在8.6km以上,环境温度低于-45℃,几何厚度小于1.5km,雷达比分布在5-69sr。
     无论在TOA还是地面处,卷云短波辐射强迫均为负值,长波辐射强迫均为正值,即云短波辐射强迫对地气系统产生冷却效应,而云长波辐射强迫对地气系统产生增暖效应。无论是短波辐射强迫还是长波辐射强迫,都与卷云过程光学厚度的变化一致,当光学厚度增加,辐射强迫越大,降温/增温作用越强。当光学厚度在16:00达到最大时,云的短波和长波辐射强迫绝对值在TOA处最大值分别为51.9和59.8W/m2,在地面处最大值分别为53.8和12.8W/m2。冷却效应主要是由于卷云对短波辐射起削弱作用,削弱程度随着光学厚度的增加而增大。而增暖效应是由于光学厚度越大的卷云发射的长波辐射越多引起的。当只改变模式中云的光学厚度时发现,云短波和长波辐射强迫均与光学厚度呈线性相关,辐射强迫都随着光学厚度的增加线性增大。当光学厚度增大时,地气系统的增温速度要快于地面。对于光学厚度相同,云底高度高于8.0kmm的冰云来说,云短波辐射强迫出现“突变”,这主要是由冰晶粒子的形状,分布以及冰晶的取向引起的。
Cirrus clouds play an important part in modulating regional and global climate via two complex processes, albedo effect and greenhouse effect. Additionally, cirrus clouds are crucial to the hydrological cycle of the atmosphere and to stratosphere-troposphere exchange (STE) processes for water vapor. However, the semi-arid area of northwest China is still lacking in lidar observations of cirrus clouds. Therefore, to understand the morphology and effects of cirrus clouds in this region, this study was designed to determine the statistical characteristics of cirrus clouds by using ground-based micro pulse lidar (MPL-4B) measurements at the Semi-Arid Climate Observatory and Laboratory (SACOL,35.95°N,104.1°E) of Lanzhou University in northwest China. And the radiation effect of cirrus was simulated by radiative transfer model.
     (1) Macrophysical and optical characteristics of cirrus clouds were investigated at SACOL using micro pulse lidar data and profiling radiometer measurements. Analysis of the measurements allowed the determination of macrophysical properties such as cirrus cloud height, ambient temperature, and geometrical depth, and optical characteristics were determined in terms of optical depth, extinction coefficient, and lidar ratio. Cirrus clouds were generally observed at heights ranging from5.8to12.7km, with a mean of9.0±1.0km. The mean cloud geometrical depth and optical depth were found to be2.0±0.6km and0.350±0.311, respectively. Optical depth increased linearly with increasing geometrical depth. The results derived from lidar signals showed that cirrus over SACOL consisted of thin cirrus and opaque cirrus which occurred frequently in the height of8-10-km. The lidar ratio varied from5to70sr, with a mean value of26±16sr, after taking into account multiple scattering effects. The mean lidar ratio of thin cirrus was greater than that of opaque cirrus. The maximum lidar ratio appeared between0.058and0.3when plotted against optical depth. The lidar ratio increased exponentially as the optical depth increased. The maximum lidar ratio fell between11and12km when plotted against cloud mid-height. The lidar ratio first increased and then decreased with increasing mid-height.
     (2) In order to understand the spatial and temporal variations of cirrus. The structures and optical properties of the cirrus clouds as well as their spatial and temporal variations are discussed and analyzed. Our results show that cirrus clouds change from thin to thick, observed ranging from7to10km, with a mean thickness of2.0±0.5km. During this period, the samples have temperature between -51and-39℃. The cloud optical depth increases and then decreases with increasing geometrical depth, ranging from0.084to1.649, with a mean value of0.651±0.403. Lidar ratio of cirrus clouds is17±17sr and we have found that lidar ratio of optically thin cirrus is more than that of thick cirrus. Thin cirrus clouds with ambient temperature below-45℃occurr above8.6km and its thickness is lower than1.5km. The lidar ratio of thin cirrus is between5and69sr.
     The cirrus shortwave radiative forcing is negative while the long-wave radiative forcing is positive no matter in TOA or on the ground, which is cloud shortwave radiative forcing has a cooling effect and long-wave radiative forcing has a warming effect to earth-atmosphere system. Both shortwave radiative forcing and long-wave radiative forcing are consistent with the changes of optical thickness of the cirrus process, when the optical thickness increases, the greater the radiative forcing, cooling./warming is stronger. When the optical thickness reaches its maximum at16:00, the absolute value of the maximum cloud shortwave and longwave radiative forcing at TOA are51.9and59.8W/m2, on the ground, the values are53.8and12.8W/n2.The cooling effect is mainly due to the cirrus weakened short-wave radiation, weaken degree increases with increasing optical thickness. Warming effect is due to the greater optical thickness, the more long-wave radiation emitted by the cirrus. When change the optical thickness of the cloud in model only, the cloud shortwave and longwave radiative forcing was linearly correlated with the optical thickness, the radiative forcing increases as the optical thickness increases linearly. When the optical thickness increases, the warming speed of the earth-atmosphere system is faster than ground. For the ice cloud with the same optical thickness and the height of the cloud base is higher than8.0km, cloud shortwave radiative forcing appears "mutation" This is mainly caused by the shape of the ice particles, distribution and orientation of ice crystals.
引文
[1]Heymsfield, A.J., McFarquhar, G.M. Mid-latitude and tropical cirrus:Microphysical properties [J]. Cirrus.2002:78-101.
    [2]Bretherton, F.P., Suomi, V. First international satellite cloud climatology project regional experiment (fire) research plan[J]. National Climatic Program Office, Rockville, Md.1983.
    [3]Liou, K.N. Influence of cirrus clouds on weather and climate processes:a global perspective[J]. Mon. Weather Rev.1986,114:1167-1199.
    [4]Twomey, S. Aerosols, clouds and radiation[J]. Atmos. Environ.1991,25:2435-2442.
    [5]McFarquhar, G.M., Heymsfield, A.J., Spinhirne, J.D., Hart, B. Thin and subvisual tropopause tropical cirrus:observations and radiative impacts[J]. J. Atmos. Sci.2000,57:1841-1853.
    [6]Baker, B.M. Cloud microphysics and climate[J]. Science.1997,276:1072-1078.
    [7]Ramanathan, V., Collins, W. Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Nino[J]. Nature.1991,351:27-32.
    [8]Fu, Q., Liou, K.N. Parameterization of the radiative properties of cirrus clouds[J]. J. Atmos. Sci. 1993,50:2008-2025.
    [9]Intergovernmental Panel on Climate Change, in Climate Change 2007:The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovern-mental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,2007.
    [10]Starr, D.O. A cirrus cloud experiment:Intensive field observations planned for FIRE[J]. Bull. Amer. Meteor. Soc.1987,68:119-124.
    [11]Raschke, E. Results on cirrus properties from the European Cloud and Radiation Experiment (EUCREX)[J]. Preprints, Eighth Conf. on Atmospheric Radiation, Nashville, TN, Amer. Meteor. Soc.1994,267-278.
    [12]Platt, C.M., Young, S.A., Carswell, A.I., et al. The Experimental Cloud Lidar Pilot Study (ECLIPS) for Cloud-Radiation Research[J]. Bulletin of the American Meteorological Society.1994,75 (9): 1635-1654. doi:10.1175/1520-0477(1994)075<1635:TECLPS>2.0.CO;2
    [13]David, R.D., Lawrence, F.R. A summary of the physical properties of cirrus cloud[J]. Journal of Applied Meteorology.1990,29:970-978.
    [14]Cox, S.K., McDougal, D.S., Randall, D.A., Schiffer, R.A. FIRE-The First ISCCP Regional Experiment J]. American Meteorological Society, Bulletin.1987,68:114-118.
    [15]Hunt, W.H., Winker, D.M., Vaughan, M.A., et al. CALIPSO lidar description and performance assessment[J]. Journal of Atmospheric and Oceanic Technology.2009,26(7):1214-1228. doi:10.1175/2009JTECHA1223.1.
    [16]Nazaryan, H., McCormick, M.P., Menzel, W.P. Global characterization of cirrus clouds using CALIPSO data[J]. Journal of Geophysical Research:Atmospheres (1984-2012).2008,113(D16). doi:10.1029/2007JD009481.
    [17]Sassen, K., Wang, Z., Liu, D. Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol lidar and infrared pathfinder satellite observations (CALIPSO) measurements [J]. Journal of Geophysical Research:Atmospheres (1984-2012).2008,113(D8). doi:10.1029/2008JD009972.
    [18]Martins, E., Noel, V., Chepfer, H. Properties of cirrus and subvisible cirrus from nighttime Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), related to atmospheric dynamics and water vapor[J]. Journal of Geophysical Research.2011,116(D2):D02208. doi:10.1029/2010J D014519.
    [19]Min, M, Wang, P.C., CAMPBELL, J.R., et al. Cirrus Cloud Macrophysical and Optical Properties over North China from CALIOP Measurements[J]. ADVANCES IN ATMOSPHERIC SCIENCES. 2011,28(3):653-664.
    [20]Wang, Z., Sassen, K. Cloud type and macrophysical property retrieval using multiple remote sensors [J]. Journal of applied meteorology.2001,40(10):1665-1682. doi:10.1175/1520-0450 (2001)040<1665:CTAMPR>2.0.CO;2.
    [21]Dupont, J.C., Haeffelin, M., Morille, Y., Noel, V., Keckhut, P., Winker, D, Comstock, J., Chervet, P., Roblin, A. Macrophysical and optical properties of midlatitude cirrus clouds from four ground-based lidars and collocated CALIOP observations[J]. Journal of Geophysical Research: Atmospheres (1984-2012).2010,115(D4).doi:10.1029/2009JD011943.
    [22]Mioche, G, Josset, D., Gayet, J.-F., Pelon, J., Gamier, A., Minikin, A., Schwarzenboeck, A. Validation of the CALIPSO-CALIOP extinction coefficients from in situ observations in midlatitude cirrus clouds during the CIRCLE-2 experiment[J]. Journal of Geophysical Research: Atmospheres (1984-2012).2010,115(D4). doi:10.1029/2009JD012376.
    [23]Thorsen, T.J., Fu, Q., Comstock, J. Comparison of the CALIPSO satellite and ground-based observations of cirrus clouds at the ARM TWP sites[J]. Journal of Geophysical Research: Atmospheres (1984-2012).2011,116 (D21). doi:10.1029/2011JD015970.
    [24]Spinhirne, J.D. Micropluse lidar[J]. IEEE Trans. Geosc. Rem. Sens.1993,31(1):48-54.
    [25]Sassen, K., Cho, B.S. Subvisible-thin cirrus lidar dataset for satellite verification and climatological research[J]. Journal of Applied Meteorogy.1992,31:1275-1285.
    [26]Nee, J.B., Len, C.N., Chen, W.N., Lin, C.I. Lidar detection of cirrus cloud in ChungJLi (25°N, 121°E)[J]. J. Atmos. Sci.1998,55:2249-2257.
    [27]Comstock, J.M., Ackerman, T.P., Mace, G.G. Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island:cloud statistics and radiative impacts[J]. J. Geophys. Res. 2002,107 (D23):4714. doi:10.1029/2002JD002203.
    [28]Pace, G., Cacciani, M., Sarra, A. di, Fiocco, G., Fua, G. Lidar observations of equatorial cirrus clouds at Mahe Seychelles[J]. J. Geophys. Res.2003,108 (D8):4236. doi:10.1029/2002JD00 2710.
    [29]Cadet, B., Goldfarb, L., Faduilhe, D., Baldy, D., Giraud, V, Keckhut, P., Rechou, A. A sub-tropical cirrus clouds climatology from Reunion island (21°S,55°E) lidar data set[J], Geophys. Res. Lett. 2003,30(3),1130. doi:10.1029/2002GL016342.
    [30]Sunilkumar, S.V., Parameswaran, K. Temperature dependence of tropical cirrus properties and radiative effects[J], J. Geophys.Res.2005,110, D13205, doi:10.1029/2004JD005426.
    [31]Platt, C.M.R., Scott, J.C., Dilley, A.C. Remote sounding of high clouds. Part VI:optical properties of midlatitude and tropical cirrus[J]. J. Atmos. Sci.1987,44:729-747.
    [32]Reichardt, J., Reichardt, J., Ansmann, A., Serwazi, M., Weitkamp, C., Michaelis, W. Unexpectedly low ozone concentration in midlatitude tropospheric ice clouds:a case study [J]. Geophys. Res. Lett.1996,23:1929-1932.
    [33]Reichardt, J. Optical and geometrical properties of northern midlatitude cirrus clouds observed with a UV Raman lidar[J]. Phys. Chem. Earth.1999, Part B 24:255-260.
    [34]Saseen, K., Cambell, J.R. A mid-latitude cirrus cloud climatology from the facility for atmospheric remote sensing:part Ⅰ. Microphysical and synoptic properties[J]. J. Atmos. Sci.2001,58:481-496.
    [35]薛新莲,戚福第,范爱媛,等.合肥地区卷云的激光雷达探测[J].量子电子学报,2006,23(4):527-532.
    [36]Giannakaki, E., Balis, D.S., Amiridis, V., Kazadzis, S. Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station[J]. Atmos. Chem. Phys.2007,7: 5519-5530.
    [37]Barrett, E.W., Ben-Dov, O. Application of the lidar to air pollution measurements[J], J. Appl. Meteorol.1967,6,500-515.
    [38]Viezee, W., Uthe, E.E., Collis, R.T.H. Lidar observations of airfield approach conditions[J], J. Appl. Meteorol.1969,8,274-283.
    [39]Davis, P.A. The analysis of lidar signatures of cirrus clouds[J], Appl. Opt.1969,8,2099-2102.
    [40]Fernald, F.G., Herman, B.M., Reagon, J.A. Determination of aerosol height distributions by lidar[J]. J. Appl. Meteorol.1972,11,482-489.
    [41]Platt, C.M.R. Lidar and radiometric observations of cirrus clouds[J]. J. Atmos. Sci.1973,30, 1191-1204.
    [42]Platt, C.M.R. Remote sounding of high clouds. I:Of visible and infrared optical properties from lidar and radiometer measurements [J]. J.Appl. Meteorol.1979,18,1130-1143.
    [43]Klett, J.D. Stable analytical inversion solution for processing lidar returns[J]. Appl. Opt.1981,20, 211-220.
    [44]Fernald, F.G. Analysis of atmospheric lidar observations; some comments[J]. Appl. Opt.1984,23, 652-653.
    [45]Grund, C.J., Eloranta, E.W. The 27-28 October 1986 FIRE IFO Cirrus Case Study:Cloud Optical Properties Determined by High Spectral Resolution Lidar[J]. Mon. Wea. Rev.1990,118, 2344-2355.
    [46]Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C, Michaelis, W. Independent measure-ment of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic backscatter lidar[J]. Appl. Opt.1992,31,7113-7131.
    [47]Sunilkumar, S.V., Parameswaran, K. Temperature dependence of tropical cirrus properties and radiative effects[J], J. Geophys.Res.2005,110, D13205, doi:10.1029/2004JD005426.
    [48]Elouragini, S., Flamant, P.H. Iterative method to determine an averaged backscatter-to-extinction ratio in cirrus clouds[J]. Appl. Opt.1996,35,1512-1518.
    [49]Wandinger, U. Multiple-scattering influence on extinction-and backscatter-coefficient measure-ments with Raman and highspectral-resolution lidars[J]. Appl. Opt.1998,37, 417-427.
    [50]Platt, C.M.R. Remote sounding of high clouds. I:Of visible and infrared optical properties from lidar and radiometer measurements [J]. J.Appl. Meteorol.1979,18,1130-1143.
    [51]Young, S. Analysis of lidar backscatter profiles in optically thin cirrus[J]. Appl. Opt.1995,34, 7019-7031.
    [52]Chen, W.N., Chiang, C.W., Nee, J.B. Lidar ratio and depolarization ratio for cirrus clouds[J]. Appl. Opt.2002,41,6470-6476.
    [53]Das, S.K., Chiang, C.W., Nee, J.B. Characteristics of cirrus clouds and its radiative properties based on lidar observation over Chung-Li, Taiwan[J]. Atmospheric Research.2009,93(4): 723-735.
    [54]陈鞯鼐.中坜上空10-30公里间的卷云、气胶、温度的测量与光散射性质之研究[博士论文].台湾:国立中央大学.2002:18-20.
    [55]Webster, P.J., Stephens, G.L. Tropical upper troposphere extended clouds:Inferences from winter MONEX[J]. J.Atmos. Sci.1980,37,1521-1541.
    [56]Wylie, D.P., Menzel, W.P., Woolf, H.M., Strabala K.I. Four years of global cirrus cloud statistics using HIRS[J]. J. Climate.1994,7,170-184.
    [57]Barkstrom, B.R. The earth radiation budget experiment (ERBE)[J]. Bulletin of the American Meteorological Society.1984,65(11):1170-1185.
    [58]Stackhouse, P. W., Stephens, G.L. A theoretical and observational study of the radiative properties of cirrus clouds:Results from FIRE 1986[J]. J.Atmos. Sci.1991,48,2044-2059.
    [59]Chylek, P., Wong, J.G.D. Cloud radiative forcing ratio[J]. Tellus A.1998,50(3):259-264.
    [60]Chen, T, Rossow, W.B., Zhang, Y. Radiative effects of cloud-type variations[J], Journal of climate. 2000,13(1):264-286.
    [61]Ramaswamy, V., Ramanathan, V. Solar absorption by cirrus clouds and the maintenance of the tropical upper troposphere thermal structure[J], J. Atmos. Sci.1989,46,2293-2310.
    [62]Poetzsch-Heffter, C, Liu, Q., Ruprecht, E., Simmer, C. Effect of cloud types on the Earth radiation budget calculated with the ISCCP C1 dataset:Methodology and initial results[J]. J. Climate.1995, 8,829-843.
    [63]Zhang, Y., Macke, A., Albers, F. Effect of crystal size spectrum and crystal shape on stratiform cirrus radiative forcing[J]. J.Atmos. Res.1999,52,59-75.
    [64]Khvorostyanov, V.I., Sassen, K. Microphysical processes in cirrus and their impact on radiation:A mesoscale modeling perspective, in Cirrus, edited by:Lynch, D., Sassen, K., Starr, D. O. C, and Stephens, G., Oxford University Press,2002,397-432.
    [65]Futyan, J.M., Russell, J.E., Harries, J.E. Determining cloud forcing by cloud type from geostationary satellite data[J]. Geophys. Res. Lett.2005,32, L08807, doi:10.1029/2004GL02 2275.
    [66]Stubenrauch, C.J., Chedin, A., Radel, G, Scott, N.A., Serrar, S. Cloud properties and their seasonal and diurnal variability from TOVS Path-B[J]. J. Climate.2006,19,5531-5553.
    [67]Dupont, J.C., Haeffelin, M. Observed instantaneous cirrus radiative effect on surface-level shortwave and longwave irradiances[J]. J. Geophys. Res.2008,113, D21202, doi:10.1029/2008 JD009838.
    [68]Barja, B., Antuna, J.C. The effect of optically thin cirrus clouds on solar radiation in Camaguey, Cuba[J]. Atmos. Chem. Phys.2011,11:8625-8634.
    [69]Ramaswamy, V., Freidenreich, S.M. Solar radiative line-by-line determination of water vapor absorption and water cloud extinction in inhomogeneous atmospheres [J]. J. Geophys. Res.1991, 96,9133-9157.
    [70]Freidenreich, S.M. Ramaswamy, V. A new multiple-band solar radiative parameterization for general circulation models[J]. J. Geophys. Res.1999,104(D24),31389-31409.
    [71]Gu, Y., Liou, K.N. Interaction of radiation, microphysics, and turbulence in the evolution of cirrus clouds[J]. J. Atmos. Sci.2000,57,2463-2479, doi:10.1175/1520-0469(2000)057<2463:IORMAT >2.0.CO;2.
    [72]Min, M., Wang, P., Campbell, J.R., et al. Midlatitude cirrus cloud radiative forcing over China[J]. Journal of Geophysical Research:Atmospheres (1984-2012).2010,115(D20).
    [73]Fu, Q., Liou, K.N. On the correlated k-distribution method for radiative transfer in nonhomogenous atmospheres [J]. J. Atmos. Sci.1992,49(22),2139-2156, doi:10.1175/1520-0469 (1992)049<2139:OTCDMF>2.0.CO;2
    [74]Fu, Q., Liou, K.N. Parameterization of the radiative properties of cirrus clouds[J]. J. Atmos. Sci. 1993,50(13),2008-2025, doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.
    [75]刘玉芝,石广玉,赵剑琦.一维辐射对流模式对云辐射强迫的数值模拟研究[J].大气科学.2007,31(3):486-494.
    [76]石广玉.大气微量气体的辐射强迫与温室气候效应[J].中国科学(B辑).1991,34(7):776-784.
    [77]石广玉CFCs及其代用品的全球增温潜能[J].大气科学.1992,16(3):345-352.
    [78]王新炜,白洁,刘健文,等SBDART辐射传输模式及其在飞机潜在积冰区反演中的应用[J].气象科技.2003,31(3):152-155.
    [79]李娟,毛节泰.冰晶性质对卷云辐射特征影响的模拟研究[J].气象.2006,32(2):9-13.
    [80]杨树臣,高太长,苏小勇,等SBDART对云地面长波辐射强迫的模拟研究[J].大气与环境光学学报.2012,7(4):263-268.
    [81]Huang, J.P., Zhang, W., Zuo, J.Q., et al. An overview of the semi-arid climate and environment research observatory over the Loess Plateau[J]. Adv. Atmos. Sci.2008,25(6):906-921.
    [1]Fernald, F.G. Analysis of atmospheric lidar observations:some comments[J]. Applied Optics. 1984,23(5):652-653.
    [2]Qiu, J.H. Sensitivity of lidar equation solution to boundary values and determination of the values[J]. Adv. Atmos. Sci.1988,5(2):229-241.
    [3]Sasano, Y. Tropospheric aerosol extinction coefficient profiles derived from scanning lidar measurement over Tsukuba, Japan, from 1990 to 1993[J]. Appl. Opt.1996,35:4941-4952.
    [4]Young, S.A. Analysis of lidar backscatter profiles in optically thin clouds[J]. Appl. Opt.1995, 34:7019-7031.
    [5]薛新莲,戚福弟,范爱媛,等.高层薄卷云消光后向散射比的求解方法[J].量子电子学报.2006,23(1):115-119.
    [6]陈群鼐.中坜上空10-30公里间的卷云、气胶、温度的测量与光散射性质之研究[博士论文].台湾:国立中央大学.2002:18-20.
    [7]Klett, J.D. Stable analytical inversion solution for processing lidar returns[J]. Appl. Opt.1981, 20(2):212-220.
    [8]Holton, J.R., Haynes, P.H., Mclntyre, M.E., Douglass, A.R., Rood, R.B., Pfister, L. Stratosphere-Troposphere exchange[J]. Reviews of Geophysics.1995,33(4):403-439.
    [9]卞建春.上对流层/下平流层大气垂直结构研究进[J].地球科学进展.2009,24(3):262-271.
    [10]Sassen, K., Comstock, J.M. A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III:Radiative Properties[J]. J. Atmos. Sci.2001,58, 2113-2127.
    [11]闵敏,王普才,宗雪梅.中国地区卷云消光后向散射比的星载激光雷达遥感[J].大气科学.2010,34(3):506-512.
    [12]Ackermann, J. The extinction-to-backscatter ratio of tropospheric aerosol:A numerical study[J]. J.Atmos.Oceanic. Technol.1998,15(4):1043-1050.
    [13]He, Q.S., Li, C.C., Mao, J.T., et al. A study on aerosol extinction-to-backscatter ratio with combination of micro-pulse lidar and MODIS over Hong Kong[J]. Atmos.Chem.Phys.2006, 6:3243-3256.
    [14]Das, S.K., Chiang, C.W., Nee, J.B. Characteristics of cirrus clouds and its radiative properties based on lidar observation over Chung-Li[J]. Atmospheric Research.2009,93:723-735.
    [15]Platt, CM., Young, S.A., Carswell, A.I., et al. The experimental cloud lidar pilot study (ECLIPS) for cloud-radiation research[J]. Bull. Amer. Meteor. Soc.1994,75:1635-1654.
    [16]Giannakaki, E., Balis, D.S., Amiridis V., Kazadzis, S. Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station[J]. Atmos. Chem. Phys.2007,7:5519-5530.
    [17]Chen, W.N., Chiang, C.W., Nee, J.B. Lidar ratio and depolarization ratio for cirrus clouds[J]. Appl. Opt.2002,41:6470-6476.
    [18]Wang, X., Boselli, A., Avino, L.D., et al. An algorithm to determine cirrus properties from analysis of multiple-scattering influence on lidar signals[J]. Appl. Phys. B.2005,80:609-615.
    [19]Platt, C.M.R., Scott, J.C., Dilley, A.C. Remote sounding of high clouds. PartVI:optical properties of midlatitude and tropical cirrus [J]. J. Atmos. Sci.1987,44:729-747.
    [20]Sassen, K., Cho, B.S. Subvisible-thin cirrus lidar dataset for satellite verification and clima-tological research[J]. Journal of Applied Meteorogy.1992,31:1275-1285.
    [21]Huang, J.P., Minnis, P., Lin, B., et al. Advanced retrievals of multilayered cloud properties using multispectral measurements[J]. J. Geophys. Res.2005,110, D15S18,doi:10.1029/2004JD005101.
    [22]Tian, L., Curry, J.A. Cloud overlap statixtics[J]. J. Geophys. Res.1989,94:9925-9935.
    [23]Stephens, G.L., Wood, N.B., Gabriel, P.M. An assessment of the parameterization of the subgrid-scale cloud effects on radiative transfer. Part I:Vertical overlap[J]. J. Atmos. Sci.2004, 61:715-732.
    [24]Huang, J.P., Minnis, P., Lin, B., et al. Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements [J]. Geophys. Res. Lett.2006,33, doi:10.10.1029/2006GL027038.
    [25]Hu, Y., Rodier, S., Xu, K., Sun, W., Huang, J., Lin, B., et al. Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements[J]. J Geophys Res.2010,115:D00H34.
    [26]Doutriaux-Boucher, M., Quaas, J. Evaluation of cloud thermodynamic phase parameterizations in the LMDZ GCM by using POLDER satellite data[J]. Geophys Res Lett.2004,31:L06126.
    [27]Houze, R.A. Cloud Dynamics. San Diego:Academic Press; 1993.573 pp.
    [28]刘瑞金,张镭,王宏斌,等.半干旱地区卷云特征的激光雷达探测[J].大气科学.2011,35(5):863-870.doi:10.3878/j.issn.1006-9895.2011.05.06.
    [1]Wang, Z., Sassen, K. Cirrus cloud microphysical property retrieval using lidar and radar measurements. Part Ⅱ:Midlatitude cirrus microphysical and radiative properties[J]. J. Atmos. Sci. 2002,59:2291-2302.
    [2]Reichardt, J. Optical and geometrical properties of northern midlatitude cirrus clouds observed with a UV Raman lidar[J]. Phys. Chem. Earth.1999, Part B 24:255-260.
    [3]Platt, C.M.R., Scott, J.C., Dilley, A.C. Remote sounding of high clouds. Part Ⅵ:optical properties of midlatitude and tropical cirrus[J]. J. Atmos. Sci.1987,44:729-747.
    [4]Seifert, P., Ansmann, A., Muller, D., Wandinger, U., Althausen, D., Heymsfield, A.J., Massie, S.T., Schmitt, C. Cirrus optical properties observed with lidar, radiosonde, and satellite over the tropical Indian Ocean during the aerosol-polluted northeast and clean maritime southwest monsoon[J]. J. Geophys. Res.2007,112, D17205. doi:10.1029/2006JD008352.
    [5]Das, S.K., Chiang, C.W., Nee, J.B. Characteristics of cirrus clouds and its radiative properties based on lidar observation over Chung-Li, Taiwan[J]. Atmospheric Research.2009,93:723-735.
    [6]Immler, F., Schrems, O. Lidar measurements of cirrus clouds in the northern and southern midlatitudes during INCA (55°N,53° S):a comparative study[J]. Geophys. Res. Lett.2002,29 (16):1809. doi:10.1029/2002GL015077.
    [7]Goldfarb, L., Keckhut, P., Chanin, M.L., Hauchecorne, A. Cirrus climatological results from lidar measurements at OHP (44°N,6°E)[J]. Geophys. Res. Lett.2001,28:1687-1690.
    [8]Sassen, K., Cambell, J.R. A mid-latitude cirrus cloud climatology from the facility for atmospheric remote sensing:part Ⅰ. Microphysical and synoptic properties. J. Atmos. Sci.2001,58: 481-496.
    [9]Giannakaki, E., Balis, D.S., Amiridis, V, Kazadzis, S. Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station[J]. Atmos. Chem. Phys.2007,7: 5519-5530.
    [10]Lakkis S.G., Lavorato M., Canziani P.O., et al. Monitoring cirrus clouds with lidar in the Southern Hemisphere:A local study over Buenos Aires.1. Tropopause heights[J]. Atmospheric Research. 2009,92:18-26.
    [11]Sassen K., Cho, B.S. Subvisible-thin cirrus lidar dataset for satellite verification and climatological research[J]. Journal of Applied Meteorogy.1992,31:1275-1285.
    [12]Sassen, K., Comstock, J. A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part ⅢRadiative properties[J]. J. Atmos. Sci.2001,58:2113-2127.
    [13]Min, M., Wang, P.C., Campbell, J.R., et al. Cirrus Cloud Macrophysical and Optical Properties over North China from CALIOP Measurements[J]. ADVANCES IN ATMOSPHERIC SCIENCES. 2011,28(3):653-664.
    [14]Ansmann, A., Bosenberg, J., Brogniez, G., Elouragini, S., Flamant, P., Klapheck, K., Linn, H., Menenger, L., Michaelis, W., Riebesell, M., Senff, C., Thro, P.Y., Wandinger, U., Weitkamp, C. Lidar network observations of cirrus morphological and scattering properties during the international cirrus experiment 1989:The 18 October 1989 case study and statistical analysis[J]. J. Appl. Meteorol.1993,32,1608-1622.
    [15]Sassen, K., Wang, Z., Platt, C.M.R., Comstock, J.M. Parameterization of infrared absorption in midlatitude cirrus clouds[J]. J. Atmos. Sci.2003,60:428-433.
    [1]Sassen, K., Cho, B.S. Subvisible-thin cirrus lidar dataset for satellite verification and climatologi-cal research [J]. J. Appl. Mete.1992,31:1275-1285.
    [2]Chen, W.N., Chiang, C.W., Nee, J.B. Lidar ratio and depolarization ratio for cirrus clouds [J]. Appl. Opt.2002,41:6470-6476.
    [3]Panl, R., Yang, S., Gautier, C. et al. SBDART:A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's Atmosphere [J]. Bulletin of the Amer. Mete. Society.1998,79(10):2101-2114.
    [4]汪宏七,赵高祥.云微物理特性对云光学和云辐射性质的影响[J].应用气象学报.1996,7(1):36-44.
    [5]Liou, K.N. Influence of cirrus clouds on weather and climate processes:A global perspective [J]. Mon. Wea.Rev.1986,114,1167-1199.
    [6]Webster, P.J., Stephens G.L. Tropical upper troposphere extended clouds:Inferences from winter MONEX [J]. J. Atmos. Sci.1980,37,1521-1541.
    [7]王小东.水云及卷云辐射特性参数化[硕士论文].电子科技大学,2006.
    [8]Glickman, T.S. Glossary Of Meteorology [J]. American Meteorological Society.2000,2nd ed., 855 pp.
    [9]Liou, K. Radiation and Cloud Processes in the Atmosphere [J]. Oxford University Press.1992.
    [10]Barja, B., Antuna, J.C. The effect of optically thin cirrus clouds on solar radiation in Camaguey, Cuba [J]. Atmos Chem Phys.2011,11,8625-8634.
    [11]刘玉芝,石广玉,赵剑琦.一维辐射对流模式对云辐射强迫的数值模拟研究[J].大气科学.2007,31(3):486-494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700