基于高阶统计理论的线性与非线性系统辨识的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用高阶统计理论和人工神经网络理论,本文对线性离散系统ARMA模型及非线性离散系统二阶Volterra模型的系统辨识方法进行了较深入的探讨,获得了一些理论成果。
     本文首先提出了一种基于模型输入输出三阶累积量对非高斯非最小相位ARMA模型进行辨识的最小平方递推算法-CRLS算法。该算法利用ARMA模型输出信号的三阶累积量和输入输出信号的三阶互累积量构造代价函数,在三阶累积量域实现对AR及MA子模型的RLS(Recursive Least Squares)辨识。该算法假设AR及MA子模型的阶p,q事先已知,在估计MA子模型的参数时,需要计算残留时间序列(RTS)。由于在三阶累积量域中高斯随机信号能被完全消除,当所测得的模型输出信号染有高斯噪声时,该算法因此仍能获得ARMA模型参数的一致估计值。理论和仿真结果均表明,该算法具有良好的收敛性和准确性。
     当ARMA模型的输入输出信号同时染有高斯噪声时,上述CRLS算法便不再适用。对于一类更一般ARMA模型的辨识,模型的阶p,q及相应的参数均完全未知。本文于是提出了一种基于模型含噪声的输入输出信号的三阶累积量对非高斯非最小相位ARMA模型的阶p,q及其相应参数完全辨识的递推算法。该算法按照模型的阶次递推,当递推阶次等于或大于AR子模型的阶p时,输出信号的平方误差达到最小,此时即获得ARMA模型的阶以及相应参数的估计值。理论和仿真结果均表明,该算法具有良好的收敛性。
     在系统辨识的实际工程应用中,很多时候仅能测得模型的输出信号,而模型的输入信号是不可测的。这时只能利用所测得的输出信号对系统的阶次和参数进行辨识,即所谓盲辨识(Blind Identification)。本文首先提出了一种基于模型输出信号三阶累积量对非高斯非最小相位ARMA模型进行辨识的算法。该算法分别按照AR及MA子模型的阶次p,q递推,AR部分的阶次和参数辨识仅仅基于所测输出信号的三阶累积量,因而称之为盲辨识;而MA部分的阶次和参数辨识不仅与输出信号的三阶累积量有关,而且与输出信号与假设的系统输入信号的三阶互累积量相关,因而整个ARMA模型的辨识称之为半盲辨识(SemiblindIdentification)。在MA子模型参数估计中,由于没有直接计算残留时间系列(RTS),只是通过AR的参数估计值与所测输出信号的三阶累积量来计算RTS的三阶累积量,从而节省了存储空间,减小了计算复杂程度,同时也减少了AR参数估计误差对MA参数估计的影响。该算法是从一阶AR和MA子模型开始递推,逐步增加递推阶次而达到逼近所观测输出信号的目的。理论分析表明,当递推阶次增加到等于或大于其相应真实阶次时,算法中所构造的代价函数达到最小并保持稳定。因此,可以根据代价函数特征曲线来估计AR及MA的阶次和相应的参数。由于该算法基于所测输出信号的三阶累积量,即使输出信号染有高斯噪声或其它具有对称分布的非高斯噪声,该算法也可完全消除这些噪声对系统辨识的影响。理论和仿真结果表明,该算法具有良好的一致收敛性。
     鉴于上述MA子模型的非盲辨识特性,本文又提出了一种完全基于模型输出信号三阶累积量的MA子模型的盲辨识算法。类似上述AR子模型的盲辨识算法,通过依MA阶次递推来估计出子模型的阶次和参数。从而整个ARMA模型的辨识成为完全的盲辨识。
     由于非线性离散Volterra系统的广泛应用,本文对二阶Volterra模型的盲辨识机理进行了较深入的研究。
     首先,本文提出了一种基于自相关分析和受约束前馈神经网络理论的对二阶Volterra模型进行盲辨识的算法。假设该模型由不可测的独立同分布(i.i.d.)随机信号驱动。利用所测得的模型输出信号,构造一个三层前馈神经网络,其激励函数为恒定值,神经元的连接权为需估计的二阶Volterra模型的核,即模型的参数集。当网络输入一组与所辨识的Volterra模型阶次相关的伪二进制信号时,网络的输出即为该模型输出信号的自相关函数。不断训练该网络至权收敛,便可获得二阶Volterra模型的相关参数。
     本文将上述ARMA线性模型与二阶Volterra非线性模型的盲辨识算法初步应用到实际火车振动信号的建模中。
     在此基础上,本文对在三阶累积量域中二阶Volterra模型的可盲辨识性作了进一步的研究。通过理论推导和计算机数字仿真,初步揭示了模型输出信号的三阶累积量与模型参数之间的非线性解析关系,为进一步探讨三阶或更高阶Volterra模型的可盲辨识性提供了理论基础。本文最后将基于三阶累积量的前馈神经网络推广到一般意义的非线性系统辨识。神经网络的输入空间由系统的输入输出过去观测值构成,输人神经元个数直接与所辨识系统的阶次相关,即输入神经元个数至少为系统阶次的两倍。因而可以通过检测网络的辨识误差特征曲线的变化来确定系统的阶次。由于网络训练的代价函数引入了三阶累积量,因而可消除系统输出信号中的高斯噪声或其它具有对称分布的非高斯噪声,从而增强神经网络的稳定性。仿真结果表明该算法具有较强的可辨识能力。
This dissertation considers the identification of linear ARMA models as well as truncated nonlinear Volterra systems- quadratic nonlinear systems based on higher-order statistics and artificial neural networks. Very promising results are drawn as follows.
     Firstly, third-order cumulant RLS algorithm for nonGaussian nonminimum phase ARMA models (CRLS) is suggested in this thesis. A cost function based on the third-order cumulants and cross-cumulants is defined for the development of the CRLS identification algorithm. While dealing with ARMA models, the orders of AR and MA sub-models p, q are assumed known a priori. The construction of a residual time series (RLS) is required for the MA parameters estimation. Due to the third-order cumulant properties, the CRLS algorithm can suppress Gaussian noise and is capable of providing an consistent estimate under a noisy environment. Theoretical analyses and numerical simulations show that the proposed approach has strong consistency and convergency.
     When both inputs and outputs of ARMA models are contaminated by additive Gaussian noises of unknown power spectral density, the above CRLS method is not suitable any more. A novel order-recursive methodology for identifying ARMA models is then introduced herein. The major objective of the proposed algorithm, in which a priori knowledge of the model orders are not required, is to determine the model orders together with the corresponding parameters simultaneously. It is performed order-recursively until the updated order is equal to or greater than the true AR submodel's order, where the norm of output error squares (NES) reaches its minimum. Both ARMA orders and parameters are then estimated correctly. Numerical simulations testify the convergency of the proposed approach.
     In many practical cases, however, the inputs of the identified systems are not measurable and the identification must be performed blindly, that simply based on some statistical properties of the output signals. This thesis develops a novel identification methodology for nonminimum phase ARMA models of which the models' orders are not given. It is based on the third-order statistics of given noisy output observations and assumed input random sequences. Semiblind identification approach is thereby named. At each updated order the MA parameters are estimated without computing the residual time series with the result of decreasing the computational complexity and memory consumption. Effects of the AR estimation error on the MA parameters estimation are reduced also. The procedure begins with a first-order AR and MA submodel and updates the model order with an increment of one. At each test order, the corresponding parameters are estimated by using the least squares algorithm to minimize the well-defined cost function. When the test order reaches its true one, the magnitude of the cost function is minimum and may hold stable even when the test order further increases. we can conclude that the estimates of ARMA orders are just at the last turning point of the cost function characteristic curves, where the corresponding parameters can be estimated. Theoretical statements and simulation results illustrate that the method provides accurate estimates of unknown ARMA models despite the output measurements are corrupted by arbitrary Gaussian noises of unknown p.d.f..
     In view of unblind feature of the above MA submodels identification, a blind identification approach is then presented in this study. As per the above AR scheme, the developed method performs order-recursively to estimate MA orders and parameters.
     Because of wide application of nonlinear Volterra systems, the blind identifiability of quadratic nonlinear systems is considered in this thesis.
     Blind identification of quadratic nonlinear systems based on constrained neural networks and autocorrelations of the system outputs is addressed firstly. The driven sequence of the system is assumed an unobservable i.i.d. random variable. Different from the conventional neural network, the proposed network is of a three-layer constrained feedforward topology, in which activation functions hold constant and weights of summing junctions represent the system kernels. The inputs of the network consist of pseudo-random binary signals which are generated in terms of the monitored system's order. Conventional back-propagation policy is used to train the constrained network such that the outputs of the network arrive at the desired second-order statistics of the system output when the weights equal their corresponding exact kernels. Very promising results on identifying nonlinear systems are obtained and discussed through numerical simulations.
     The blind identification methods for ARMA models and quadratic nonlinear systems mentioned above are also utilized to model the real vibration signals measured from a running railway carriage.
     Based on the above development, blind identifiability of quadratic nonlinear systems in higher-order statistics domain is presented in this study. Some nonlinear analytic relations between the third-order cumulants of the outputs and the quadratic kernels are characterized through theoretical statements and simulations. It provides a useful starting point for implementation of truncated Volterra nonlinear system identification using conventional techniques or neural networks methodologies.
     Lastly, an input-output model based on feedforward neural networks for a generic nonlinear dynamic system identification is considered. In the developed neural networks based nonlinear system identification model, the input space of the network consists of input-output past observations of the identified system and the size of the input space is therefore directly related to the system order, i.e., the number of the input space is at least double the system order. The neural network uses a higher-order cumulants based cost function together with an effective training algorithm, the cumulant-based Weights Decoupled Extended Kalman Filter (CWDEKF) strategy. By monitoring the identification error characteristic curve, the system order and subsequently an appropriate network structure for systems identification can be determined. The obtained results are promising which indicate that generic nonlinear systems can be identified by the proposed neural network models.
引文
[1]P.Eykhoff,System Identification,Parameter andState Estimation,John Wiley & Sons,1979.
    [2]R.Johansson,System Modeling and Identification,Prentice Hall,1993.
    [3]A.N.Kolmogorov,Rozanov,A.Yu,On Strong Mixing Conditions for Stationary Gaussian Processes,Theory of Probability and Its Applications,Vol.V,No.2,1960,pp.204-208.
    [4]V.P.Leonov,A.N.Shiryaev,On a Method of Calculation of Semi-invariants,Theory of Probability and Its Applications,Vol.Ⅳ,No.3,1959,pp.319-329.
    [5]J.Sjoberg,Non-Linear System Identification with Neural Networks,PhD dissertation,Dept.Electrical Engineering,Linkoping University,Linkoping,Sweden,1995.
    [6]A.Swami,G.B.Giarmakis,G.Zhou,Bibliography on Higher-Order Statistics,Signal Processing,,Vol.60,1997,pp.65-126.
    [7]方崇智,萧德云,过程辨识,清华大学出版社,1988。
    [8]郑大钟,线性系统理论,清华大学出版社,1990。
    [1]D.R.Brillinger,An Introduction to Polyspectra,Annual of Maths and Statistics,Vol.36,1965,pp.1351-1374.
    [2]P.Eykhoff,System Identification,Parameter and State Estimation,John Wiley & Sons,1979.
    [3]S.Haykin,Neural Networks,A Comprehensive Foundation,Macmillan,NY,1994.
    [4]V.P.Leonov,A.N.Shiryaev,On a Method of Calculation of Semi-invariants,Theory of Probability and Its Applications,Vol.Ⅳ,No.3,1959,pp.319-329.
    [5]L.Ljung,System Identification:Theory for the User,Prentice-Hall,1987.
    [6]J.M.Mendel,Tutorial on Higher-Order Statistics(Spectra)in Signal Processing and System Theory:Theoretical Results and Some Applications,Proc.of IEEE,Vol.79,No.3,1991,pp.278-305.
    [7]C.L.Nikias,M.R.Raghuveer,Bispectrum Estimation:A Digital Signal Processing Framework,Proc.of IEEE,Vol.75,No.7,1987,pp.869-891.
    [8]C.L.Nikias,A.P.Petropuop,Higher-Order Spectra Analysis:A Non-linear Signal Processing Framework,Prentice-Hall,Englewood Cliffs,1993.
    [9]M.B.Priestley,Spectral Analysis and Time Series,Academic Press,San Diego,USA,1981.
    [10]J.Schoukens,R.Pintelon,Identification of Linear Systems,A Practical Guideline to Accurate Modeling,Pergamon Press,1991.
    [11]M.Rosenblatt,J.W.Van Ness,Estimation of the Bispectrum,Annual of Maths and Statistics,Vol.36,1965,pp.1120-1136.
    [12]A.N.Shiryaev,Some Problems in the Spectral Theory of Higher-Order Moments.I,Theory of Probability and Its Applications,Vol.Ⅴ,No.3,1960,pp.265-284.
    [13]J.W.Van Ness,Asymptotic Normality of Bispectral Estimates,Annual of Maths and Statistics,Vol.37,1966,pp.1257-1272.
    [1]D.R.Brillinger,Some Basic Aspects Uses of Higher-Order Spectra,Signal Processing,Vol.36,1994,pp.239-249.
    [2]H.H.Chiang,C.L.Nikias,Adaptive Deconvolution and Identification of Nonminimum Phase FIR Systems Based on Cumulants,IEEE Trans.on Automatic Control,Vol.35,No.Ⅰ,1990,pp.36-47.
    [3]P.M.Clarkson,Optimal and Adaptive Signal Processing,CRC,1993.
    [4]B.Friedlander,The Overdetermined Recursive Instrumental Variable Method,IEEE Trans.on Automatic Control,Vol.29,No.4,1984,pp.27-35.
    [5]G.B.Giarmakis,J.M.Mendel,Identification of Nonminimum Phase System Using Higher Order Statistic,IEEE Trans on Acoust,Speech,Signal Processing,Vol.37.No.3,1989,pp.360-377.
    [6]S.Haykin,Adaptive Filter Theory,Prentice-Hall,1996.
    [7]C.L.Nikias,A.Petropuou,Higher-Order Spectra Analysis,A Nonlinear Signal Processing Framework,Prentice Hall,1993.
    [8]D.C.Shin,C.L.Nikias,Adaptive Interference Canceler for Narrowband and Wideband Interference Using Higher Order Statistics,IEEE Trans.on Signal Processing,Vol.42,1994,pp.2175-2728.
    [9]J.Vidal,A.R.Fonollosa,Causal AR Modeling Using A Linear Combination of Cumulant Slices,Signal Processing,Vol.36,pp.329-340,1994.
    [10]G.Zelniker,F.J.Taylor,Advanced Digital Signal Processing,Theory and Applications,Marcel Dekker,New York,1994.
    [11]B.Friedlander,B.Porat,Adaptive IIR Algorithm Based on High-order Statistics,IEEE Trans.on Acoust,Speech,Signal Processing,Vol.37,No.4,1989,pp.485-495.
    [12]J.A.R.Fonollosa,Adaptive System Identification Based on High-order Statistics,Proc.of ICAPP,Toronto,Canada,1991,pp.3437-3440.
    [13]A.Swami,J.M.Mendel,Adaptive System Identification Using Cumulants,Proc.of ICAPP,New York,US,1988,pp.2248-2251.
    [14]F.Nakajima,F.Kozin,A Characterization of Consistent Estimators,IEEE Trans.on Automatic Control,Vol.24,No.5,1979,pp.758-765.
    [1]J.M.M.Anderson,G.B.Giannakis,Noisy Input/Output System Identification Using Cumulants and the Steiglitz-McBride Algorithm,IEEE Trans.on Signal Processing,Vol.44,No.2,1996,pp.1021-1024.
    [2]G.E.P.Box,G.M.Jenkins,Time Series Analysis,forecasting and control,Holden-Day,San Francisco,USA,1970.
    [3]D.R.Brillinger,Some History of the Study of Higher-Order Moments and Spectra,Proc.Workshop on Higher-Order SpectralAnalysis,Vail,CO,USA,1989,pp.41-45.
    [4]T.W.S.Chow,H.Z.Tan and G.Fei,Third-Order Cumulant RLS Algorithm for Nonminimum ARMA Systems Identification,Signal Processing,Vol.61,No.1,1997,pp.23-38.
    [5]B.N.Datta,Numerical Linear Algebra and Applications,Brooks/Cole Publishing Company,1995.
    [6]A.Delopoulos,G.B.Giannakis,Strongly Consistent Output Only and Input/Output Identification in the Presence of Gaussian Noise,Proc.1CASSP,Toronto,Canada,1991,pp.3521-3524.
    [7]A.Delopoulos,G.B.Giannakis,Consistent Identification of Statistic Linear Systems with Noisy Input-Output Data,Automatica,Vol.38,No.8,1994,pp.1271-1294.
    [8]A.Delopoulos,G.B.Giannakis,Cumulant-Based Identification of Noisy Closed Loop Systems,Int.J.Adaptive Control and Signal Processing,Vol.10,1996,pp.303-317.
    [9]G.B.Giannakis,J.M.Mendel,Identification of Nonminimum Phase System Using High Order Statistics,IEEE Trans.on ASSP,Vol.37,No.3,1989,pp.360-377.
    [10]Y.Inouye,H.Tsuchiya,Identification of Linear Systems Using Input-Output Cumulants,Int.J.Control,Vol.53,No.6,1991,pp.1432-1448.
    [11]L.Ljung,System Identification:Theory for the User,Prentice-Hall,Inc.,1987.
    [12]J.M.Mendel,Tutorial on Higher-Order Statistics(Spectra)in Signal Processing and System Theory:Theoretical Results and Some Applications,Proc.of IEEE,vol.79,No.3,1991,pp. 278-305.
    [13]C.L.Nikias,M.R.Raghuveer,Bispectrum Estimation:A Digital Signal Processing Framework,Proc.of IEEE,Vol.75,No.7,1987,pp.869-891.
    [14]M.B.Priesfley,Spectral Analysis and Time Series,Academic Press,San Diego,USA,1981.
    [15]M.Rosenblatt,J.W.Van Ness,Estimation of the Bispectntm,Ann.Math.Star.,1965,pp.420-436.
    [16]A.Swami,J.M Mendel,ARMA Parameter Estimation Using Only Output Cumulants,IEEE Trans.on ASSP,Vol.38,No.7,1990,pp.1257-1265.
    [1]S.A.Alshebeili,A.E.Cetin and A.N.Venetsanopoulos,An Adaptive System Identification Method Based On Bispectrum,IEEE Trans.on Circuits and Systems,Vol.38,No.8,1991,pp.967-969.
    [2]L.Chen,H.Kusaka,M.Kominami and Q.Y.Yin,Blind Identification of Noncausal AR Models Based On Higher Order Statistics,SignalProcessing,Vol.48,No.1,1996,pp.27-36.
    [3]T.W.S.Chow,H.Z.Tan and G.Fei,Third-Order Cumulant RLS Algorithm for Nonminimum ARMA Systems Identification,Signal Processing,Vol.61,No.1,1997,pp.23-38.
    [4]T.W.S.Chow,H.Z.Tan,Order-Reeursive Blind Identification of ARMA,AR Models Based on Mixed Cumulants,Submitted to Signal Processing,1997.
    [5]J.A.R.Fonollosa,J.Vidal and E.Masgrau,Adaptive System Identification Based On Higher-Order Statistics,Proc.ICASSP,1991,pp.3437-3440.
    [6]B.Friedlander,B.Porat,Adaptive IIR Algorithms Based On Higher-Order Statistics,IEEE Trans.on Acoustics,Speech and Signal Processing,Vol.37,No.4,1989,pp.485-495.
    [7]G.B.Giarmakis,J.M.Mendel,Identification of Non-minimum Phase Systems Using Higher Order Statistics,IEEE Trans.on Acoustics,Speech and Signal Processing,Vol.37,No.3,1989,pp.360-377.
    [8]D.Hatzinakos,C.L.Nikias,Adaptive Filtering Based On Polycepstra,Proc.ICASSP,1989,pp.1175-1178.
    [9]L.Ljung,System Identification:Theory for the User,Prentice-Hall,1987.
    [10]J.M.Mendel,Tutorial on Higher-Order Statistics(Spectra)in Signal Processing and System Theory:Theoretical Results and Some Applications,Proc.of IEEE,Vol.79,No.3,1991,pp.278-305.
    [11]A.K.Nandi,Blind Identification of FIR Systems Using Third Order Cumulants,Signal Processing,Vol.39,Nos.1-2,pp.131-147,1994.
    [12]C.L.Nikias,A.P.Petropuop,Higher-Order Spectra Analysis:A non-linear signal processing framework,Prentice-Hall,Englewood Cliffs,1993.
    [13]A.Swami,J.M.Mendel,Adaptive System Identification Using Cumulants,Proc.ICASSP,1988,pp.2248-2251.
    [14]A.Swami,J.M.Mendel,ARMA Parameter Estimation Using Only Output Cumulants,IEEE Trans.on Acoustics,Speech and Signal Processing,Vol.38,No.7,July 1990.
    [15]J.Y.Tourneret,B.Lacaze,MA Blind Identification Based On Higher Order Statistics Application to Binary-Driven Systems,Signal Processing,Vol.51,No.1,1996,pp.15-28.
    [16]J.K.Tugnait,Fitting MA Models to Linear Non-Gaussian Random Fields Using Higher Order Cumulants,IEEE Trans.on Signal Processing,Vol.45,No.3,1997,pp.1045-1050.
    [17]X.D.Zhang,Y.S.Zhang,FIR System Identification Using Higher Order Statistics Alone,IEEE Trans.Signal Processing,Vol.42,No.10,1994.
    [18]X.D.Zhang,Y.Song and Y.D.Li,Adaptive Identification of Non-minimum Phase ARMA Models Using Higher Order Cumulants Alone,IEEE Trans.on Signal Processing,Vol.44,No.5,1996,pp.1285-1288.
    [19]H.Z.Tan,Zong-Yuan Mao,T.W.S.Chow,Order-Reeursive Consistent Identification of ARMA(AR)Systems with Noisy Output Cumulants,已录用,电路与系统学报,1997.
    [1]T.W.S.Chow,H.Z.Tan and G.Fei,Third-Order Cumulant RLS Algorithm for Nonmiimum ARMA Systems Identification,Signal Processing,Vol.61,No.1,1997,pp.23-38.
    [2]B.Friedlander,B.Porat,Adaptive IIR Algorithm Based on High-Order Statistics,IEEE Transactions on Acoustics,Speech,and Signal Processing,Vol.37,1989,pp.485-495.
    [3]G.B.Giannakis,On the Identifiability of Non-Gaussian ARMA Models Using Cumulants,IEEE Transactions on Automatic Control,Vol.35,1990,pp.18-26.
    [4]G.B.Giannakis,J.M.Mendel,Identification of Nonminimum Phase Systems Using Higher Order Statistics,IEEE Transactions on Acoustics,Speech,and Signal Processing,Vol.37,1989,pp.360-377.
    [5]G.B.Giannakis,J.M.Mendel,Cumulant-Based Order Determination of Non-Gaussian ARMA Models,IEEE Transactions on Acoustics,Speech,and Signal Processing,Vol.38,1990,pp.1411-1423.
    [6]G.B.Giannakis,A.Swami,Identifiability of General ARMA Processes Using Linear Cumulantbased Estimators,Automatica,Vol.28,1992,pp.771-779.
    [7]R.Johansson,System Modeling and Identification,New Jersey,USA,Prentice-Hall,1993.
    [8]C.L.Nikias,M.R.Raghuveer,Bispectrum Estimation:A Digital Signal Processing Framework,Proceedings of IEEE,Vol.75,1987,pp.869-891.
    [9]A.Swami,J.M.Mendel,ARMA Parameter Estimation Using Only Output Cumulants,IEEE Transactions on Acoustics,Speech,and Signal Processing,Vol.38,1990,pp.1257-1265.
    [10]J.Vidal,J.A.R.Fonollosa,Adaptive Blind System Identification Using Weighted Cumulant Slices,International Journal of Adaptive Control and Signal Processing,Vol.10,1996,pp.213-237.
    [1]A.Annaswamy,S.H.Yu,θ-Adaptive Neural Networks:A New Approach to Parameter Estimation,IEEE Trans.on Neural Networks,Vol.7,No.4,1996,pp.907-918.
    [2]S.A.Billings,Identification of Nonlinear Systems-A Survey,Proc.of IEE,Pt.D.,Vol.127,1980,pp.272-285.
    [3]H.H.Chiang,C.L.Nikias,A.N.Venetsanopoulos,Efficient Implementations of Quadratic Digital Filters,IEEE Trans.on ASSP,Vol.34,No.6,1986,pp.1511-1528.
    [4]Y.S.Cho,E.J.Powers,Estimation of Quadratically Nonlinear Systems with an I.I.D.Input,Proc.of ICASSP,Canada,1991,pp.3117-3120.
    [5]A.J.Fossard,D.Normand-cyrot,Nonlinear Systems,Modeling and Estimation,Chapman & Hall,London,1995.
    [6]H.P.Graf,L.D.Jackel,W.E.Hubbard,VLSI Implementation of a Neural Network Model,Computer,1988,pp.41-49.
    [7]K.Godfrey,Perturbation Signals for System Identification,Prentice Hall,Englewood,NJ,1993.
    [8]S.Haykin,Neural Networks,A Comprehensive Foundation,Macmillan,NY,1994.
    [9]S.Haykin,Blind Deconvolution,Prentice Hall,Englewood,NJ,1994.
    [10]K.I.Kim,E.J.Powers,A Digital Method of Modeling Quadratically Nonlinear Systems with a General Random Input,IEEE Trans.on A SSP,Vol.36,No.11,1988,pp.1758-1769.
    [11]T.Koh,E J.Powers,Second-Order Volterra Filtering and Its Application to Nonlinear System Identification,IEEE Trans.on ASSP,Vol.33,No.6,1985,pp.1445-1455.
    [12]B.G.Mertzios,Parallel Modeling and Structure of Nonlinear Volterra Discrete Systems,IEEE Trans.on Circuits and Systems,Pt.Ⅰ,Vol.41,No.5,1994,pp.359-371.
    [13]S.U.Pillai,T.I.Shim,Spectrum Estimation and System Identification,Springer-Verlag,NY,1993.
    [14]M.Schetzen,The Volterra and Wiener Theories of Nonlinear Systems,John Wiley & Sons,NY,1980.
    [15]G.L.Sicuranza,Quadratic Filters for Signal Processing,Proc.of IEEE,Vol.80,No.8,1992,pp.1263-1285.
    [16]J.Sjoberg,Non-Linear System Identification with Neural Networks,ph.D.dissertation,Dept.Electrical Engineering,Linkoping University,Linkoping,Sweden,1995.
    [17]J.Sjoberg,Q.Zhang,L.Ljung,A.Benveniste,B.Delyon,P.Glorennec,H.Hjalmarsson and A.Juditsky,Nonlinear Black-box Modeling in System Identification:a Unified Overview,Automatica,Vol.31,No.12,1995,pp.1691-1724.
    [18]V.Solo,X.Kong,Adaptive Signal Processing Algorithms,Stability and Performance,Prentice Hall,Englewoed,NJ,1995.
    [1]R.L.Florom,Improved Wayside Train Inspection Program,Meeting Report,Chicago Technical Center,The Association of American Railroads,USA,1994.
    [1]P.Bondon,On the Identifiability of a Quadratic Stochastic System,IEEE Signal Processing Workshop on Higher-Order Statistics,1993,pp.46-50.
    [2]T.W.S.Chow,H.Z.Tan and G.Fei,Third-Order Cumulant RLS Algorithm for Nonminimum ARMA Systems Identification,Signal Processing,Vol.61,1997,pp.23-38.
    [3]H.Z.Tan,T.W.S.Chow and K.T.Ng,A Constrained Neural Networks Based Approach for Blind Identification of Quadratic Systems,in press,Int.J.Knowledge-Based Intelligent Engineering,1997.
    [4]P.Koukoulas,N.Kalouptsidis,Nonlinear System Identification Using Gaussian Inputs,IEEE Trans.on Signal Processing,Vol.43,1995,pp.1831-1841.
    [5]L.Ljung,System Identification:Theory for the User,Prentice-Hall,1987.
    [6]J.M.Mendel,Lessons in Estimation Theory for Signal Processing,Communications,and Control,Prentice-Hall,1995.
    [7]W.J.Rugh,Nonlinear System Theory:The Volterra / Wiener Approach,Baltimore,Md:Johns Hopkins University Press,1981.
    [8]G.L.Sicuranza,Quadratic Filters for Signal Processing,Proc.of IEEE,Vol.80,1992,pp.1263-1285.
    [9]C.H.Tseng,E.J.Powers,Adaptive Identification of Third-Order Frequency Domain Volterra Kernels,Int.J.Adaptive Control and Signal Processing,Vol.10,1996,pp.319-342.
    [1]E.D.Sontag,Polynomial Response Maps.Lecture Notes in Control and Information Sciences 13,Berlin:Sprmger-Verlag,1979.
    [2]W.J.Rugh,Nonlinear System Theory:The Volterra/Wiener Approach,Baltimore,Md:Johns Hopkins University Press,1981.
    [3]S.W.Nam,E.J.Powers,Application of Higher Order Spectral Analysis to Cubically Nonlinear System Identification,IEEE Trans.on Signal Processing,Vol.42,No.7,pp.1746-1765,1994.
    [4]P.Koukoulas,N.Kalouptsidis,Nonlinear Systems Identification Using Gaussian Inputs,IEEE Trans.on Signal Processing,Vol.43,No.8,pp.1831-1841,1995.
    [5]H.W.Chen,Modeling and Identification of Parallel Nonlinear Systems:Structural Classification and Parameter Estimation Methods,Proceedings of the IEEE,Vol.83,ISS:1,pp.39-66,1995.
    [6]5.Leontaritis,S.A.Billings,Input-Output Parametric Models for Nonlinear Systems,Part Ⅰ:Deterministic Nonlinear Systems.International Journal of Control,Vol.41,pp.303-328,1985.
    [7]S.Chen,S.A.Billings,Representation of Nonlinear Systems:the NARMA Model,International Journal of Control,Vol.49,No.3,pp.1013-1032,1989.
    [8]S.Chen,S.A.Billings,and W.Luo,Orthogonal Least Squares Methods and Their Application to Nonlinear System Identification,International Journal of Control,Vol.50,pp.1873-1896,1989.
    [9]S.A.Billings,S.Chen,Identification of Nonlinear Rational Systems Using a Prediction-Error Estimation Algorithm,Int.J.Sys.Sci,Vol.20,No.3,pp.467-494,1989.
    [10]S.A.Billings,Q.M.Zhu,Rational Model Identification Using an Extended Least-Square Algorithm,International Journal of Control,Vol.54,No.3,pp.529-546,1991.
    [11]Q.M.Zhu,S.A.Billings,Recursive Parameter Estimation for Nonlinear Rational Models,Journal of Systems Engineering,Vol.1,pp.63-76,1991.
    [12]S.Chen,S.A.Billings,Prediction-Error Estimation Algorithm for Nonlinear Output-Affine Systems,International Journal of Control,Vol.47,pp.309-332,1988.
    [13]S.A.Billings,M.J.Korenberg,and S.Chen,Identification of Nonlinear Output-Affme Systems Using an Orthogonal Least-Squares Algorithm.Int.J.Sys.Sci,Vol.19,pp.1559-1568,1988.
    [14]S.Chen,S.A.Billings,C.F.N.Cowan,and P.M.Grant,Nonlinear Systems Identification Using Radial Basis Functions,Int.J.Sys.Sci,Vol.21,Iss.12,pp.2513-2539,1991.
    [15]D.S.Broomhead,D.Lowe,Multivariable Functional Interpolation and Adaptive Networks,Complex Systems,Vol.2,pp.321-355,1988.
    [16]E.D.Sontag,Realization Theory of Discrete-Time Nonlinear Systems:Part Ⅰ- The Bounded Case,IEEE Transactions on Circuits Systems,Vol.26,pp.342-356,1979.
    [17]K.S.Narendra,K.Parthasarthy,Identification and Control of Dynamical Systems Using Neural Networks,IEEE Trans.on Neural Networks,Vol.1,No.1,pp.4-27,1990.
    [18]A.V.Levin,K.S.Narendra,Identification Using Feedforward Networks,Neural Computation,Vol.7,pp.349-357,1995.
    [19]L.Jinn,P.N.Nikiforur and M.M.Gupta,Adaptive Model Reference Control of Discrete-time Nonlinear Systems Using Neural Networks,Control Theory and Advanced Technology,Vol.10,No.4,Part 3,pp.1379-1399,1995.
    [20]L.Jinn,P.N.Nikiforuk and M.M.Gupta,Adaptive Control of Discrete-time Nonlinear Systems Using Recurrent Neural Networks.Proc.IEE,Pt.D,Control Theory and Applications,Vol.44,pp.169-176,1994.
    [21]G.V.Puskorius,L A.Feldkamp,Neurocontrol of Nonlinear Dynamical Systems with Kalman Filter Trained Recurrent Networks,IEEE Trans.on Neural Networks,Vol.5,No.2,pp.279-297,1994.
    [22]T.L.Ruchti,R.H.Brown,and J.J.Garside,Kalman Based Artificial Neural Network Training Algorithms for Nonlinear System Identification,Proceedings of the 1993 International Symposium on Intelligent Control,pp.582-587,1993.
    [23]A.U.Levin and K.S.Narendra,Control of nonlinear dynamical systems using neural networks, Part Ⅱ:Observability,Identification,and Control,IEEE Transactions on Neural Networks,Vol.7,No.1,1996.
    [24]V.Y.Kreinovich,Arbitrary nonlinearity is sufficient to represent all functions by neural networks:A Theorem,NeuralNetworks,Vol.4,pp.381-383,1991.
    [25]S.Shah,F.Palmieri,and M.Datum,Optimal Filtering Algorithms for Fast Learning in Feedforward Neural Networks,Neural Networks,Vol.5,pp.779-787,1992.
    [26]D.W.Ruck,S.K.Rogers,M.Kabrisky,P.Maybeck and M.E.Oxley,Comparative Analysis of Backpropagation and the Extended Kalman Filter for Training Multilayer Perceptrons,IEEE Trans.on Pattern Analysis Machine Intelligence,PAM1-14,No.6,pp.686-691,1994.
    [27]J.M.Mendel,Tutorial on Higher-order Statistics(Spectra)in Signal Processing and System Theory:Theoretical Results and Some Applications,Proc.IEEE,Vol.79,pp.278-305,1991.
    [28]C.T.Leung,T.W.S.Chow and Y.F.Yam,A Novel Least Third-order Cumulants Objective Function,Neural Processing Letter,Vol.3,No.2,pp.91-99,1996.
    [29]T.W.S.Chow,H.Z.Tan and G.Fei,Third-Order Cumulant RLS Algorithm for Nonminirnum ARMA Systems Identification,Signal Processing,Vol.61,No.1,pp.23-38,199Z
    [30]A.U.Levin and K.S.Narendra,Recursive Identification Using Feedforward Neural Networks,Int.J.Control,Vol.61,No.3,pp.533-547,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700