高速铁路CRTS I板式无砟轨道充填层力学性能分析及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:我国高速铁路以无砟轨道为主,与有砟轨道相比,其具有稳定性、刚度均匀性和耐久性好,平顺性高、维修工作量少等突出优点。板式轨道是无砟轨道的主要形式,由钢轨、扣件、轨道板、板下充填层以及混凝土底座等组成。充填层的服役性能对高速行车的安全性、舒适性以及无砟轨道结构自身的稳定性和耐久性均具有重要影响。因此,在板式无砟轨道设计中,对充填层静动态力学性能研究及关键设计参数的确定尤为重要。然而,目前尚缺少对高速铁路板式无砟轨道充填层的完整理论体系、评价检算方法与试验验证,板式无砟轨道的充填层结构设计、材料选型缺乏依据。
     论文针对高速铁路CRTSI型板式无砟轨道,在归纳总结国内外水泥乳化沥青砂浆充填层相关研究成果的基础上,建立起能详细考虑充填层特性的单元板式无砟轨道空间静、动态理论分析模型,依据充填层的功能定位系统开展充填层力学性能与关键参数的分析,提出CRTSI型板式轨道充填层的功能定位以及设计参数的指导性建议。结合充填层材料服役性能室内试验研究,进行充填层力学性能、耐久性能和施工性能的演变规律研究及参数优化分析,研究成果可为充填层的设计提供理论支撑并指导其现场施工,另外通过动力学理论仿真和哈大线现场实车试验对研究成果进行验证和评估。本文主要工作及成果如下:
     1)建立能充分考虑充填层特性的单元板式无砟轨道空间耦合静力分析方法。针对高速铁路CRTSI型板式无砟轨道结构,基于弹性地基梁体理论,应用有限单元法,建立了能充分体现充填层支承调整、缓冲协调、弹性阻隔等各方面特性的单元板式无砟轨道空间耦合静力分析精细化模型。模型中采用了广义Maxwell模型以充分考虑充填层材料的粘弹性本构关系。
     2)建立能充分考虑充填层参振特性的列车-无砟轨道-下部基础空间耦合动力学理论。将车辆视为一个由悬挂弹簧和阻尼联系起来的7刚体共31个自由度的振动系统,轮轨作用由赫兹非线性弹性接触理论和蠕滑理论确定。将钢轨视为弹性点支承基础上的Beraoulli-Euler梁,轨道板视为弹性基础上的弹性实体,凸形挡台及CA砂浆充填层对轨道板提供横垂向非线性弹性约束,底座板视为弹性地基上的弹性实体。并通过不同车速下轨道结构动力学特性的仿真结果与哈大线实测数据的对比验证了模型的正确性和准确性。
     3)提出了CRTSⅠ型板式无砟轨道充填层功能定位、力学性能与关键设计参数。为系统开展充填层力学性能及其影响因素分析,需首先将其作为系统结构层之一进行功能定位,根据其在结构体系中的支承、传载、减振、隔振、阻裂五大功能特点进行参数辨识并构建针对性强的计算模型,通过大量数值模拟分析探索充填层厚度、密度、弹性模量及其粘弹性本构关系等参数对各项功能的影响,总结提出了充填层功能及参数的指导性建议。
     4)揭示了CA砂浆充填层厚度、弹性模量等参数及轨道板空吊、砂浆充填不满、充填层刚度不均匀等病害对轨道动力特性的影响规律。利用建立的列车-无砟轨道-下部基础空间耦合精细化动力学模型,对CRTS Ⅰ型板式无砟轨道的动力学特性进行研究;结合静力分析部分的研究成果,研究CA砂浆充填层厚度、弹性模量等参数以及轨道板空吊、砂浆充填不满、充填层刚度不均匀等病害对轨道动力特性的影响规律,为我国无砟轨道的检测、监测、养护维修工作提供理论依据。
     5)基于结构和材料的试验研究提出了CRTS Ⅰ型板式无砟轨道充填层材料服役性能。建立了CRTS Ⅰ型板式无砟轨道试验模型,测试了不同充填层材料及工况的轨道系统振动与噪声特性,得到了基于减振、降噪与变形协调等功能的充填层材料及施工工艺类型;进行了充填层材料的耐水、抗冻、温度疲劳等耐久性试验,并结合充填层的施工特点,提出了用于CRTS Ⅰ型板式无砟轨道充填层的CA砂浆性能指标。
     6)开展了CRTS Ⅰ型板式无砟轨道充填层动力学性能试验研究。通过无砟轨道充填层材料实车试验,分析行车条件下不同无砟轨道充填层砂浆配方对轨道结构动力性能的影响;另外,针对桥梁、路基、隧道等典型线下基础进行不同车速下CRTS Ⅰ型板式无砟轨道结构动力特性的高速实车试验研究;通过依据轮轨系统动力学评价指标,如脱轨系数、轮重减载率、轮轨作用力、轨道结构的动力学强度等评估CRTS Ⅰ型板式无砟轨道结构体系的动力性能、行车安全性、舒适性,测试结果验证了理论研究的正确,并为板式无砟轨道结构充填层的设计、优化提供了试验依据。
Compared with ballasted track, non-ballast track has such advantages as stability, stiffness uniformity, good durability, high regularity and less maintenance, etc. It is developed rapidly and widely used because it suits to the high speed and traffic density of high-speed railway in China. Slab track is an advanced structure form of non-ballast track. It is composed of rail, fastener, track slab, filling layer of cement emulsified asphalt mortar (CA mortar) and concrete base, etc. The service performance of the filling layer has great influences on a train's safety and comfort as well as the stability and durability of slab track structure itself. Therefore, in the design of slab track, it is particularly important to grasp mechanical properties and design parameters of filling layer. There is still a lack of complete theoretical system, evaluation methods and experimental verification of high-speed railway slab track filling. The structure design and material selection of filling layer is still in the study.
     Focusing on CRTS I slab track, a static and dynamic analysis theory of unit slab track with full consideration of filling layer characteristics were established on basis of related research achievements of CA mortar filling layer both at home and abroad. The mechanical properties and parameters of the filling layer were analyzed according to its functional orientation. Then this thesis put forward some guidance for the functions and parameters of CRTS I slab track filling layer. It also studied the design parameter optimization and performance evolution of the filling layer material based on a series of laboratory experiments. The research results were testified and evaluated by dynamics simulation and field dynamic tests in Harbin-Dalian passenger dedicated line. This has provided theoretic support and practical guidance for popularization and application of the filling layer. The main research and results obtained are as follows:
     1. Space coupling statics analysis method of the unit slab track with full consideration of filling layer characteristics were established.
     Based on elastic foundation beam/solid theory, a space static calculation model of unit slab track was established by application of finite element method (FEM). And this model fully reflected various performance of the filling layer, such as support, adjustment, buffer, coordination and flexible barrier, etc. The viscoelastic constitutive relation of the filling layer materials was taken into consideration by adopting generalized Maxwell model.
     2. High speed Vehicle-ballastless track-substructure coupling dynamic theory with full consideration of filling layer vibration characteristics were established.
     Rolling stock is deemed to be a vibration system of7rigid body and31DOFs linked by a suspension spring and damping. The wheel/rail normal force is determined by Hertz nonlinear elastic contact theory, while creep theory determines the tangential creep force. Rail is viewed as a Bernoulli-Euler beam based on the elastic point support, considering vertical, horizontal and rotational DOFs of the left and right rails respectively. The supporting point space is fastener spacing intervals. Track slab is deemed as vertically an elastic entity on an elastic foundation, laterally as a rigid body motion, considering translational and rotational DOFs, convex block and of CA mortar filling layer provide lateral and vertical nonlinear elastic constraint for track slab. The concrete base is a flexible entity on elastic foundation. And model is proved to be correct and accurate through comparison of simulation results and experimental results.
     3. The functional orientation, mechanical properties and parameters of the CRTS Ⅰ slab track filling layer were systematically analyzed.
     In order to analyze the mechanical properties of filling layer and its influencing factors systematically, it should be viewed as one of the structural layer in non-ballast track system and carried out the functional orientation analysis. The targeted calculation model was established according to its five functions, i.e. support, load transmission, vibration reduction, vibration isolation, crack resistance. The influence of various filling layer parameters such as thickness, elastic modulus and viscoelastic constitutive relation on its performance was analyzed through a lot of static and dynamic calculation results. Thus, it summatively proposed the functions and parameters guiding recommendations of CRTS Ⅰ slab track filling layer.
     4. The influence of CA mortar filling layer parameters and damages on the dynamic characteristics of the CRTS Ⅰ slab track were revealed.
     High speed Vehicle-ballastless track-substructure coupling dynamic model was used to analyze the dynamic characteristics of the CRTS Ⅰ slab track. Combined with static analysis results, the influence of CA mortar filling layer parameters, such as thickness, elastic modulus, and damages, such as slab hanging, mortar filling lack and stiffness uneven, on the dynamic characteristics of the CRTS Ⅰ slab track were researched. Research results provide some theoretical support for the detection, monitoring, maintenance and repair works of ballastless track.
     5.The filling layer material service performance laboratory experiments were carried out systematically. A scale model for CRTS Ⅰ slab track was produced to test the track system vibration and noise characteristics under different conditions with various filling layer materials. Then, the filling layer material and construction technology type with good performance of vibration and noise reduction, deformation coordination were obtained. The durability of filling layer materials was tested. Combined with its construction characteristics, performance indicators for the CA mortar filling layer of CRTS Ⅰ slab track were put forward.
     6. Field dynamic performance test research of CRTS Ⅰ slab track combined to conduct the dynamics evaluation was carried out.
     The vehicle and non-ballast track were viewed as an interaction system. The influence of various mortar formulas on dynamic performance of slab track structure was analyzed through field dynamic tests. In addition, under different high-speed condition, impact of the different substructures such as bridge, roadbed and tunnels was tested. According to indicators system of wheel/rail system dynamics evaluation, such as derailment coefficient, wheel load reduction rate, vertical and lateral wheel/rail force, the dynamic strength of the track structural components, etc. the dynamic performance of the track structure and train's running comfort were evaluated so as to provide some theoretical support and experimental basis for the design and optimization of filling layer in non-ballast structural system, and test results verify the theoretical study.
引文
[1]何华武.无砟轨道技术[M].北京:中国铁道出版社,2005.
    [2]Zhang, Shuguang. Study on technology system and system integration method of China high-speed railway[J], Proceedings of the ASME Joint Rail Conference 2010, JRC2010, v2, p501-506,2010.
    [3]辛学忠.德国铁路无砟轨道技术分析及建议[J].铁道标准设计.2005(2):1-6.
    [4]Coenraad Esweld. Ballast Less Track Offers Long Term Advantages[J]. International Railway Journal, September,1997.
    [5]刘学毅等.客运专线无砟轨道设计理论与方法[M].成都:西南交通大学出版社,2010.
    [6]王涛.高速铁路板式无碴轨道CA砂浆的研究与应用[D].武汉理工大学博士学位论文,2008.
    [7]Okamoto, Isao. High-speed operation and technical development in railways[J]. Japanese Railway Engineering,2006,156:4-7.
    [8]金学松,温泽峰,张卫华,曾京,周仲荣,刘启跃.世界铁路发展状况及其关键力学问题[J].工程力学,2004,21(suppl):90-104.
    [9]钱仲候.高速铁路概论[M].北京:中国铁道出版社,2006.
    [10]钱立新.世界高速铁路技术[M].北京,中国铁道出版社,2003.
    [11]Murray Hughes. Railway Developments Worldwide-Speed, Tonnage and Capacity [J]. Railway Gazette International,2001.
    [12]He H W, Hou W W. Development of Ballastless Track Technology on China Railway(CR)[J]. RTR,2006, Special:18-22.
    [13]宗树.京津两市一线牵[J].铁道知识,2005(4):12-13.
    [14]李强,梁成谷.我国铁路客运专线建设拉开序幕[J].中国铁路,2005(7):17-18.
    [15]刘百华.浅议高速铁路轨道的高平顺性[J].铁道建筑,1999(7):10-13.
    [16]罗林.高速铁路轨道必须具有高平顺性[J].中国铁路,2000(9):8-11.
    [17]卢祖文.高速铁路基础设施的重大技术问题[J].中国铁路.2004(8):12-13.
    [18]赵国堂.高速铁路无碴轨道技术[M].北京:中国铁道出版社,2005:44-53.
    [19]岳渠德.我国高速铁路特殊地段轨道结构模式设想[J].中国铁路,1994(2):10-11,29.
    [20]刘连荣.浅议高速铁路轨道标准[J].铁道工程学报,1993(2):74-78.
    [21]李辰.我国高速铁路轨道结构的研究[J].铁道工程学报,1993(4):25-29.
    [22]Vogel W. Earthwork structures for new railway lines slab track—principles and suggestions for realization[J]. Railway Technical Review,1995(1):29-36.
    [23]高速铁路轨道结构的特征和选型[J].铁道勘测与设计,2001,120(4):9-12.
    [24]铁道第二勘察设计院,西南交通大学.客运专线铺设无碴轨道综合效益研究报告[R].成都,2005.
    [25]安藤胜敏.营业线の省力化轨道[J].JREA,1992,35(7):15-18.
    [26]Namura A, Kohata Y, Miura S, Effect of Sleeper Size on Ballasted Track Settlement[J]. Quarterly Report of RTRI,2007,48(03):176-182.
    [27]Bachmann H, Unbehaun O. Wide Sleeper Gains Official Approval[J]. International Railway Journal,2003(05).
    [28]Klaus Riessberger. Frame-Sleepers to Lighten Ballast Load[J]. Railway Gazette International, 2000(02).
    [29]Hajime Wakui. Ladder Sleepers perform well in tests[J]. Railway Gazette International, 1997(09):583-585.
    [30]吴成三.关于弹性轨道代替整体道床问题[J].铁道工程学报,1995,46(2):137-140
    [31]Ando K, Mukai A, Horiike T, et al. Development of Solid-Bed Track with Removable Resilient Ties[J]. Quarterly Report of RTRI:2002,43(03):107-112.
    [32]Horiike T, Hansaka M, Yanagawa H, et al. Development of Low Cost Resilient Tie for Ballasted Track[J]. RTRI REPORT,1998,12(03).
    [33]Eszter Ludvigh. Mitigation of Railway Noise and Vibration Concentrating on the "Reducing at Source" Methods[J]. Intersection Ⅱ,2004,1(2):3-11.
    [34]Rehfeld, Erich. Untergrundbeschaffenheit anforderungen fuer den einsatz fester fahrbahnen[J]. Eisenbahningenieur,1995,46(4):258-264.
    [35]赵国堂.提高轨道临界速度应作为客运专线设计工作的重要目标[J].中国铁路,2005(1):40-42.
    [36]Esveld C. Low-maintenance ballastless track structures[J]. Rail Engineering International,1997, 26(3):13-16.
    [37]Eisenmann J. Oberbauforschung-Oberbautechnik stand und Weiterentwicklung[J]. Eisenbahntechnische Rundschau,1985,34(10):715-722.
    [38]Moehren H. Paving alternatives to ballasted track[J]. American Railway Engineering Association Bulletin,1998,98(762):470-523.
    [39]潘君牧.介绍日本,西德两种板式道床[J].路基工程,1986(3):88-91.
    [40]何华武.我国客运专线应大力发展无碴轨道[J].中国铁路,2005(1):11-15.
    [41]刘百华.无碴轨道技术的现状和发展方向[J].铁道工务,1999(3):68-71.
    [42]Tani S. Labour saving track structure of JNR[J]. Japanese Railway Engineering,1985,94: 12-15.
    [43]李怒放.高速铁路轨道结构的发展趋势[J].铁道建筑技术,1998(1):35-39.
    [44]Henn W.D. System comparison:ballasted track—slab track[J]. Rail Engineering International, 1993,22(2):6-9.
    [45]de Man I A P, Esveld C. Requirements for rail fastenings on slab track[J]. Rail Engineering International.2001,30(2):9,11-12.
    [46]Eisenmann J. Stiitzpunktelastizitat bei einer Festen Fahrbahn[J]. ZEV+DET,1999,123(11): 427-433
    [47]Shiraz D. Tayabji, David Bilow. Concrete Slab Track State of the Practice[J]. Transportation Research Record:Journal of the Transportation Research Board,2001,1742:87-96.
    [48]R. Bastin. Development of German non-ballasted track forms[J]. Transport,2006,159(1): 25-39.
    [49]Meijvis, P. Kleeberg, J. Importance of track engineering for good ride comfort Eisenbahningenieur[J].2007,59(6):52-57.
    [50]Anon.'Zueblin System' for Sealing the Walls of Rubbish Dumps[J]. Kunststoffe im Bau,1985, 20(4):212-213.
    [51]Darien, Benjamin J. vine P-selectin glycorpotein ligand-1[R]. Wisconsin Alumni Research Foundation,10/05/2010.
    [52]何华武.无碴轨道技术[M].北京:中国铁道出版社,2005.
    [53](?)田宏,邹振民.日本高速铁路(新干线)的发展[J].中国铁路.2000(02):38-41.
    [54]Modern construction methods mastered on Mashhad-Bafgh line[J]. Railway Gazette International,2005,161(6):321-322.
    [55]Tani, Shigemi. Labour saving track structure of JNR[J]. Japanese Railway Engineering,1985, 25(1):12-15.
    [56]潘自立,姚力.遂渝线无砟轨道设计[J].铁道工程学报,2007,(1):187-189.
    [57]姚力.遂渝线无砟轨道综合试验段路基地段无砟轨道设计与施工[D].成都:西南交通大学硕士学位论文,2009.
    [58]相颖慧.遂渝铁路无砟轨道路涵过渡段性能实车测试及路基结构FEM分析[D].成都:西南交通大学硕士学位论文,2008.
    [59]Lin, Hong-Song. Long-term behavior and performace of ballastless track [J]. superstructure on China's Suining-Chongqing railway line Proceedings of the ASME Joint Rail Conference 2010.
    [60]赫丹,向俊,曾庆元.一种无砟轨道动力学建模的新方法[J].中南大学学报(自然科学版),2007,38(6):1206-1211.
    [61]龚斯昆.石太客运专线板式无砟轨道施工成套技术研究[J].路基工程.2010(8):227-229.
    [62]石现峰.高速铁路无砟轨道结构的设计理论研究[D].铁道部科学研究院博士学位论文.2007.
    [63]董冲锋.350k-h客运专线CRTS I型板式无砟轨道施工关键技术[J].铁道工程学报.2009(5):28-30.
    [64]朱高明CRTS I型板式无砟轨道施工工艺研究[R].铁道标准设计.2009(11):31-33.
    [65]向俊,赫丹,曾庆元.水泥沥青砂浆劣化对板式轨道动力学性能的影响[J].中南大学学报(自然科学版),2009,40(3):791-795.
    [66]另本春.武广铁路客运专线CRTS I型板式无砟轨道混凝土试验研究[J].铁道建筑.2010(1):159-162.
    [67]左藤吉彦.新轨道力学[M].东京:道现桨社,1997.
    [68]东宪昭.轨道制造と材料[M].东京:交通新闻社,2001.
    [69]鸟取诚一,佐伯俊之,桉井秀昭,等.铁道轨道用急硬性注入材と(?)の裂造方法[P].特阴平2000-119056.
    [71]VALENTINE C. KLOERRER. Beleasistg mechanism for automobile hahb brakes ajto the use [P]. BS1548136
    [72]OKIHIKO T., TSUTOMU M., IWAO M., et al. Cement asphalt ballast grout composition for track [P].US3867161.
    [73]HIGUCHI Y., HARADA Y., SATO T. Quick hardening cement-asphalt composition [P]. US4084981.
    [75]邹崇富.日本国营铁路少维修轨道研究的现状和将来(上)[J].铁道建筑,1980,7:26-29.
    [76]佐藤吉彦,安藤腾敏,麦田政行,等.防振H形板式轨道的研究试验[J].铁道建筑,1984,10:30.
    [77]傅代正,黄金田,郑新国.桥上板式无碴轨道CA砂浆施工技术[J].铁道建筑技术,2002,6:28-31.
    [78]李俊.桥梁板式无碴轨道施工技术[J].铁道工程学报,2003,3:32-35.
    [79]李俊.高速铁路桥梁板式无碴轨道施工技术[J].桥梁建设,2003,4:25-30.
    [80]左景奇,姜其斌,傅代正.板式轨道弹性垫层CA砂浆的研究[J].铁道建筑,2005,9:96-98.
    [81]左景奇,姜其斌,蔡彬芬.板式轨道CA砂浆专用沥青乳液的试验研究[J].铁道建筑技术,2005,2:68-71.
    [82]赵东田.高速铁路CA砂浆的性能研究[J].实验室研究与探索,2007,26(11):291-294.
    [83]谢友均,曾晓辉,邓德华,刘宝举,郑克仁.铁路无砟轨道水泥乳化沥青砂浆力学性能[J].建筑材料学报,2010,13(4):483-486.
    [84]谢友均,曾晓辉,邓德华,黄文景,汤明,郭宏,林敬靖.CRTS I型板式无砟轨道水泥乳化沥青砂浆搅拌动力学[J].建筑材料学报,2011,14(2):191-195.
    [85]胡华锋,邵丕彦,李海燕.严寒地区水泥乳化沥青砂浆的低温性能及疲劳性能试验研究[J].中国铁道科学,2011,32(4):1-7.
    [86]孔祥明,刘永亮,阎培渝.水泥沥青砂浆力学性能的温度敏感性[J].硅酸盐学报,2010,38(4):553-558.
    [87]曾晓辉.水泥乳化沥青砂浆材料特性与充填层施工质量控制研究[D].长沙:中南大学,2010.
    [88]ZENG Xiaohui, XIE Youjun, DENG Dehua. Conductivity behavior of the fresh CA mortar and its relationship with the fluidity properties[J]. Construction and Building Materials.2012,36(11): 890-894.
    [89]曾晓辉,谢友均,邓德华.温度对水泥乳化沥青砂浆早期膨胀特性的影响[J].硅酸盐学报,2012,40(2):33-37.
    [90]曾晓辉,邓德华,谢友均.CRTS I型水泥乳化沥青砂浆毛细吸水特性[J].西南交通大学学报,2011,46(2):211-216.
    [91]曾晓辉,谢友均,邓德华,郭宏,贾生旭,卢艳君.新拌水泥乳化沥青砂浆导电特性及其应用[J].建筑材料学报,2011,14(1):52-57.
    [92]曾晓辉,谢友均,郭宏,邓德华,汤明,陈谨,郭首君.沥青水泥砂浆搅拌主机[P].ZL201432368Y
    [93]曾晓辉,王平,叶跃忠,李固华,陈嵘,肖杰灵,杨彦克,潘绍伟.一种高速铁路无砟轨道结构修补用超早强注浆材料吲.ZL 201110347875.5.
    [94]曾晓辉,王平,叶跃忠,李固华,肖杰灵,陈嵘,杨彦克,潘绍伟.一种高速铁路板式无砟轨道填充层修补方法[P].ZL 201110347968.8.
    [95]曾晓辉,谢友均,邓德华,叶跃忠,彭显晓.一种水泥沥青砂浆分离度快速评价方法[P].ZL201110343317.1.
    [96]李海燕,祝和权,杜存山.无碴轨道用CA砂浆的研制[A]∥铁道科学技术新进展-铁道科学研究院五十五周年论文集[C],2005.
    [97]中南大学.客运专线无碴轨道技术再创新研究报告[R].长沙:中南大学,2007.
    [98]江成,钱振地.秦沈客运专线桥上板式无碴轨道CA砂浆的性能试验研究[A]//秦沈客运专线暨高速铁路设计施工技术研讨会[C],2001.
    [99]钱振地,江成,肖俊恒,等.一种抗冻型水泥沥青砂浆及其配制方法吲.ZL200610020615.6.
    [100]赵坪锐.无砟轨道弹性地基梁板模型[J].中国铁道科学,2009,30(3):1-3.
    [101]赵坪锐.板式无砟轨道动力学性能分析与参数研究[D].西南交通大学硕士学位论文,2003.
    [102]赵怀耘,刘建新,翟婉明.板式轨道动力响应分析方法[J].交通运输工程学报,2007,7(5):19-23.
    [103]赫丹.弹性支承块式轨道在高速列车作用下的动力响应分析[J].中南大学学报(自然科学版),2004,41(2):770-774.
    [104]卿启湘.高速铁路板式轨道参数与动力特性的研究[J].湖南工业大学学报(自然科学版),2008,22(1):21-27.
    [105]Eisenman J, Leykauf GFeste Fahrbanhn fiir Schienenbahnen[M]. Betonkalender,2000.
    [106]范俊杰.现代铁路轨道[M].北京:中国铁道出版社,2004.
    [107]任静.板式轨道研究与设计初探[J].铁道标准设计,996(6):25-28.
    [108]客运专线无砟轨道技术再创新攻关组.国内外无砟轨道系统研究分析总报告[R].成都,2007.
    [109]赵坪锐,刘学毅.双块式无碴轨道开裂支承层的折减弹性模量[J].2008,43(4):459-464.
    [110]高亮,马鸣楠,王冬梅.直线电机运载系统桥上无碴轨道结构力学特性的研究[J].铁道标准设计,2007(7):5-7.
    [111]马鸣楠,高亮,俞照晖.直线电机运载系统整体道床力学特性研究[J].都市快轨交通,2007,20(3):39-42.
    [112]赵坪锐.客运专线无碴轨道设计理论与方法[D].成都:西南交通大学,2008.
    [113]张永昌.MSC.Nastran有限元分析理论基础与应用[M].北京:科学出版社,2004:124-126.
    [114]王勖成.有限单元法[M].北京:清华大学出版社,2003:315-321.
    [115]周世军,朱唏.一组新的Timoshenko梁单元一致矩阵公式[J].兰州铁道学院院报,1994,13(2):1-7.
    [116]郝瀛.铁道工程[M].北京:中国铁道出版社,2000:67-68.
    [117]童大埙.铁道轨道[M].北京:中国铁道出版社,1988:42-50.
    [118]帅词俊,段吉安,王炯.关于黏弹性材料的广义Maxwell模型[J].力学学报,2006(4):565-568.
    [119]帅词俊,段吉安,王炯,钟掘.经应力松弛模量与Maxwell模型的转换计算方法[J].机械科学与技术,2005(5):628-630.
    [120]帅词俊,段吉安,王炯.数值分析中粘弹材料剪切模量松弛函数的拟合方法[J].机械强度,2005(4):522-525.
    [121]黄建伟,尹邦信.粘弹性材料常数的拟合方法[J].华中科技大学学报(城市科学版),2005(4):88-90.
    [122]卫延斌,史仪凯,刘澎.粘弹性材料剪切模量松弛函数的拟合研究[J].兵工学报,2010(10):1409-1412.
    [123]翟婉明,韩卫军,蔡成标.高速铁路板式轨道动力特性研究[J].铁道学报,1999,21(06):64-69.
    [124]蔡成标,翟婉明,王其昌.高速列车与高架桥上无砟轨道相互作用研究[J].铁道工程学报,2000(03):29-32.
    [125]Xie W P, Hu J W, Xu J. Dynamic response of track-ground systems under high speed moving load [J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(7):1075-1078.
    [126]徐志胜,翟婉明,蔡成标等.高速列车在板式轨道上运行的滚动噪声预测[J].铁道学报,2004,8:46-50.
    [127]Tanabe M, Wakui H, Matsumoto N, et al. Dynamic intenations of Shinkansen train, track and bridge [C]. IABSE Symposium, Antwerp, Belgium,2003, August
    [128]詹永祥,蒋关鲁,魏永幸.无碴轨道桩板结构路基在地震荷载作用下的动力响应分析[J].中国铁道科学,2006,5:4-7.
    [129]Hasslinger Herbert L, Mittermayr Paul, Presle Gerard. Das dynamicsche Verhalten unterschiedlicher Oberbausysteme zufolge fahrender Lasten[J]. Eisenbahningenieur,1999,50(7): 44-48.
    [130]Steenbergen M J M M, Metrikine A V, Esveld C. Assessment of Design Parameters of a Slab Track Railway System from a Dynamic Viewpoint[J]. Journal of Sound and Vibration,2007,306: 361-371.
    [131]Suiker A S J, Metrikine A V, de Borst R. Steady state response of a granular layer to a moving load-a discrete model[J]. Heron,2000,45(1):75-87.
    [132]和振兴,翟婉明.板式轨道交通引起的地面振动模型[J].交通运输工程学报,2006(03):13-17.
    [133]Supertrack, Norwegian Geotechnical Institue. Numerical Simulation of Train-Track Dynamic [R]. GIRD-CT-2002-00777.
    [134]赫丹,向俊,郭高杰等.砂浆刚度和阻尼对高速列车-板式轨道时变系统竖向振动的影响[J].铁道科学与工程学报,2006,3:26-30.
    [135]翟婉明.车辆-轨道垂向系统的统一模型及耦合动力学原理[J].铁道学报,1992,14(3):10-21.
    [136]翟婉明.车辆—轨道耦合动力学M].3版.北京:科学出版社,2007:20-37.
    [137]徐庆元.短波随机不平顺对列车-板式无砟轨道-桥梁系统动力特性的影响[J].土木工程学报,2011,44(10):132-137.
    [138]马学宁,梁波,高峰.高速铁路板式无砟轨道-路基结构动力特性研究[J].铁道学报,2011,33(2):72-78.
    [139]徐庆元,李斌,范浩.路基不均匀沉降对列车-路基上无砟轨道耦合系统动力特性的影响[J].铁道科学与工程学报,2012,9(3):13-19.
    [140]罗震.高速铁路无砟轨道结构受力及轮轨动力分析[D].成都:西南交通大学,2008.
    [141]刘学毅,王平.车辆-轨道-路基系统动力学[M=].成都:西南交通大学出版社,2010.
    [142]Garg, Vijay, Dukkipati, Rao. Dynamics of railway vehicle systems[M]. Toronto:Academic Press,1984.
    [143]关于机车车辆/轨道系统随机激励函数的研究[J].长沙铁道学院学报.1985(2):1-36.
    [144]胡津亚,曾三元.现代随机振动[M].北京:中国铁道出版社,1990.
    [145]曾华亮,金守华,陈秀方.客运专线新建线路轨道不平顺功率谱分析[J].铁道科学与工程学报,2005,2(4):31-34.
    [146]陈果,翟婉明.铁路轨道不平顺随机过程的数值模拟[J].西南交通大学学报,1999,34(2):138-142.
    [147]李成辉.轨道[M].西南交大出版社.2005.成都.
    [148]蒋关鲁,王海龙,李安洪.高速铁路路基基底应力计算方法研究[J].铁道建筑,2009(4):65-69.
    [149]隋孝民,陆征然.列车荷载在高速铁路路基中传递规律研究[J].铁道工程学报,2012(2).25-31.
    [150]中南大学.狗河大桥无砟轨道CA砂浆使用状况调查与劣化原因初步分析[R].长沙:中南大学,2007.
    [151]西南交通大学.高速铁路无砟轨道部件伤损对动力性能的影响研究[R].成都:西南交通大学,2011.
    [152]邓飞皇,莫海鸿,曾庆军,地铁运行振动诱发地层和地表动力响应分析[J].科学技术与工程,2007(2).348-351.
    [153]闫维明,聂晗,任珉,冯军和,张袆,陈建秋.地铁交通引起地面振动的实测与分析[J].铁道科学与工程学报,2006年02期.1-5.
    [154]王俊生,地铁盾构隧道施工与运营对城际铁路路基沉降的影响[D].北京交通大学,2010年.
    [155]申跃奎.地铁激励下振动的传播规律及建筑物隔振减振研究[D].同济大学,2007年.
    [156]周建民.城市轨道交通中的振动和噪声控制[J].城市轨道交通研究,2000年04期.16-18.
    [157]刘学毅,客运专线无砟轨道技术再创新——无砟轨道设计理论与方法研究阶段报告[R].西南交通大学出版社,2010.
    [158]罗文波,杨挺青.固态高聚物的应力松弛行为[J],高分子材料科学与工程,2002(3).97-99.
    [159]沃德.固体高聚物的力学性能[M].中国科学院化学研究所高聚物力学性能组译.北京:科学出版社,1980:82-100.
    [160]高红,弹性材料应力松弛问题的研究现状[J].鞍山师范学院学报(综合版),1997(12).77-81.
    [161]李一鸣,沥青混合料应力松弛试验研究[J].东南大学学报,1992(3).10-15.
    [162]平幼妹,余本农,两种缓冲材料的应力松弛实验分析[J].力学与实践,1998.39-41.
    [163]王森荣,孙立,李秋义,吴有松.无砟轨道轨道板温度测量与温度应力分析[J].铁道工程学报,2009(2).52-55.
    [164]王靖基.水泥乳化沥青砂浆与(CRTS Ⅱ轨道板间离缝的原因及预防措施[J].建筑,2012,(8):59-61.
    [165]凌天清,李修磊,张剑.复合式路面层间夹层抗反射裂缝能力的模拟试验[J].重庆交通大学学报(自然科学版),2010(8).536-539.
    [166]姜皖.沥青胶浆自愈合能力研究[D].武汉理工大学,2011年.
    [167]White S R Sottos N R Geubelle P H, Moore J S, Kessler M R, Sriram S R, Brown E N, Viswanathan S. Autonomic healing of polymer composites[J]. Nature,2001,409:794-797.
    [168]MAJIDZADEH K, BROVOLD F N. Effect of water on bitumen-aggregate mixtures [R]. Washington D C:TRB, National Research Council,1968.
    [169]TERREL R L, SHUTE J W. Strategic Highway Research Program:summary report on water sensitivity [R]. Washington D C:TRB, National Research Council,1989.
    [170]FROMM H J. The mechanisms of asphalt stripping from aggregate surfaces [C]. Proceedings, Association of Asphalt Paving Technologists,1974,43:191-223.
    [171]TAYLOR M A, KHOSLA N P.1983. Stripping of asphalt pavements [R]. Transportation Research Record (911),1983:150-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700