基于拉曼散射的多普勒激光雷达灵敏度标定方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气风场是气象研究的必要参数之一,多普勒激光雷达能以较高的空间、时间分辨率探测大气三维风场,目前已成为风速测量的最有效途径之一。
     多普勒激光雷达通过对大气分子运动——风所引起的多普勒频移的测定,从而反演获得风场数据。主要采用相干和非相干两种方法,相干探测法只能应用于气溶胶含量较高的低空区域;非相干即直接探测技术不受此限制,直接测量回波能量鉴别频移,但它需要获取气溶胶与大气分子的成分比——气溶胶后向散射比用以标定灵敏度。当前的测量方法中气溶胶后向散射比与风速分时测量,然而实际大气中气溶胶状态变化剧烈,非同步测得的数据无法准确描述测风时的大气情况,故必然引入误差。
     本文分析了当前多普勒激光雷达灵敏度测量存在的问题,提出了解决方案。从激光雷达的后向散射光谱出发,在接收系统中增加新的接收通道,采用分光片与干涉滤光片提取非弹性散射谱——拉曼谱。基于拉曼谱为纯大气分子散射的特性,实时测算气溶胶后向散射比廓线,同时又能借助其本身的光谱性质反演气溶胶后向散射系数、消光系数或者温度等大气参量,拓展激光雷达的功能。
     拉曼散射包括振动拉曼和纯转动拉曼两种散射,文中分别设计了振动拉曼和纯转动拉曼两套方案进行标定方法研究。对振动拉曼方案进行实验论证,描述了系统的搭建,开展实验。结果表明,系统可在测风的同时获取低空对流层(6、7km)以内的气溶胶后向散射比廓线,以进行多普勒激光雷达灵敏度的标定,并可获取气溶胶的消光系数、激光雷达比等参量。同时改进了气溶胶后向散射比的算法,并通过对新旧算法的反演结果比较验证了改进的意义。对纯转动拉曼方案进行模拟分析,描述了系统的构造,计算结果表明纯转动拉曼系统具备了可行性,为后续多普勒激光雷达的性能升级与气象应用奠定了理论基础。
Wind field is one of the necessary parameters for meteorology research. Doppler lidar is able to detect wind field in high spatial and temporal resolution.
     By detecting the Doppler frequency shift caused by atmosphere movement, Doppler lidar can retrieve the wind velocity. The technologies of Doppler wind lidar include coherent method and incoherent method (also called direct detection technique). Coherent method is only applied to aerosol scattering but not molecular scattering due to the broadened scattering spectrum. On the other hand, incoherent method can detect both of aerosol and molecular scattering by measuring the energy of returning signal and is one of the most effective way of wind measuring in clear air. In direct detection method, aerosol backscattering ratio is essential to define the measuring sensitivity of the wind speed. However, the measurements of aerosol backscattering ratio and wind are asynchronous among the state of the art Doppler lidars so that the uncertain error could be brought by the temporal and spatial variation of aerosol particles.
     The article analyses the problem of Doppler lidar sensitivity measurement and proposes the solution. Basing on the backscattering spectrum, a new receive channel of inelastic scattering is added to acquire Raman scattering with beam splitters and interference filters. With the pure molecular scattering, Raman scattering, the novel system probes aerosol backscattering ratio in real time with wind measurement. Meanwhile, it is capable of retrieving the extra parameters of aerosol backscattering coefficient, extinction coefficient and atmosphere temperature profile to develop a multi-function meteorology lidar.
     The article designs tow blue prints of vibrational Raman method and pure-rotational Raman method for calibration research, respectively. The vibrational Raman method is testified with experiment. The results show that this method is capable of measuring aerosol backscatter ratio profile of low-altitude troposphere (below 7km) at the same time as wind measurement, which can define the wind measurement sensitivity. Aerosol extinction coefficient and lidar ratio are additional parameters acquired in measurement. A new arithmetic of aerosol backscatter ratio is proposed and proved to be more effective. The pure rotational Raman method is assessed by simulation. The results of calculation testify the feasibility of system and establish the theory foundation of developing the multi-function meteorology lidar.
引文
1.盛裴轩等,《大气物理学》,北京大学出版社, 2003.
    2. Bake, W.E., G. D. Emmitt, F. R. Robertson, et al, Lidar-Measured Winds from Space: a Key Component for Weather and Climate Prediction, Bull. Amer.Meteo. Soc., 76, 5, 1995
    3. Huffaker, R.M., et al., A.V. Jelalin, and J.A.L. Thomson, Laser Doppler System for Detection of Aircraft Trailing Vortices, Proc. IEEE, 58, 322, 1970.
    4. E.A. Weaver, Clear Air Turbulence Using Lasers, NASA Aircraft Safety and Operating Problem Conference, NASA SP 270, 89, 1971.
    5. Bilbro J.W.,G.H. Fichtl, D. Fitzjarrald, et.al, Airborne Doppler Lidar Wind Field Measurements, Bull. Amer. Meteor. Soc., 65, 348, 1984.
    6. Rothermel J., et al., Dual-Doppler Lidar Measurement of Winds in the JAWS Experiment, J.Atmos. Ocean. Tech., 2, 138, 1985.
    7. Kane T. J., W. J. Kozlovsky, R.L. Byer, and C. Byvik, Coherent Laser Radar at 1.06μm Using Nd:YAG Lasers, Opt. Lett. 12, 239-241, 1987.
    8. Kavaya M.J., S. K. Henderson, et al., Remote Wind Profiling with a Solid-State Nd:YAG Coherent Lidar System, Opt. Lett. 14, 776-778, 1989.
    9. Chan K.P., and D.K. Killinger, Short Pulsed Coherent Doppler Nd:YAG Lidar, Opt. Eng.30, 49-54, 1991.
    10. Henderson S.M., C.P. Hale, J.R. Magee, et al., Eyesafe Coherent Laser Radar System at 2.1μm Using Tm, Ho:YAG Lasers, Opt. Lett. 16, 773-, 1991.
    11. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson. Coherent lidar airborne wind sensor II: flight-test results at 2 and 10μm. Appl. Opt., Vol. 35, 1996.
    12. G. J. Koch, M. Petros, B. W. Barnes, J. Y. Beyon, F. Amzajerdian, J. Yu, M. J. Kavaya, and U. N. Singh. Validar: A testbed for advanced 2-micron Doppler lidar. Proc SPIE, 5412: 87~98,2004.
    13. M.L. Chanin, et al., A Doppler Lidar for Measuring Winds in the Middle Atmosphere, Geophysical Research Letters, Vol. 16, No.11, p.1273-1276, 1989.
    14. Garnier A., and M.L. Chanin, Description of a Doppler Rayleigh Lidar for Measuring Winds in the Middle Atmosphere, Appl. Phys. B. 55, 35-44, 1992.
    15. C.L. Korb, B.M. Gentry, and C.Y. Weng, Edge Technique: Theory and Application to the Lidar Measurement of Atmospheric Wind, Appl. Opt., Vol.31, No. 21, 1992.
    16. C.L. Korb, B.M. Gentry, and C.Y. Weng, Edge Technique: Theory and Application to the Lidar Measurement of Atmospheric Wind, Appl. Opt., Vol.31, No. 21, 1992.
    17. Bruce M. Gentry, Huailin Chen, Steven X. Li, GLOW-The Goddard Lidar Observatory forWinds, SPIE:Lidar Remote Sensing for Industry and Environment Monitoring, Vol. 4153:314-320, 2000.
    18. Liu Zhishen, et al., Proposed Ground-based Incoherent Doppler Lidar with Iodine Filter Discriminator for Atmospheric Wind Profiling, SPIE Vol.2833 (21), 1996.
    19. Liu Zhishen, et al., An Incoherent Doppler Lidar for Ground-based Atmospheric Wind Profiling. Appl. Physics B, 561-566, 1997.
    20. Zhi-Shen Liu, Dong Wu, Jin-Tao Liu, Kai-Lin Zhang, Wei-Biao Chen, Xiao-Quan Song“Low-Altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with iodine filter”Appl. Opt.,Vol. 41, No. 33,2002.
    21. Dongsong Sun, Jun Zhou, Huanling Hu, Wind lidar development at Heifei of China, 22nd International Laser Radar Conference, S2P-13, 2004.
    22. Dongsong Sun, Zhiqing Zhong, Jun Zhou, Huanling Hu and Takao Kobayashi, Accuracy Analysis of the Fabry–Perot Etalon Based Doppler Wind Lidar, Optical Review, Vol. 12, No. 5, 2005.
    23. Liu Jiqiao, Chen Weibiao, and Hu Qiquan, A Wind Direct-Detection Doppler Lidar Based on a Multi-Beam Fizeau Interferometer, Chinese Journal of Atmospheric Sciences, Vol. 05, 2004.
    24. Jiqiao Liu, Jun Zhou, and Weibiao Chen, Boundary Doppler lidar based on multibeam Fizeau interferometer, Proc. SPIE, Vol. 5653, 273, 2005.
    25. ADM-Aeolus Science Report: The Atmospheric Dynamics Mission, ESA, 2005.
    26. J. D. Klett, "Stable analytic inversion solution for processing lidar returns," Appl. Opt. 20, 211-220 (1981).
    27. F. G. Fernald, B. M. Herman, and J. A. Reagan, "Determination of aerosol height distributions by lidar," J. Appl. Meteorol.11, 482-489 (1972).
    28. F. G. Fernald, "Analysis of atmospheric lidar observations: some comments," Appl. Opt. 23, 652-653 (1984).
    29. A. Ansmann, M. Riebesell, and C. Weitkamp, "Measurements of atmospheric aerosol extinction profiles with a Raman lidar”,Opt. Lett. 15, 746-748 (1990).
    30. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis,“Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,”Appl. Opt. 31, 7113–7131(1992).
    31. A.Behrend, J.Reichard. Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman Lidar by use of an interference-filter-based polychromator. Applied Optics, 39(9): 1372~1378(2000)
    32. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda,“Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinctioncoefficient,and particle backscatter coefficient,”Appl. Opt. 41,7657–7666 (2002).
    33. A.Behrendt, T.Nakamura, and T.Tsuda. Combined Raman lidar for measurements in the troposphere, stratosphere, and mesosphere. Applied Optics, 43(36): 2930 ~2939(2004)
    34. XIE Chen-bo, ZHOU Jun, YUE Gu!ming, QI Fu!di, FAN Ai!yuan. Mobile lidar system for measuring troposphere ice aerosol and water vapor. Infrared and Laser Engineering,36(3):365~369(2006).
    35. WU Yong-hua , HU Huan-ling , HU Shun-xing ,ZHOU J un , YUE Gu-ming , QI Fu-di , L i Chen. Rayleigh-Raman Scattering Lidar for Atmospheric Temperature Profiles Measurements. CHINESE JOURNAL OF LASERS,31(7):851~856(2004).
    36. ZHANG Jin-ye, GONG Wei1, HU ANG Chu-yun2, LI Jun. Measurements of Aerosol Optical Properties by Raman Lidar. ACTA PHOT ON ICA SINICA,39(7):1340~1344(2010).
    37. Jin-shan Zhu, Yu-bao Chen, Zhao-ai Yan, Song-hua Wu, and Zhi-shen Liu. Ralationship between the aerosol scattering ratio and temperature of atmosphere and the sentivity of a doppler wind lidar with iodine filter. Chinese Optics Letters, 2008, 6(6): 449~453
    38. Chiaoyao She, Jia Yue, Zhaoai Yan, Johnathan W. Hair, Jinjia Guo, Songhua Wu, and Zhishen Liu. Direct-detection Doppler wind measurements with a Cabannes–Mie lidar: A. Comparison between iodine vapor filter and Fabry–Perot interferometer methods. APPLIED OPTICS, 2007, 46(20): 4434~4443
    39. Chiaoyao She, Jia Yue, Zhaoai Yan, Johnathan W. Hair, Jinjia Guo, Songhua Wu, and Zhishen Liu. Direct-detection Doppler wind measurements with a Cabannes–Mie lidar: B. Impact of aerosol variation on iodine vapor filter methods. APPLIED OPTICS, 2007, 46(20): 4444~4454
    40. J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y.She. High-spectral-resolution lidar with iodine-vapor filters measurement of atmospheric-state and aerosol profiles. Appl. Opt., 2001, 40(30): 5280~5294
    41. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T.Tauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation. Appl. Opt., 1983,22(23): 3716~3724
    42. G. Tenti, C. D. Boley and R. C. Desai. On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases. Can. J. Phys., 1974, 52: 285
    43. Kikuro Tomine, Chikara Hirayama, Kouichiro Michimoto and Nobuo Takeuchi. Experimental determination of crossover function in the laser radar with light mist. Appl.Otp, 1989,28(12):2194~2195.
    44. Sang Whoe Dho, Young Je Park, and Hong Jin Kong. Experimental determination of a geometric form factor in a lidar equation for inhomogeneous atmosphere. Appl.opt, 1997,36(24):6009~6010.
    45. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev. Atmospheric temperaturemeasurements made by rotational Raman scattering. Appl. Opt., 1993, 32(15): 2758~2764
    46. A.Behrendt and T.Nakamura. Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature. Otp. Express, 2002,10(16): 805~817
    47. Hamamatsu metal package photomultiplier tube R7400U series.
    48.刘秉义.车载测风激光雷达性能优化和风场反演:[博士学位论文].青岛:中国海洋大学,2008
    49.阎吉祥,龚顺生,刘智深.环境监测激光雷达.北京:科学出版社, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700