波阻抗梯度飞片的研制及其在动高压物理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波阻抗梯度飞片作为一类新型的功能梯度材料(FGM),因其波阻抗值沿厚度方向呈梯度变化而具有准等熵压缩特性并能进一步用于超高速发射中,可以看作是FGM的优异特性在动高压物理领域中的应用新拓展。
     依据实现准等熵压缩和超高速发射对梯度飞片体系的理论要求,论文首先在一个较宽的波阻抗变化范围内,确定钨合金(93W)、无氧铜(OFC)、钛合金(TC_4)、工业纯铝(Al)和镁合金(MB_2)五种综合性能良好的金属和合金材料作为波阻抗梯度飞片的复合体系,并测量了材料的相关声学和力学参量。在此基础上,通过调整飞片中各过渡层材料的厚度,设计了三种波阻抗分布按高幂次(二次、三次)函数关系变化的93W-OFC-TC_4-Al-MB_2系梯度飞片。
     利用平面扩散焊接法(控制一定的温度、压力、时间、气氛等条件),同时采取合理的结构控制方法,成功实现了93W-OFC-TC_4-Al-MB_2的整体连接,得到了平面性好、平行精度高、整体致密的波阻抗梯度飞片,满足了设计结果和梯度飞片的基本结构要求。研究表明,93W与OFC的界面连接是OFC与93W中W晶粒的连接以及OFC与93W中Ni-Fe粘接剂的连接共同作用的结果;OFC与TC_4连接界面的形成是由于OFC与TC_4之间发生反应扩散,并由此在二者接头处生成了Cu-Ti金属间化合物的中间相;TC_4-Al的连接与Al-MB_2的连接则分别是其基体元素Ti、Al之间和Al、Mg之间元素互扩散的结果,另外,由于热膨胀系数的差异,扩散焊接后在不同焊件的接头处存在残余热应力并由此引起接头的形变。采取施加外部机械力、控制升降温速率以及尽量降低焊接温度或减少焊接时间(防止脆性金属间化合物的过度增长)等措施,确保了焊接接头的平整性和界面结构的完整性。
     建立起梯度飞片击靶的理论模型,对93W-OFC-TC_4-Al-MB_2系波阻抗梯度飞片的击靶过程进行了数值模拟计算。结果表明,梯度飞片击靶后产生的是波阵面明显被展宽的准等熵压缩波,准等熵压缩波的初始速度跳跃、速度峰值和波阵面前沿的上升时间都呈现出不同于传统冲击波陡峭上升波形的特征。随着击靶速度的提高,准等熵压缩波的波阵面前沿的上升时间逐渐减小,而对应的速度峰值和初始速度跳跃则不断增加。靶板厚度必须要与击靶速度相匹配,以保证梯度飞片后界面产生的压缩作用在进入靶板之前,从靶板自由面反射来的稀疏波不会进入飞片中,而当此压缩波在到达靶板自由面之前,
    
    武汉理工大学博士学位论文
    又不会在靶内形成冲击波。
     在轻气炮上利用研制的93W-OFC一TC4.AI一MBZ系波阻抗梯度飞片实现了
    对93W合金(靶材料)的准等嫡压缩,经修正后的测试波形都是由一个较弱
    的初始速度跳跃和一段呈阶梯状缓慢上升的波阵面前沿所组成的准等嫡压缩
    波。具有不同梯度结构的飞片,以不同速度撞击不同厚度的靶板时,所得到
    的准等嫡压缩波波形的变化规律符合数值模拟的结果。波阻抗梯度飞片对靶
    板的压缩过程是一系列弱冲击加载波相继发生作用叠加的结果,靶板由此获
    得的尸一v线是一组通过不同初始状态点的Hugoulot线的连线.这条连线可以
    近似看作是由小段小段等嫡线连接而成的准等嫡线,它位于冲击绝热线和等
    嫡线之间并更接近于等嫡线。
     在二级轻气炮上,利用93W-OFC一TC4一Al一MB:系波阻抗梯度飞片成功将
    克量级(0.35一2.809)钦合金二级飞片发射到了15kln/s以上的超高速度,且
    二级飞片主体是完整性,但其平面性和飞行姿态还有待于今后的深入研究。
    这种超高速发射是波阻抗梯度飞片的无冲击(准等嫡)加速作用和它通过第
    三级加速器产生的二维能量会聚流动共同作用的结果。
Flier-plate with graded wave impedance, which can be regarded as a new type of functionally graded material (FGM) since its wave impedance changes gradually along the thickness direction and thus can be used to generate quasi-isentropic compression energy waves in targets or drive projectiles to hypervelocities, has come to show great potential for the application in dynamic high-pressure technique.
    In the present dissertation, five commercial metallic materials ?tungsten alloy (93W), oxygen free copper (OFC), titanium alloy (TC-t), pure aluminum (Al) and magnesium alloy (MB2) were chosen as the composite system of the flier-plate with graded wave impedance, and their acoustic and mechanical parameters were measured. The thickness of each material was controlled so that flier-plates with a parabolic or cubic wave impedance distribution were designed.
    By using diffusion welding method (under certain welding parameters such as temperature, pressure, time and atmosphere, etc) and employing rational structural control technique, a kind of 93W-OFC-TC4-A1-MB2 system flier-plate with good parallelism, planeness and high densification was prepared, which met the needs of initial design and the basic requirement of flier-plates. It was found that the interfacial bonding of 93W-OFC was both the joining action of OFC/W grains and that of OFC/Ni-Fe binders, whereas the joining of OFC to TC4 could be seen as the mutual intense diffusion effect between OFC/TC4 and as a result Cu-Ti intermetallic compounds were formed at the joint. The joining of TC4-A1 and A1-MB2 were also attributed to the result of diffusion between elements Ti-Al and Al-Mg respectively. On the other hand, residual thermal stress and stress-induced distortion were produced at the joint simultaneously due to the difference in thermal expansion coefficient of different welding" materials. The planeness and integrality of the flier-plate were ensured effectively by exerting restrictive pressure, controlling heating and cooling rate, lowering welding temperature or reducing welding time as much as possible, etc.
    Theoretical model of creating quasi-isentropic compression via 93W-OFC-TC4-A1-MB2 system flier-plate with graded wave impedance was
    
    established, and numerical simulation of the impact process was then carried out. The results showed that quasi-isentropic compression energy waves were produced after the impact, whose initial velocity jump, peak velocity and front's rise-time were all different from the general shock loading wave profiles. Furthermore, the higher the impact velocity, the smaller the extended wave's front while the higher the peak velocity. At the same time, the thickness of target should also be in accord with the impact velocity.
    Experiments of quasi-isentropic loading to 93 W alloys by 93W-OFC-TC4-A1-MBz system flier-plate with graded wave impedance were performed on light gas guns. The corrected VISAR-measured wave profiles were profiles with an initial velocity jump followed by a stepwise-rising front to the peak velocity amplitude, indicating that quasi-isentropic compression energy waves had been successfully generated. When flier-plates with different graded structures impacted targets with different thickness at different velocities, the variation of the impact-induced wave profiles accorded with the numerical simulation results. The physical process of quasi-isentropic compression might be considered as the successive overlap of a series of small shock loading waves generated by the transition layers in the flier-plate. As a result, the P-V curve of the target was a quasi-isentropic compression curve, which consisted of small Hugoniot curves (similar to isentropic curves) from different original states, and was located betwee
    n the Hungoniot curve and isentropic curve but closer to the latter.
    Finally, on a two-stage light-gas gun, titanium alloy projectiles (with mass of 0.35~2.80g) were driven intact to hypervelocities as over 15km/s by 93W-OFC-TC4-A1-MB2 system flier-plate with graded wave impedance, although the fl
引文
[1] 朱震刚,水嘉鹏.金属与合金的单晶相梯度材料.‘94秋季中国材料研讨会论文摘要集,1994,11:83
    [2] M.Niino, T.Hirai, R.Watanabe. Functionally gradient materials. Journal of Japanese Society of Composite Material, 1987, 13(6): 257~264
    [3] 新野正之.倾斜机能材料发想开发动向.工业材料,1990,38(12):18~20
    [4] Kawasaki, R.Watanabe. Microstructural designing and fabrication of disk shaped functionally gradient materials. Journal of Japanese Society of Powder and Powder Metallurgy, 1990, 37(2): 253~260
    [5] 未踏科学技术协会.热应力缓和倾斜机能材料开发基盘技术关研究成果报告书.日本,1993
    [6] T.Hirai. Functional gradient materials. Material Science and Technology, 1996, 17B:295~341
    [7] R.Z.Yuan, L.M.Zhang, Q.J.Zhang, et al. Design and fabrication of a MgO/Ni functionally gradient material. Journal of Materials Synthesis and Processing, 1993, 1(3): 171~179
    [8] L.M.Zhang, M.Oomori, R.Z.Yuan, et al. Residual and working sresses of a TiC/Ni_3Al FGM and its structural optimization. Journal of Material Science Letters, 1995, 14(22): 1620~1623
    [9] L.M.Zhang, J.Liu, R.Z.Yuan, et al. Properties of TiC/Ni_3Al composites and structural optimization of TiC/Ni_3Al FGM. Material Science and Engineering, 1995, 203A(2): 272~275
    [10] L.M.Zhang, T.Hirai, A.Kumakawa, et al. Cyclic thermal shock resistance of Ni_3Al-TiC FGMs. Composites Part B, 1997, 28B: 21~27
    [11] 涂溶,张联盟,等.梯度材料研究回顾与新动向.‘94秋季中国材料研讨会论文集,1994,1:347~352
    [12] 1994中国材料研讨会会议论文集:新型功能材料.北京:化学工业出版社,1995
    [13] 1997中国材料研讨会会议论文集:能源材料、智能材料和梯度材料新进展.北京:冶金工业出版社,1998
    [14] M.Yamanouchi, M.Koizumi, T.Hirai, I.Shiota, eds. Proceedings of the 1st International Symposium on Functionally Graded Materials. Oct.8-9, 1990, Sendai, Japan
    [15] J.B.Holt, M.Doizumi, T.Hirai, Z.A.Munir, eds. Proceedings of the 2nd International Symposium on Functionally Graded Materials. Nov.1-4, 1992, San Francisco, USA, Ceramics Transaction 34, 1993
    
    
    [16]B.Ilschner, N.Cherradi, eds. Proceedings of the 3rd International Symposium on Functionally Graded Materials. Oct. 10-12, 1994, Lausanne, Switzerland
    [17]I.Shiota, Y.Miyamoto, eds. Proceedings of the 4th International Symposium on Functionally Graded Materials. Oct. 21-24, 1996, Tsukuba, Japan
    [18]W.Kaysser, ed. Proceedings of the 5th International Symposium on Functionally Graded Materials. Oct.26-29, 1998, Dresden, Germany, Material Science Forum 308-311, 1999
    [19]K.Trumble, K.Bowman, I.Reimanis, S.Sampath, eds. Proceedings of the 6th International Symposium on Functionally Graded Material. Sept. 10-14, 2000, Colorado, USA, Ceramic Transactions 14, 2001
    [20]W.Pan, J.H.Gong, L.M.Zhang, L.D.Chen, eds. Proceedings of the 7th International Symposium on Functionally Graded Materials. Oct.15-18, 2002, Beijing, China, Materials Science Forum 423-425, 2003
    [21]唐新峰,张联盟,袁润章.梯度功能材料及其新的研究领域展望.高技术通讯,1994.4:37~40
    [22]张联盟,涂溶,等.梯度材料的研究进展与发展新动向.高技术陶瓷,1995,2(1):23~26
    [23]吴人洁,等.复合材料.天津:天津大学出版社,2000
    [24]T.J.Ahrens. Application of shock wave data to earth and planetary science. In: Y.M.Gupta, ed, Shock Waves in Condensed Matter-1985. Amsterdam: Elsevier Science Publishers B.V., 1986: 571~588
    [25]刘巍,白利平,杜建国.高压地学研究进展.地质科技情报,2000,19(2):22~26
    [26]M.A.Meyers. Dynamic Behavior of Materials. New York: John Wiley & Sons Inc., 1994
    [27]W.J.Nellis. Properties of condensed matter to ultrahigh dynamic pressures. In: G.N.Peggs, ed, High Pressure Measurement Technique. London: Appl. Sci. Publ., 1982
    [28]赵西寰,李庆明.钛合金TC-4在高应变率下的动态本构关系.爆炸与冲击,1990,10(3):239~243
    [29]庄仕明,丰树平,等.高应变率下TC4及TC9钛合金的动态断裂.高压物理学报,1995,9(2):96~106
    [30]张万甲,杨中正.93钨合金断裂特性研究.高压物理学报,1995,9(4):279~288
    [31]J.A.Assay, C.A.Hall, M.Knudson. Recent advances in high-pressure equation-of-state capabilities. Sandia National Report, SAND2000-0849C
    [32]金庆华,丁大同,王鼎盛,等.高压下铝、铜、铅的状态方程和电子转移.高压物理学报,1990,4(1):17~22
    [33]经福谦.实验物态方程导引.北京:科学出版社,1986
    
    
    [34]王莉君.用同步辐射和高温DAC装置研究Fe_2SiO_4的γ→α相变动力学过程.高压物理学报,1994,8(2):153~160
    [35]经福谦.动态高压技术.物理,1986,15(5):305~310
    [36]经福谦.动态超高压技术(一).爆炸与冲击,1984,4(3):1~9
    [37]W.B.Benediek, J.R.Assay. High-pressure ramp-wave generator. Bulletin of American Physics Society, 1976, 21:1298~1303
    [38]A.S.Vladimirov, N.P.Voloshin, V.N.Nogin, et al. Shock compressibility of aluminum at P 1 Gbar. JETP Lett., 1984, 39:82~85
    [39]L.V.Al'tshuler, A.A.Bakanova, R.F.Trunin. Shock adiabats and zero isotherms of seven metals at high pressures Ah Eksp Teor Fiz 42: 91. Soviet Physics JETP, 1962, 15: 65~74
    [40]J.R.Asay, L.C.Chhabildas, M.D.Furnish. The use of high velocity launchers for scientific and engineering studies. High Velocity Launcher for Science and Engineering, 1991:103~111
    [41]J.R.Asay, T.G.Trucano, R.S.Hawke. The use of hypervelocity launchers to explore previously inaccessible state of matter. International Journal of Impact Engineering, 1990, 10: 51~66
    [42]A.J.Stilp. Review of modern hypervelocity impact facilities. International Journal of Impact Engineering, 1987, 5: 613~621
    [43]S.P.Marsh, R.G.Mcqueen, T.H.Tan. Acceleration of metal plates. In: S.C.Schmidt, J.N.Johnson, L.W.Davison, eds, Shock Compression of Condensed Matter-1989. Amsterdam: Elsevier Science Publishers B.V., 1990:985~987
    [44]S.P.Marsh, T.H.Tan: Hypervelocity plate acceleration. In: S.C.Schmidt, R.D.Dick, J.W.Forbes, D.G.Tasker, eds, Shock Compression of Condensed Matter-1991. Amsterdam: Elsevier Science Publishers B.V., 1992: 1033~1039
    [45]H.Fair. Hyperveloeity then and now. International Journal of Impact Engineering, 1987, 5:1~11
    [46]A.C.Charters. Development of the high-velocity gas-dynamics gun. International Journal of Impact Engineering, 1986, 5:181~203
    [47]L.M.Bark, L.C.Chhabildas, T.G.Trueano, et al. High gas pressure acceleration of flier plate-experimental teehniques. Sandia National Report, SAND89-0612C
    [48]王宁宇.用于材料碰撞实验的一级轻气炮.爆炸与冲击,1993,13(1):90~96
    [49]L.M.Bark, L.C.Chhabildas, T.G.Trucano, et al. Gas-accelerated plate stability study. In: S.C.Sehmidt, J.N.Johnson, L.W.Davison, eds, Shock Compression of Condensed Matter-1989. Amsterdam: Elsevier Science Publishers B.V., 1990:989~991
    [50]经福谦.动态超高压技术(二).爆炸与冲击,1984,4(4):24~29
    
    
    [51] D.B.Longcope. Analysis of the second stage of the STAR 28mm two-stage light gas gun. International Journal of Impact Engineering, 1995, 17:527~537
    [52] L.A.Glenn. Performance analysis of the two-stage light gas gun. In: S.C.Schmidt, N.C.Holmes, eds, Shock Wave in Condensed Matter-1987. Amsterdam: Elsevier Science Publishers B.V., 1988:653~656
    [53] D.W.Bogdanoff. Optimization study of the Ames 0.5" two-stage light gas gun. International Journal of Impact Engineering, 1997, 20:131~142
    [54] 王金贵.二级轻气炮超高速弹丸发射技术的研究.高压物理学报,1992,6(4):264~272
    [55] J.E.Osher, H.H.Chau, G.R.Gathers, et al. Hypervelocity acceleration and impact experiments with the LLNL electric gun. International Journal of Impact Engineering, 1990, 10: 439~452
    [56] J.E.Osher, H.H.Chau, G.R.Gathers, et al. Shock-wave studies using plastic flyers by an electric gun for hypervelocity impact on selected materials. In: S.C.Schmidt, N.C.Holmes, eds, Shock Wave in Condensed Matter-1987. Amsterdam: Elsevier Science Publishers B.V., 1988:673~676
    [57] J.E.Osher, H.H.Chau, G.R.Gathers, et al. Application of a 100-kV electric gun for hypervelocity impact studies. International Journal of Impact Engineering, 1987, 5: 501~507
    [58] P.W.Keaton, G.C.ldzork, L.J.Rowton, et al. A hypervelocity microparticle impacts laboratory with 100km/s. International Journal of Impact Engineering, 1990, 10: 295~308
    [59] W.M.Trott, R.E.Setchell, A.V.Farnsworth. Development of laser-driven flier-plate techniques for equation-of-state studies of microscale materials. In: M.D.Furnish, N.N.Thadhani, Y.Horie, eds, Shock Compression of Condensed Matter-2001. Amsterdam: Elsevier Science Publishers B.V., 2002: 1347~1350
    [60] 江少恩,李文洪,丁永坤,等.0.35um激光驱动冲击波的实验测量.高压物理学报,2000,14(2):146~150
    [61] 黄秀光,罗平庆.激光驱动飞片三台阶靶模型的理论分析:用于状态方程的绝对测量.物理学报,1999,48(12):2314~2318
    [62] C.A.HalI, M.Knudson, J.A.Assay, et al..High velocity flyer plate launch capability on Sandia Z accelerator. International Journal of Impact Engineering, 2001, 26:275~287
    [63] K.M.Matzen: Z pinches as intense X-ray sources for high-energy density physics applications. Physics of Plasmas, 1997, 4(5): 1519~1525
    [64] L.C.Chhabildas, L.N.Kmetyk, et al. Enhanced hypervelocity launcher-capabilities to 16km/s. International Journal of Impact Engineering, 1995, 17:183~194
    
    
    [65] C.B.Wang, Q.Shen, L.M.Zhang. A flier-plate material with graded impedance used in dynamic high-pressure physics. Journal of Wuhan University of Technology-Materials Science Edition, 2002,17(4) : 32-35
    [66] 王传彬,张联盟.波阻抗梯度飞片材料及其在动高压物理中的应用.无机材料学报, 2002,17(5) :925-930
    [67] L.M.Barker, D.D.Scott: Development of a high-pressure quasi-isentropic plane wave generating capability. Sandia National Report, SAND 84-0432
    [68] L.M.Barker. High-pressure quasi-isentropic impact experiments. In: J.R.Asay, R.A.Graham, GK.Straub, eds, Shock Compression of Condensed Matter-1983. Amsterdam: Elsevier Science Publishers B.V., 1984: 217-224
    [69] L.M.Barker, T.GTrucano, et al. Experimental technique for measuring the isentrope of hydrogen to several megabars. In: Y.M.Gupta, ed, Shock Compression of Condensed Matter-1985. Amsterdam: Elsevier Science Publishers B.V., 1986: 455-459
    [70] T.GTrucano, L.M.Barker, et al. Numerical studies of the dynamic isentropic loading of solid molecular hydrogen. In: Y.M.Gupta, ed, Shock Compression of Condensed Matter-1985. Amsterdam: Elsevier Science Publishers B.V., 1986: 461-465
    [71] L.C.Chhabildas, L.M.Barker. Dynamic quasi-isentropic compression of tungsten. In: S.C.Schmidt, N.C.Holmes, eds, Shock Compression of Condensed Matter-1987. Amsterdam: Elsevier Science Publishers B.V., 1988: 111-114
    [72] L.C.Chhabildas, J.R.Asay, L.M.Barker. Dynamic quasi-isentropic loading of tungsten. High Pressure Research, 1990, 5: 842-844
    [73] L.C.Chhabildas, J.R.Asay, L.M.Barker. Shear strength of tungsten under shock-and quasi-isentropic loading to 250GPa. Sandia National Report, SAND88-0306, UC-704
    [74] L.C.Chhabildas, J.R.Asay. Dynamic yield strength and spall strength measurements under quasi-isentropic loading. Sandia National Report, SAND90-0883C
    [75] L.C.Chhabildas, L.M.Barker, J.R.Asay, et al. Spall strength measurements on shock loaded refractory metals. In: S.C.Schmidt, J.N.Johnson, L.W.Davison, eds, Shock Compression of Condensed Matter-1989. Amsterdam: Elsevier Science Publishers B.V., 1990: 429-432
    [76] 丁峰,黄士辉,等.无氧铜的准等熵压缩性.高压物理学报,1990,4(2) :150-155
    [77] S.H.Huang, F.Ding, et. al. Dynamic quasi-isentropic compression of oxygen free copper. In: S.C.Schmidt, J.N.Johnson, L.W.Davison, eds, Shock Compression of Condensed Matter-1989. Amsterdam: Elsevier Science Publishers B.V., 1990: 313-316
    [78] R.Tu, Q.Shen, J.S.Hua, et al. Fabrication of Al-Cu system with functionally graded density profiles. In: I.Shiota, Y.Miyamoto, eds, Proceedings of the 4th International Symposium on Functionally Graded Materials, 1996: 307-311
    
    
    [79]Q.Shen, L.M.Zhang, H.P.Xiong, et al. Fabrication of W-Mo-Ti system flier-plate with graded impedance for generating quasi-isentropic compression. Chinese Science Bulletin, 2000, 45(15): 1421~1424
    [80]华劲松,经福谦,龚自正,等.准等熵压缩的数值模拟研究.高压物理学报,2000,14(3):195-202
    [81]Y.V.Batkov, N.P.Kovalev, A.D.Kovtun, et al. Explosive threee-stage launcher to accelerate metal plates to velocities more than 10 km/s. International Journal of Impact Engineering, 1997, 20:89~92
    [82]M.D.Furnish, N.N. Thadhani, Y.Horie, eds. Shock Compression of Condensed Matter-2001. Amsterdam: Elsevier Science Publishers B.V., 2002
    [83]L.C.Chhabildas, J.E.Dunn, et al. An impact technique to accelerate flier plates to velocities over 12km/s. International Journal of Impact Engineering, 1993, 14:121~132
    [84]W.D.Reinhart, L.C.Chhabildas, D.E.Carroll, et al. Equation of state measurements of materials using a three-stage gun to impact velocities of 11km/s. International Journal of Impact Engineering, 2001, 26:625~637
    [85]华劲松,谭华,董玉斌,等.超高速发射器的理论设计.高压物理学报,1999,13(增):277~280
    [86]林绍明,徐南仙,陈栋泉.超高速发射装置的数值模拟.高压物理学报,2000,14(2):139~145
    [87]张冠人.冲击波基础知识.爆炸与冲击,1983,3(2):90~94
    [88]马晓青.冲击动力学.北京:北京理工大学出版社,1992
    [89]华劲松.钨合金的准等熵压缩性及其动态强度变化规律研究:[博士学位论文].绵阳:中国工程物理研究院,1998
    [90]E.特勒(徐锡申译).高能密度物理学.北京:原子能出版社,1982
    [91]熊华平.变密度梯度材料的设计与制备:[博士后研究工作报告].武汉:武汉工业大学,1999
    [92]刚铁,李伟力.扩散焊接头质量检测的研究现状.焊接,2000,5:6~10
    [93]于大安.超声检测技术讲座(超声波探伤).基础自动化,1996,3:53~58
    [94]刘镇清.超声检测研究的若干进展.实用测试技术,1996,5:1~4
    [95]王小民,李明轩.复合材料的超声检测与评价.应用声学,1998,17(6):39~44
    [96]窦金锋.W-Mo-Ti体系波阻抗梯度飞片的设计及相关物性研究:[硕士学位论文].武汉:武汉理工大学,2002
    [97]沈强.W-Mo-Ti体系梯度飞片的制备及其准等熵压缩特性:[博士学位论文].武汉:武汉理工大学,2001
    
    
    [98]沈强,王传彬,张联盟,等.一种具有密度梯度的飞片材料的制备.复合材料学报,2002,19(2):37~40
    [99]H.P.Xiong, L.M.Zhang, L.D.Chen. Design and fabrication of W-Mo-Ti-TiAl-Al system functionally graded material. Metallurgical and Materials Transactions A, 2000, 31(9): 2369~2376
    [100]Z.M.Yang, L.M.Zhang, Q.Shen. Preparation of Ti-Mo system functionally graded materials by co-sedimentation. Transaction of Nonferrous Metals Society of China, 2000, 10(6): 761~763
    [101]Z.M.Yang, L.M.Zhang, Z.F.Yang. Fabrication of W-Mo functionally graded materials with smooth changes of composition by Co-sedimentation. Key Engineering Materials, 2002, 224-226:485~488
    [102]何康生,曹雄夫.异种金属焊接.北京:机械工业出版社,1986
    [103]Н.Ф.卡扎柯夫(何康生译).材料的扩散焊接.北京:国防工业出版社,1982
    [104]刘中青,刘凯.异种金属焊接技术指南.北京:机械工业出版社,1997
    [105]刘中青,邸斌.异种材料的焊接.北京:科学出版社,1990
    [106]张文钺.焊接冶金学(基本原理).北京:机械工业出版社,1995
    [107]米谷茂.残余应力的产生和对策.北京:机械工业出版社,1983
    [108]汪建华,楼松年,戚新海,等.陶瓷金属扩散焊接的残余应力及其缓和措施.硅酸盐学报,1995,23(6):605~609
    [109]刘会杰,冯吉才,李广,等.陶瓷与金属扩散连接的研究现状.焊接,2000,9:7~12
    [110]王者昌.关于焊接残余应力消除原理的探讨.焊接学报,2000,21(2):55~58
    [111]汪建华,魏良武.焊接变形和残余应力预测理论的发展及应用前景.焊接,2001,9:5~7
    [112]杨中民.组分连续变化的梯度材料的设计与制备:[博士学位论文].武汉:武汉理工大学,2002
    [113]虞觉奇,易文质,等.二元合金状态图集.上海:上海科学技术出版社,1987
    [114]张九海,何鹏.扩散连接接头行为数值模拟的发展现状.焊接学报,2000,21(4):84~91
    [115]王传彬.密度梯度飞片的制备及其准等熵压缩特性:[硕士学位论文].武汉:武汉理工大学,2000
    [116]何鹏,冯吉才,钱乙余,等.扩散连接接头金属间化合物新相的形成机理.焊接学报,2001,22(1):53~55
    [117]何鹏,张九海,冯吉才,等.相变扩散连接界面生成金属间化合物的数值模拟.焊接学报,2000,21(3):75~78
    
    
    [118]г.Н.卡涅尔(韩钧万译).凝聚介质中的冲击波现象.绵阳:中国工程物理院流体物理研究所(内部资料),1998
    [119]梁龙河,范中波,胡晓棉.电爆炸箔加速飞片的数值模拟研究.兵工学报,1999,20(2):103~107
    [120]施尚春,陈攀森,黄跃.高速弹丸的磁感应测速方法.高压物理学报,1991,5(3):205~214
    [121]L.M.Barker, R.E.Hollenbach. Laser interferometer for measuring high velocities of any reflecting surface. Journal of Applied Physics., 1972, 43(11): 4669~4675
    [122]R.A.Graham, J.R.Asay. Measurement of wave profiles in shock loaded solids. High Temperatures-High Pressure. 1978. 10: 355~390
    [123]李泽仁,姚建辁.VISAR测速中的信号丢失及丢失条纹数的确定.爆炸与冲击,1999,19(2):182~186
    [124]陈光华,李泽仁,刘元坤.用双灵敏度VISAR测量铜飞片自由面速度.高压物理学报,2001,15(1):70~74
    [125]王金贵.冲击压缩性的高精度测量技术.高压物理学报,1995,9(4):289~295

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700