碲化镉量子点对原代肝、肾细胞及氧化应激蛋白质的毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子点(Quantum dots, QDs)是由IIB-VIA族元素(如CdSe, CdTe等)或IIIA-VA族元素(如InP, GaAs等)组成的粒径范围从2nm至100nm的半导体纳米晶体。与传统有机荧光材料相比,量子点因其具有发射光谱窄而对称、发射波长可调、激发光谱宽、抗光漂白性强等独特的光学特性,量子点在用于荧光探针、荧光共振能量转移中作为能量给体以及作为标记物进行光学成像等方面展现出巨大潜力。由于量子点中含有重金属元素,研究者也逐渐意识到量子点可能存在的潜在危害。研究表明肝脏以及肾脏是含镉量子点的主要毒性靶器官,也是体内镉的主要蓄积部位及靶器官。肝细胞常被用作评价镉的细胞毒性,肾小管上皮细胞是研究肾毒性的模式细胞。本文中我们选择原代肝细胞以及肾小管上皮细胞研究了水相合成的CdTe量子点的细胞毒性。此外,研究发现某些纳米材料在生物介质中会首先与生物大分子结合。这种结合赋予纳米粒子新的“生物识别身份”并决定着其后细胞或者组织器官的反应,所以有必要对量子点与其毒性作用发挥相关蛋白质(尤其是氧化应激蛋白质)的相互作用进行研究。本文从细胞水平和分子水平上探讨了CdTe量子点的细胞毒性效应。主要研究内容包括以下几个方面:
     首先,我们利用“一锅法”合成了谷胱甘肽包被的CdTe量子点,并对合成的CdTe量子点进行了表征。
     随后,利用CCK-8法初步分析了CdTe量子点的细胞毒性,从整体上评价了CdTe量子点对小鼠肾小管上皮细胞及肝细胞活力的影响。在此基础上主要利用流式细胞术探讨了经量子点暴露后含量子点及镉离子的细胞比例与量子点细胞毒性的关系、细胞对CdTe量子点所引发的氧化应激反应(RC、MDA含量以及过氧化氢酶、SOD的活性指标)以及氧化应激失效导致的细胞凋亡。另外,通过单细胞凝胶电泳技术研究了CdTe量子点产生的基因毒性。得出的主要结论有:(1)CdTe量子点对这两种细胞均产生了细胞毒性。肝细胞对CdTe量子点的耐受性要高于肾小管上皮细胞。(2)CdTe量子点能够进入两种细胞内。经CdTe量子点染毒后仅少数细胞内含Cd2+。随着染毒浓度的增大,含量子点的细胞数目不断增加。倒置荧光显微镜下的观察也证实了量子点在细胞内的存在。(3)CdTe量子点在细胞内释放出镉离子。随着暴露浓度的增大,含Cd2+的细胞比例呈逐渐上升趋势。细胞内Cd2+浓度的上升与CCK-8测得的细胞活力下降呈现出一定的相关性。“木马”效应解释了细胞内存在镉离子的现象。(4)CdTe量子点诱发细胞产生氧化应激效应。细胞内ROS产生量随着CdTe量子点暴露浓度的增加而增加。对两种细胞内与氧化应激相关酶的研究发现SOD的活力上升,而过氧化氢酶的活力出现下降。(5)CdTe量子点诱导细胞凋亡。经CdTe量子点暴露后,小鼠肾小管上皮细胞及肝细胞中处于凋亡期的细胞占比出现上升。(6)CdTe量子点造成细胞DNA断裂损伤。Olive尾距及尾部DNA含量指标随着CdTe量子点暴露浓度的增加均呈现明显上升趋势。
     之后,运用光谱学及等温滴定量热技术等方法分别研究了谷胱甘肽包被的CdTe量子点与血清白蛋白、过氧化氢酶以及Cu/Zn-SOD的相互作用。研究结果表明CdTe量子点与这三种蛋白的相互作用较弱,未改变蛋白的结构。疏水力是CdTe量子点与这三种蛋白相互作用过程中的主要驱动力。对过氧化氢酶以及SOD的活性分析显示CdTe量子点对这两种抗氧化酶的功能没有产生影响。
     基于流式细胞术、光谱学及等温滴定量热等实验技术,本文从细胞及分子水平对水相合成的CdTe量子点的毒性进行了探讨,研究结果有助于设计及合成生物相容性及稳定性更佳的量子点,并为合理利用并最大限度地降低量子点的负面效应提供了理论参考。
Quantum dots are group IIB-VIA (eg, CdSe, CdTe) or group IIIA-VA (eg, InP, GaAs) semiconductor nanocrystals in the size range of2-100nm. Due to their symmetric and narrow emission spectrum, tunable fluorescence emission, broad excitation spectra and high resistance to photobleaching, quantum dots have superior optical properties over other organic fluorescent dyes, and present a broad potential for biomedical applications. With the development of quantum dots applications, chance of people exposed to such substances is growing. Numerous studies have shown that liver and kidney are the main target organs for cadmium-based quantum dots, which are also found for cadmium. Hepatocytes are widely used for evaluation of cytotoxicity of cadmium, and tubular epithelial cells constitute an established model in renal toxicology. Therefore, primary hepatocytes and renal tubular epithelial cells were used in this research as an evaluation model for cytotoxicity of CdTe QDs. In addition, nanomaterials may be covered with a 'corona' of biological molecules like proteins immediately upon contact with the physiological environment. This combination gives these nanoparticles new "biological identity" and subsequently determine the response of cells or organs, hence we also investigated the interactions of CdTe QDs and proteins, which related to the cytotoxicity of quantum dots. In this research, we explored the toxicity of CdTe QDs from the cellular and molecular perspectives. The major works and results are as follows:
     Firstly, glutathione-capped CdTe QDs were synthesized via a one pot method, and the characterization of the CdTe QDs was presented.
     The cytotoxicity of CdTe QDs were preliminary analysed by assessment of cell viability was performed using the Cell Counting Kit-8(CCK-8) assay. To investigate cytotoxicity mechanisms of CdTe QDs, the cells containing CdTe QDs and cadmium ion, ROS content, cell oxidative damage (MDA content, the activity of catalase and SOD), cell apoptosis were determined. Moreover, single cell gel electrophoresis assay was employed to study the genotoxicity of CdTe QDs. The experimental results showed that:(1) CdTe QDs causes cytotoxicity to these two types of cells. CdTe QDs induced more serious cytotoxicity injury on renal tubular epithelial cells than hepatocytes.(2) CdTe QDs can enter these two cells. Only a small number of cells were found to contain Cd2+. The number of cells containing CdTe QDs increased with the exposure concentration. The observation from inverted fluorescence microscope confirmed the presence of the QDs in the cells.(3) Cd2+was released from the CdTe QDs after internalization in cells. The number of cells containing Cd2+increased with the exposure concentration. Trojan horse-type mechanism explained the release of cadmium ions in the renal tubular epithelial cells and hepatocytes.(4) CdTe QDs induced oxidative damage to these two types of cells. Cellular ROS content increased with the exposure dose; MDA content and the activity of SOD increased synchronous with QDs concentrations, while the activity of catalase declined.(5) The CdTe QDs induced apoptosis in renal tubular epithelial cells and hepatocytes.(6) CdTe QDs induced DNA damage. Olive tail moment and tail DNA content increased with exposure concentrations of CdTe QDs.
     Then, interactions between CdTe QDs and proteins (serum albumin, catalase, Cu/Zn superoxide dismutases) were investigated using spectroscopy, isothermal titration calorimetry. The results show that the interactions between CdTe QDs and these three proteins are weak, and no profound conformational change of these proteins occurs. In addition, the analysis of catalase and Cu/Zn-SOD activity showed that CdTe QDs did not affect the function of these two antioxidant enzyme.
     In this research, we explored the toxicity of CdTe QDs from the cellular and molecular perspectives, which provides valuable information to understand the toxicity of quantum dots in vitro and can be used to assist in the design of biocompatible and stable quantum dots.
引文
[1]Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. Journal of the American Chemical Society,1993,115(19):8706-8715.
    [2]Peng X G, Wickham J, Alivisatos A P. Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ colloidal semiconductor nanocrystal growth:"Focusing" of size distributions [J]. Journal of the American Chemical Society,1998,120(21):5343-5344.
    [3]Brus L. Electronic wave functions in semiconductor clusters:experiment and theory [J]. The Journal of Physical Chemistry,1986,90(12):2555-2560.
    [4]Brus L. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites [J]. The Journal of Chemical Physics,1983, 79(11):5566-5571.
    [5]Brus L E. Electron-electron and electron-hole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state [J]. The Journal of Chemical Physics,1984,80(9):4403-4409.
    [6]Weiss P S. Kavli Prizes in Nanoscience [J]. ACS Nano,2008,2(7):1321-1321.
    [7]Biju V, Itoh T, Ishikawa M. Delivering quantum dots to cells:bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging [J]. Chemical Society Reviews,2010,39(8):3031-3056.
    [8]Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery [J]. Chemical Society Reviews,2010,39(11):4326-4354.
    [9]Colvin V, Schlamp M, Alivisatos A. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer [J]. Nature,1994,370:354-357.
    [10]Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science,1998,281(5385):2013-2016.
    [11]Chan W C, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science,1998,281(5385):2016-2018.
    [12]Peng Z, Peng X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor [J]. Journal of the American Chemical Society,2001,123(1):183-184.
    [13]Gaponik N, Talapin D V, Rogach A L, et al. Thiol-capping of CdTe nanocrystals:An alternative to organometallic synthetic routes [J]. Journal of Physical Chemistry B,2002, 106(29):7177-7185.
    [14]Medintz I L, Clapp A R, Mattoussi H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors [J]. Nature Materials,2003,2(9):630-638.
    [15]Gao X, Cui Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nature Biotechnology,2004,22(8):969-976.
    [16]Derfus A M, Chan W C, Bhatia S N. Probing the cytotoxicity of semiconductor quantum dots [J]. Nano Letters,2004,4(1):11-18.
    [17]Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, et al. Quantum dots versus organic dyes as fluorescent labels [J]. Nature Methods,2008,5(9):763-775.
    [18]Gao X, Nie S. Quantum dot-encoded mesoporous beads with high brightness and uniformity:rapid readout using flow cytometry [J]. Analytical Chemistry,2004,76(8): 2406-2410.
    [19]Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots [J]. Nature Biotechnology,2003,21(1): 41-46.
    [20]Clapp A, Medintz I, Mauro J, et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors [J]. Journal of the American Chemical Society,2004,126(1):301-310.
    [21]Jaiswal J K, Mattoussi H, Mauro J M, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates [J]. Nature Biotechnology,2003,21(1):47-51.
    [22]Han M, Gao X, Su J, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules [J]. Nature Biotechnology,2001,19(7):631-635.
    [23]Chan W, Maxwell D, Gao X, et al. Luminescent quantum dots for multiplexed biological detection and imaging [J]. Current Opinion in Biotechnology,2002,13(1):40-46.
    [24]Gaponik N, Rogach A L. Thiol-capped CdTe nanocrystals:progress and perspectives of the related research fields [J]. Physical Chemistry Chemical Physics,2010,12(31): 8685-8693.
    [25]Chu M Q, Wu Q, Wang J, et al. In vitro and in vivo transdermal delivery capacity of quantum dots through mouse skin [J]. Nanotechnology,2007,18(45): 455103.1-455103.6.
    [26]Yang R S, Chang L W, Wu J P, et al. Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice:ICP-MS quantitative assessment [J]. Environmental Health Perspectives,2007,115(9):1339-1343.
    [27]Hauck T S, Anderson R E, Fischer H C, et al. In vivo quantum-dot toxicity assessment [J]. Small,2010,6(1):138-144.
    [28]Ye L, Yong K, Liu L, et al. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots [J]. Nature Nanotechnology,2012,7(7): 453-458.
    [29]Katsumiti A, Gilliland D, Arostegui I, et al. Cytotoxicity and cellular mechanisms involved in the toxicity of CdS quantum dots in hemocytes and gill cells of the mussel mytilus galloprovincialis [J]. Aquatic Toxicology, http://dx.doi.Org/10.1016/j.aquatox.2014.02.003.
    [30]Casas J S, Garcfa-Tasende M S, Sanchez A, et al. Synthesis, characterization and in vitro toxicity assessment of DMPS-capped CdTe quantum dots [J]. Polyhedron,2014,70(0): 77-84.
    [31]Su Y, Hu M, Fan C, et al. The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties [J]. Biomaterials, 2010,31(18):4829-4834.
    [32]Su Y, He Y, Lu H, et al. The cytotoxicity of cadmium based, aqueous phase-synthesized, quantum dots and its modulation by surface coating [J]. Biomaterials,2009,30(1):19-25.
    [33]Lovric J, Bazzi H S, Cuie Y, et al. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots [J]. Journal of Molecular Medicine,2005, 83(5):377-385.
    [34]Chang S Q, Dai Y D, Kang B, et al. UV-enhanced cytotoxicity of thiol-capped CdTe quantum dots in human pancreatic carcinoma cells [J]. Toxicology Letters,2009,188(2): 104-111.
    [35]Li Y, Zhou Y, Wang H Y, et al. Chirality of glutathione surface coating affects the cytotoxicity of quantum dots [J]. Angewandte Chemie International Edition,2011,50(26): 5860-5864.
    [36]Stern S T, Zolnik B S, Mcleland C B, et al. Induction of autophagy in porcine kidney cells by quantum dots:a common cellular response to nanomaterials? [J]. Toxicological Sciences,2008,106(1):140-152.
    [37]Seleverstov O, Zabirnyk O, Zschamack M, et al. Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation [J]. Nano Letters,2006,6(12): 2826-2832.
    [38]Lovric J, Cho S J, Winnik F M, et al. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death [J]. Chemistry & Biology,2005,12(11):1227-1234.
    [39]Cho S J, Maysinger D, Jain M, et al. Long-Term Exposure to CdTe Quantum Dots Causes Functional Impairments in Live Cells [J]. Langmuir,2007,23(4):1974-1980.
    [40]Chibli H, Carlini L, Park S, et al. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation [J]. Nanoscale,2011,3(6):2552-2559.
    [41]Gobe G, Crane D. Mitochondria, reactive oxygen species and cadmium toxicity in the kidney [J]. Toxicology Letters,2010,198(1):49-55.
    [42]Cuypers A, Plusquin M, Remans T, et al. Cadmium stress:an oxidative challenge [J]. BioMetals,2010,23(5):927-940.
    [43]Stohs S J, Bagchi D. Oxidative mechanisms in the toxicity of metal ions [J]. Free Radical Biology and Medicine,1995,18(2):321-336.
    [44]Hossain Z, Huq F. Studies on the interaction between Cd2+ions and nucleobases and nucleotides [J]. Journal of Inorganic Biochemistry,2002,90(3-4):97-105.
    [45]Prakash A, Rao K, Dameron C. Cadmium inhibits BPDE alkylation of DNA in the major groove but not in the minor groove [J]. Biochemical and Biophysical Research Communications,1998,244(1):198-203.
    [46]Kirchner C, Liedl T, Kudera S, et al. Cytotoxicity of Colloidal CdSe and CdSe/ZnS Nanoparticles [J]. Nano letters,2005,5(2):331-338.
    [47]Higuchi Y. Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress [J]. Biochemical Pharmacology,2003,66(8):1527-1535.
    [48]Yong K T, Law W C, Hu R, et al. Nanotoxicity assessment of quantum dots:from cellular to primate studies [J]. Chemical Society Reviews,2013,42(3):1236-1250.
    [49]Chan W H, Shiao N H, Lu P Z. CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals [J]. Toxicology Letters,2006,167(3):191-200.
    [50]Clift M, Boyles M, Brown D, et al. An investigation into the potential for different surface-coated quantum dots to cause oxidative stress and affect macrophage cell signalling in vitro [J]. Nanotoxicology,2010,4(2):139-149.
    [51]Singh N, Manshian B, Jenkins G J, et al. NanoGenotoxicology:the DNA damaging potential of engineered nanomaterials [J]. Biomaterials,2009,30(23-24):3891-3914.
    [52]Hoshino A, Fujioka K, Oku T, et al. Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification [J]. Nano letters,2004, 4(11):2163-2169.
    [53]Romoser A A, Chen P L, Berg J M, et al. Quantum dots trigger immunomodulation of the NFkappaB pathway in human skin cells [J]. Molecular Immunology,2011,48(12-13): 1349-1359.
    [54]章晨,董正伟,沈筱筠,等.量子点540诱导人皮肤成纤维细胞DNA双链断裂[J].毒理学杂志,2008,22(3):177-180.
    [55]Mahto S K, Park C, Yoon T H, et al. Assessment of cytocompatibility of surface-modified CdSe/ZnSe quantum dots for BALB/3T3 fibroblast cells [J]. Toxicology in Vitro,2010, 24(4):1070-1077.
    [56]Nagy A, Steinbruck A, Gao J, et al. Comprehensive analysis of the effects of CdSe quantum dot size, surface charge, and functionalization on primary human lung cells [J]. ACS Nano,2012,6(6):4748-4762.
    [57]Park J, Nam J, Won N, et al. Compact and Stable Quantum Dots with Positive, Negative, or Zwitterionic Surface:Specific Cell Interactions and Non-Specific Adsorptions by the Surface Charges [J]. Advanced Functional Materials,2011,21(9):1558-1566.
    [58]Silva R A, Urzua M D, Petri D F, et al. Protein adsorption onto polyelectrolyte layers: effects of protein hydrophobicity and charge anisotropy [J]. Langmuir,2010,26(17): 14032-14038.
    [59]Cedervall T, Lynch I, Lindman S, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles [J]. Proceedings of the National Academy of Sciences of the United States of America,2007, 104(7):2050-2055.
    [60]Mahmoudi M, Sant S, Wang B, et al. Superparamagnetic iron oxide nanoparticles (SPIONs):development, surface modification and applications in chemotherapy [J]. Advanced Drug Delivery Reviews,2011,63(1-2):24-46.
    [61]Lynch Ⅰ, Dawson K A. Protein-nanoparticle interactions [J]. Nano Today,2008,3(1): 40-7.
    [62]Mahmoudi M, Lynch I, Ejtehadi M R, et al. Protein-nanoparticle interactions: opportunities and challenges [J]. Chemical Reviews,2011,111(9):5610-5637.
    [63]Ge C, Du J, Zhao L, et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity [J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(41):16968-16973.
    [64]Liang J G, Cheng Y P, Han H Y. Study on the interaction between bovine serum albumin and CdTe quantum dots with spectroscopic techniques [J]. Journal of Molecular Structure, 2008,892(1-3):116-120.
    [65]Shen X C, Liou X Y, Ye L P, et al. Spectroscopic studies on the interaction between human hemoglobin and CdS quantum dots [J]. Journal of Colloid and Interface Science, 2007,311(2):400-406.
    [66]李晓明,陈楠,苏媛嫒,等.镉系量子点细胞毒性的研究进展[J].科学通报,2013,58(15):1393-1402.
    [67]Chen Z, Chen H, Meng H, et al. Bio-distribution and metabolic paths of silica coated CdSeS quantum dots [J]. Toxicology and Applied Pharmacology,2008,230(3):364-371.
    [68]Han Y, Xie G, Sun Z, et al. Plasma kinetics and biodistribution of water-soluble CdTe quantum dots in mice:a comparison between Cd and Te [J]. Journal of Nanoparticle Research,2011,13(10):5373-5380.
    [69]Sharma R, Street J, Shupe J, et al. Accumulation and Depletion of Cadmium and Lead in Tissues and Milk of Lactating Cows Fed Small Amounts of These Metals< sup> 1, 2 [J]. Journal of Dairy Science,1982,65(6):972-979.
    [70]Kataranovski M, Mirkov I, Belij S, et al. Lungs:remote inflammatory target of systemic cadmium administration in rats [J]. Environmental Toxicology and Pharmacology,2009, 28(2):225-231.
    [71]Yazihan N, Kocak M K, Akcil E, et al. Role of midkine in cadmium-induced liver, heart and kidney damage [J]. Human & Experimental Toxicology,2011,30(5):391-397.
    [72]Koizumi T, Shirakura H, Kumagai H, et al. Mechanism of cadmium-induced cytotoxicity in rat hepatocytes:cadmium-induced active oxygen-related permeability changes of the plasma membrane [J]. Toxicology,1996,114(2):125-134.
    [73]Zheng H, Liu J, Liu Y, et al. Hepatocytes from metallothionein-I and II knock-out mice are sensitive to cadmium-and tert-butylhydroperoxide-induced cytotoxicity [J]. Toxicology Letters,1996,87(2-3):139-145.
    [74]Miiller L. Consequences of cadmium toxicity in rat hepatocytes:mitochondrial dysfunction and lipid peroxidation [J]. Toxicology,1986,40(3):285-295.
    [75]Boogaard P J, Nagelkerke J F, Mulder G J. Renal proximal tubular cells in suspension or in primary culture as in vitro models to study nephrotoxicity [J]. Chemico-Biological Interactions,1990,76(3):251-291.
    [76]Gstraunthaler G, Steinmassl D, Pfaller W. Renal cell cultures:a tool for studying tubular function and nephrotoxicity [J]. Toxicology Letters,1990,53(1):1-7.
    [77]Bao H, Wang E, Dong S. One-Pot Synthesis of CdTe Nanocrystals and Shape Control of Luminescent CdTe-Cystine Nanocomposites [J]. Small,2006,2(4):476-480.
    [78]包海峰.纳米结构材料的合成、组装及表征[D];长春:中国科学院长春应用化学研究所2005.
    [79]Wang L, Gong H B, Lv R J, et al. A One-Pot Aqueous Synthesis of High-Luminescent Thiol-Capped CdTe and Its Bioapplication [J]. Journal of Nanoscience and Nanotechnology,2010,10(8):5106-5110.
    [80]Qian H, Dong C, Weng J, et al. Facile One-Pot Synthesis of Luminescent, Water-Soluble, and Biocompatible Glutathione-Coated CdTe Nanocrystals [J]. Small,2006,2(6): 747-751.
    [81]Yu Y, Xu L, Chen J, et al. Hydrothermal synthesis of GSH-TGA co-capped CdTe quantum dots and their application in labeling colorectal cancer cells [J]. Colloids and Surfaces B:Biointerfaces,2012,95(0):247-253.
    [82]Kuang R, Kuang X, Pan S, et al. Synthesis of cysteamine-coated CdTe quantum dots for the detection of bisphenol A [J]. Microchimica Acta,2010,169(1-2):109-115.
    [83]李峥,汪勇先,张国欣,等.稳定剂对水相制备CdTe量子点的荧光性能和细胞毒性影响研究[J].无机材料学报,2010,25(5):495-499.
    [84]Chen Y, Yan X. Chemical redox modulation of the surface chemistry of CdTe quantum dots for probing ascorbic acid in biological fluids [J]. Small,2009,5(17):2012-2018.
    [85]Zheng Y, Gao S, Ying J Y. Synthesis and Cell-Imaging Applications of Glutathione-Capped CdTe Quantum Dots [J]. Advanced Materials,2007,19(3):376-380.
    [86]Tian J, Liu R, Zhao Y, et al. Controllable synthesis and cell-imaging studies on CdTe quantum dots together capped by glutathione and thioglycolic acid [J]. Journal of Colloid and Interface Science,2009,336(2):504-509.
    [87]Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, et al. (CdSe)ZnS Core-Shell Quantum Dots:(?) Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites [J]. The Journal of Physical Chemistry B,1997,101(46):9463-9475.
    [88]Alivisatos P. The use of nanocrystals in biological detection [J]. Nature Biotechnology, 2004,22(1):47-52.
    [89]Chan W C, Maxwell D J, Gao X, et al. Luminescent quantum dots for multiplexed biological detection and imaging [J]. Current Opinion in Biotechnology,2002,13(1): 40-46.
    [90]Bourzac K. Quantum dots go on display [J]. Nature,2013,493(7432):283.
    [91]Hardman R. A toxicologic review of quantum dots:Toxicity depends on physicochemical and environmental factors [J]. Environmental Health Perspectives,2006,114(2):165-172.
    [92]Nordberg G F. Cadmium and health in the 21st century-historical remarks and trends for the future [J]. BioMetals,2004,17(5):485-489.
    [93]谢黎虹,许梓荣.重金属镉对动物及人类的毒性研究进展[J].浙江农业学报,2003,15(6):376-381.
    [94]王显祥,黄娟,靳茹文,等.水相合成CdX (X= Te, Te/CdS, Te/ZnS)红色量子点及毒性效应[J].化学学报,2009,67(17):2025-2030.
    [95]Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles [J]. Small,2008,4(1): 26-49.
    [96]Hazen-Martin D J, Sens D A, Blackburn J G, et al. Cadmium nephrotoxicity in human proximal tubule cell cultures [J]. In Vitro Cellular & Developmental Biology,1989,25(9): 784-790.
    [97]Delraso N J, Foy B, Gearhart J, et al. Cadmium uptake kinetics in rat hepatocytes: correction for albumin binding [J]. Toxicological Sciences,2003,72(1):19-30.
    [98]谢广云,郑敏,陈巍,等.碲化镉量子点对小鼠肝,肾的毒性研究[J].毒理学杂志,2012,4:262-265.
    [99]孙湖泊,王萌萌,王晖,等.碲化镉量子点致小鼠肝,肾损伤的毒性机制[J].中国药理学与毒理学杂志,2013,27(S1):228-228.
    [100]Chang E, Thekkek N, Yu W W, et al. Evaluation of quantum dot cytotoxicity based on intracellular uptake [J]. Small,2006,2(12):1412-1417.
    [101]Wang T, Jiang X. Size-Dependent Stability of Water-Solubilized CdTe Quantum Dots and Their Uptake Mechanism by Live HeLa Cells [J]. ACS Applied Materials & Interfaces, 2013,5(4):1190-1196.
    [102]Thevenod F, Friedmann J. Cadmium-mediated oxidative stress in kidney proximal tubule cells induces degradation of Na+/K(+)-ATPase through proteasomal and endo-/lysosomal proteolytic pathways [J]. FASEB journal:official publication of the Federation of American Societies for Experimental Biology,1999,13(13):1751-1761.
    [103]Klaassen C, Liu J. Role of metallothionein in cadmium-induced hepatotoxicity and nephrotoxicity [J]. Drug Metabolism Reviews,1997,29(1-2):79-102.
    [104]Lermioglu F, Bernard A. Effect of calmodulin-inhibitors and verapamil on the nephrotoxicity of cadmium in rat [J]. Toxicology Letters,1998,95(1):9-13.
    [105]Dudley R E, Gammal L M, Klaassen C D. Cadmium-induced hepatic and renal injury in chronically exposed rats:Likely role of hepatic cadmium-metallothionein in nephrotoxicity [J]. Toxicology and Applied Pharmacology,1985,77(3):414-426.
    [106]Nordberg G, Jin T, Nordberg M. Subcellular targets of cadmium nephrotoxicity:cadmium binding to renal membrane proteins in animals with or without protective metallothionein synthesis [J]. Environmental Health Perspectives,1994,102(Suppl 3):191-194.
    [107]Goyer R A. Mechanisms of lead and cadmium nephrotoxicity [J]. Toxicology Letters, 1989,46(1-3):153-162.
    [108]Liu J, Squibb K S, Akkerman M, et al. Cytotoxicity, zinc protection, and stress protein induction in rat proximal tubule cells exposed to cadmium chloride in primary cell culture [J]. Renal Failure,1996,18(6):867-882.
    [109]Olabarrieta I, L'azou B, Yuric S, et al. In vitro effects of cadmium on two different animal cell models [J]. Toxicology in Vitro,2001,15(4-5):511-517.
    [110]李云蕊.人工合成硫化镉量子点对大鼠肾小管上皮细胞的毒性研究[D];天津:天津医科大学,2012.
    [111]Felley-Bosco E, Diezi J. Cadmium uptake and induction of metallothionein synthesis in a renal epithelial cell line (LLC-PK1) [J]. Archives of Toxicology,1991,65(2):160-163.
    [112]D'alessandro A, Taamalli M, Gevi F, et al. Cadmium stress responses in Brassica juncea: hints from proteomics and metabolomics [J]. Journal of Proteome Research,2013,12(11): 4979-4997.
    [113]Arroyo V, Flores K, Ortiz L, et al. Liver and cadmium toxicity [J]. Journal of Drug Metabolism & Toxicology,2012, S5:1-7.
    [114]Jalilehvand F, Leung B O, Mah V. Cadmium(Ⅱ) complex formation with cysteine and penicillamine [J]. Inorganic Chemistry,2009,48(13):5758-5771.
    [115]Vesey D. Transport pathways for cadmium in the intestine and kidney proximal tubule: focus on the interaction with essential metals [J]. Toxicology Letters,2010,198(1):13-19.
    [116]Zalups R. Evidence for basolateral uptake of cadmium in the kidneys of rats [J]. Toxicology and Applied Pharmacology,2000,164(1):15-23.
    [117]Bruggeman IM, Temmink J H M, Van Bladeren P J. Effect of glutathione and cysteine on apical and basolateral uptake and toxicity of CdC12 in kidney cells (LLC-PK1) [J]. Toxicology in Vitro,1992,6(3):195-200.
    [118]Limbach L K, Wick P, Manser P, et al. Exposure of engineered nanoparticles to human lung epithelial cells:D influence of chemical composition and catalytic activity on oxidative stress [J]. Environmental Science & Technology,2007,41(11):4158-4163.
    [119]Stark W J. Nanoparticles in Biological Systems [J]. Angewandte Chemie International Edition,2011,50(6):1242-1258.
    [120]Lee W, Spielmann M, Bork U, et al. Cd2+-induced swelling-contraction dynamics in isolated kidney cortex mitochondria:role of Ca2+ uniporter, K+ cycling, and protonmotive force [J]. American Journal of Physiology Cell Physiology,2005,289(3):C656-C664.
    [121]Lee W, Bork U, Gholamrezaei F, et al. Cd2+-induced cytochrome c release in apoptotic proximal tubule cells:role of mitochondrial permeability transition pore and Ca2+ uniporter [J]. American Journal of Physiology Renal Physiology,2005,288(1):F27-F39.
    [122]Ossola J, Tomaro M. Heme oxygenase induction by cadmium chloride:evidence for oxidative stress involvement [J]. Toxicology,1995,104(1-3):141-147.
    [123]Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part Ⅰ: mechanisms involved in metal-induced oxidative damage [J]. Current Topics in Medicinal Chemistry,2001,1(6):529-539.
    [124]Kalyanaraman B, Darley-Usmar V, Davies K J, et al. Measuring reactive oxygen and nitrogen species with fluorescent probes:challenges and limitations [J]. Free Radical Biology and Medicine,2012,52(1):1-6.
    [125]Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry [M]. Advanced Protocols in Oxidative Stress Ⅱ. Springer.2010:57-72.
    [126]Evans J L, Goldfine I D, Maddux B A, et al. Are oxidative stress-activated signaling pathways mediators of insulin resistance and P-cell dysfunction? [J]. Diabetes,2003, 52(1):1-8.
    [127]Wang Y, Fang J, Leonard S S, et al. Cadmium inhibits the electron transfer chain and induces reactive oxygen species [J]. Free Radical Biology and Medicine,2004,36(11): 1434-1443.
    [128]Stohs S J, Bagchi D, Hassoun E, et al. Oxidative mechanisms in the toxicity of chromium and cadmium ions [J]. Journal of Environmental Pathology, Toxicology and Oncology: Official Organ of the International Society for Environmental Toxicology and Cancer, 2000,19(3):201-213.
    [129]Shaikh Z A, Vu T T, Zaman K. Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants [J]. Toxicology and Applied Pharmacology,1999,154(3):256-263.
    [130]Bakalova R, Ohba H, Zhelev Z, et al. Quantum dot anti-CD conjugates:are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? [J]. Nano letters,2004,4(9):1567-1573.
    [131]Ipe B, Lehnig M, Niemeyer C. On the generation of free radical species from quantum dots [J]. Small,2005,1(7):706-709.
    [132]Jurczuk M, M. Brzoska M, Moniuszko-Jakoniuk J, et al. Antioxidant enzymes activity and lipid peroxidation in liver and kidney of rats exposed to cadmium and ethanol [J]. Food and Chemical Toxicology,2004,42(3):429-438.
    [133]Mancini M C, Kairdolf B A, Smith A M, et al. Oxidative Quenching and Degradation of Polymer-Encapsulated Quantum Dots:New Insights into the Long-Term Fate and Toxicity of Nanocrystals in Vivo [J]. Journal of the American Chemical Society,2008, 130(33):10836-7.
    [134]Luo Y H, Wu S B, Wei Y H, et al. Cadmium-based quantum dot induced autophagy formation for cell survival via oxidative stress [J]. Chemical Research in Toxicology, 2013,26(5):662-673.
    [135]Nel A, Xia T, Madler L, et al. Toxic potential of materials at the nanolevel [J]. Science, 2006,311(5761):622-627.
    [136]Harrison S A, Kadakia S, Lang K A, et al. Nonalcoholic steatohepatitis:what we know in the new millennium [J]. The American Journal of Gastroenterology,2002,97(11): 2714-2724.
    [137]Bagchi D, Bagchi M, Hassoun E, et al. Cadmium-induced excretion of urinary lipid metabolites, DNA damage, glutathione depletion, and hepatic lipid peroxidation in Sprague-Dawley rats [J]. Biological Trace Element Research,1996,52(2):143-154.
    [138]Hussain T, Shukla G S, Chandra S. Effects of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of growing rats:in vivo and in vitro studies [J]. Pharmacology & Toxicology,1987,60(5):355-358.
    [139]Koruk M, Taysi S, Savas M C, et al. Oxidative stress and enzymatic antioxidant status in patients with nonalcoholic steatohepatitis [J]. Annals of Clinical & Laboratory Science, 2004,34(1):57-62.
    [140]Brand M D, Buckingham J A, Esteves T C, et al. Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production [J]. Biochemical Society Symposia, 1999,71:203-213.
    [141]Zheng G, Xu X, Li B, et al. Association between lung function in school children and exposure to three transition metals from an e-waste recycling area [J]. Journal of Exposure Science and Environmental Epidemiology,2013,23(1):67-72.
    [142]柏杉山.硫化镉量子点的合成及其细胞毒性研究[D];天津:南开大学,2009.
    [143]Buja L, Eigenbrodt M L, Eigenbrodt E H. Apoptosis and necrosis. Basic types and mechanisms of cell death [J]. Archives of Pathology & Laboratory Medicine,1993, 117(12):1208-1214.
    [144]Swynghedauw B. Molecular mechanisms of myocardial remodeling [J]. Physiological Reviews,1999,79(1):215-262.
    [145]Collins J A, Schandl C A, Young K K, et al. Major DNA fragmentation is a late event in apoptosis [J]. Journal of Histochemistry & Cytochemistry,1997,45(7):923-934.
    [146]Willingham M C. Cytochemical methods for the detection of apoptosis [J]. Journal of Histochemistry & Cytochemistry,1999,47(9):1101-1109.
    [147]Ishido M, Homma-Takeda S, Tohyama C, et al. Apoptosis in rat renal proximal tubular cells induced by cadmium [J]. Journal of Toxicology and Environmental Health, Part A, 1998,55(1):1-12.
    [148]Hamada T, Tanimoto A, Sasaguri Y. Apoptosis induced by cadmium [J]. Apoptosis:an International Journal on Programmed Cell Death,1997,2(4):359-367.
    [149]Tanimoto A, Hamada T, Koide O. Cell death and regeneration of renal proximal tubular cells in rats with subchronic cadmium intoxication [J]. Toxicologic Pathology,1993, 21(4):341-352.
    [150]Komoike Y, Inamura H, Matsuoka M. Effects of salubrinal on cadmium-induced apoptosis in HK-2 human renal proximal tubular cells [J]. Archives of toxicology,2012, 86(1):37.
    [151]徐新云,丁利平,李学余,等.氯化镉对NRK肾细胞DNA损伤及细胞凋亡作用[J].中国公共卫生,2009,25(10):1240-1241.
    [152]Yan B L, Zhang H X, Cai X Q et al. Cytotoxicity and DNA Damage Effect of TGA-capped CdTe Quantum Dots [J]. Chemical Research in Chinese Universities,2012, 28(2):276-281.
    [153]Chan W, Shiao N. Cytotoxic effect of CdSe quantum dots on mouse embryonic development [J]. Acta Pharmacologica Sinica,2008,29(2):259-266.
    [154]柏杉山,李清钊,刘克明,等.硫化镉量子点与常规硫化镉对小鼠遗传毒性的比较研究[J].生态毒理学报,2008,3(1):59-64.
    [155]Liu F, Jan K Y. DNA damage in arsenite-and cadmium-treated bovine aortic endothelial cells [J]. Free Radical Biology and Medicine,2000,28(1):55-63.
    [156]Chen N, He Y, Su Y, et al. The cytotoxicity of cadmium-based quantum dots [J]. Biomaterials,2012,33(5):1238-1244.
    [157]Shiraishi N, Hochadel J F, Coogan T P, et al. Sensitivity to cadmium-induced genotoxicity in rat testicular cells is associated with minimal expression of the metallothionein gene [J]. Toxicology and Applied Pharmacology,1995,130(2):229-236.
    [158]Waalkes M P, Poirier L A. In vitro cadmium-DNA interactions:Cooperativity of cadmium binding and competitive antagonism by calcium, magnesium, and zinc [J]. Toxicology and Applied Pharmacology,1984,75(3):539-546.
    [159]Misra R R, Smith G T, Waalkes M P. Evaluation of the direct genotoxic potential of cadmium in four different rodent cell lines [J]. Toxicology,1998,126(2):103-114.
    [160]Izumi T, Hazra T K, Boldogh I, et al. Requirement for human AP endonuclease 1 for repair of 3'-blocking damage at DNA single-strand breaks induced by reactive oxygen species [J]. Carcinogenesis,2000,21(7):1329-1334.
    [161]M(?)eller P, Loft S, Lundby C, et al. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans [J]. The FASEB Journal,2001,15(7): 1181-1186.
    [162]Fotakis G, Timbrell J A. Modulation of cadmium chloride toxicity by sulphur amino acids in hepatoma cells [J]. Toxicology in Vitro,2006,20(5):641-648.
    [163]Rikans L E, Yamano T. Mechanisms of cadmium-mediated acute hepatotoxicity [J]. Journal of Biochemical and Molecular Toxicology,2000,14(2):110-117.
    [164]余强,李坤刚,文兴,等.纳米硫化镉量子点细胞毒性作用机制[J].生态毒理学报,2009,4(4):488-493.
    [165]Pham T, Marion M, Denizeau F, et al. Cadmium-induced apoptosis in rat hepatocytes does not necessarily involve caspase-dependent pathways [J]. Toxicology in Vitro,2006, 20(8):1331-1342.
    [166]Yu X, Sidhu J S, Hong S, et al. Cadmium induced p53-dependent activation of stress signaling, accumulation of ubiquitinated proteins, and apoptosis in mouse embryonic fibroblast cells [J]. Toxicological Sciences,2011,120(2):403-412.
    [167]Lasfer M, Vadrot N, Aoudjehane L, et al. Cadmium induces mitochondria-dependent apoptosis of normal human hepatocytes [J]. Cell Biology and Toxicology,2008,24(1): 55-62.
    [168]Habeebu S S, Liu J, Klaassen C D. Cadmium-induced apoptosis in mouse liver [J]. Toxicology and Applied Pharmacology,1998,149(2):203-209.
    [169]谢广云,张杰,肖杨,等..碲化镉量子点对小鼠肝脏氧化应激及DNA损伤效应初探[J].卫生研究,2012,41(001):31-34.
    [170]Khalil W, Girgis E, Emam A, et al. Genotoxicity evaluation of nanomaterials:DNA damage, micronuclei, and 8-hydroxy-2-deoxyguanosine induced by magnetic doped CdSe quantum dots in male mice [J]. Chemical Research in Toxicology,2011,24(5):640-650.
    [171]Xiao J B, Chen L S, Yang F, et al. Green, yellow and red emitting CdTe QDs decreased the affinities of apigenin and luteolin for human serum albumin in vitro [J]. Journal of Hazardous Materials,2010,182(1-3):696-703.
    [172]Zhao L Z, Liu R T, Zhao X C, et al. New strategy for the evaluation of CdTe quantum dot toxicity targeted to bovine serum albumin [J]. Science of the Total Environment,2009, 407(18):5019-5023.
    [173]Wang Q S, Zhang X L, Zhou X L, et al. Interaction of different thiol-capped CdTe quantum dots with bovine serum albumin [J]. Journal of Luminescence,2012,132(7): 1695-1700.
    [174]He Y, Yin P, Gong H, et al. Characterization of the interaction between mercaptoethylamine capped CdTe quantum dots with human serum albumin and its analytical application [J]. Sensors and Actuators B:Chemical,2011,157(1):8-13.
    [175]Lai L, Lin C, Xu Z Q, et al. Spectroscopic studies on the interactions between CdTe quantum dots coated with different ligands and human serum albumin [J]. Spectrochim Acta A:Mol Biomol Spectrosc,2012,97(0):366-376.
    [176]Van De Weert M, Stella L. Fluorescence quenching and ligand binding:A critical discussion of a popular methodology [J]. Journal of Molecular Structure,2011,998(1-3): 144-150.
    [177]Yu W W, Qu L H, Guo W Z, et al. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals [J]. Chemistry of Materials,2003, 15(14):2854-2860.
    [178]Fery-Forgues S, Lavabre D. Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products [J]. Journal of Chemical Education,1999, 76(9):1260-1264.
    [179]Kubista M, Sjoback R, Eriksson S, et al. Experimental correction for the inner-filter effect in fluorescence spectra [J]. Analyst,1994,119(3):417-419.
    [180]Lakowicz J R. Principles of fluorescence spectroscopy [M]. Springer Verlag,2006.
    [181]Kang J, Liu Y, Xie M X, et al. Interactions of human serum albumin with chlorogenic acid and ferulic acid [J]. Biochimica Et Biophysica Acta-General Subjects,2004,1674(2): 205-214.
    [182]Abou-Zied O K, Al-Shihi O I K. Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes [J]. Journal of the American Chemical Society,2008,130(32):10793-10801.
    [183]Joshi P, Shewale V, Pandey R, et al. Tryptophan-Gold Nanoparticle Interaction:A First-Principles Quantum Mechanical Study [J]. Journal of Physical Chemistry C,2011, 115(46):22818-22826.
    [184]Lynch I, Dawson K A. Protein-nanoparticle interactions [J]. Nano Today,2008,3(1-2): 40-47.
    [185]Papadopoulou A, Green R J, Frazier R A. Interaction of flavonoids with bovine serum albumin:A fluorescence quenching study [J]. Journal of Agricultural and Food Chemistry, 2005,53(1):158-163.
    [186]Fu J-X, Ge Y-S, Jiang F-L, et al. Spectroscopic and molecular modeling studies on the interaction between a fluorine-containing triazole derivative and human serum albumin [J]. Biological Trace Element Research,2011,143(1):562-578.
    [187]Gauthier T D, Shane E C, Guerin W F, et al. Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials [J]. Environmental Science & Technology,1986,20(11): 1162-1166.
    [188]He W Y, Li Y, Xue C X, et al. Effect of Chinese medicine alpinetin on the structure of human serum albumin [J]. Bioorganic & Medicinal Chemistry,2005,13(5):1837-1845.
    [189]Monti S, Manet I, Marconi G. Combination of spectroscopic and computational methods to get an understanding of supramolecular chemistry of drugs:from simple host systems to biomolecules [J]. Physical Chemistry Chemical Physics,2011,13(47):20893-20905.
    [190]Zhang T, Yao K, Guo Y. The Photocatalytic Activity of TiO2 Thin Film Deposited on Al Plate Together with Cu (II) and Ag (Ⅰ) [J]. Biological Trace Element Research,2011, 143(3):1819-1827.
    [191]Mahmoudi M, Lynch I, Ejtehadi M R, et al. Protein-Nanoparticle Interactions: Opportunities and Challenges [J]. Chemical Reviews,2011,111(9):5610-5637.
    [192]Aldana J, Wang Y A, Peng X G Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols [J]. Journal of the American Chemical Society,2001,123(36): 8844-8850.
    [193]Jiang W, Kim B Y S, Rutka J T, et al. Nanoparticle-mediated cellular response is size-dependent [J]. Nature nanotechnology,2008,3(3):145-150.
    [194]Shang W, Nuffer J H, Dordick J S, et al. Unfolding of ribonuclease A on silica nanoparticle surfaces [J]. Nano letters,2007,7(7):1991-1995.
    [195]Lundqvist M, Sethson Ⅰ, Jonsson B H. Protein adsorption onto silica nanoparticles: Conformational changes depend on the particles'curvature and the protein stability [J]. Langmuir,2004,20(24):10639-47.
    [196]Liu F, Liu G. Poly(solketal methacrylate)-block-poly(2-cinnamoyloxyethyl methacrylate)-block-poly(allyl methacrylate):Synthesis and Micelle Formation [J]. Macromolecules,2001,34(5):1302-1307.
    [197]Prakash K, Prajapati S, Ahmad A, et al. Unique oligomeric intermediates of bovine liver catalase [J]. Protein Science,2002,11(1):46-57.
    [198]Melik-Adamyan W, Bravo J, Carpena X, et al. Substrate flow in catalases deduced from the crystal structures of active site variants of HPII from Escherichia coli [J]. Proteins-Structure Function and Genetics,2001,44(3):270-281.
    [199]Reid T J,3rd, Murthy M R, Sicignano A, et al. Structure and heme environment of beef liver catalase at 2.5 A resolution [J]. Proceedings of the National Academy of Sciences of the United States of America,1981,78(8):4767-4771.
    [200]Montavon P, Bortlik K. Evolution of robusta green coffee redox enzymatic activities with maturation [J]. Journal of Agricultural and Food Chemistry,2004,52(11):3590-3594.
    [201]Murthy M R N, Reid lii T J, Sicignano A, et al. Structure of beef liver catalase [J]. Journal of Molecular Biology,1981,152(2):465-499.
    [202]Alfonso-Prieto M, Biarnes X, Vidossich P, et al. The Molecular Mechanism of the Catalase Reaction [J]. Journal of the American Chemical Society,2009,131(33): 11751-11761.
    [203]Banerjee M, Banerjee N, Ghosh P, et al. Evaluation of the serum catalase and myeloperoxidase activities in chronic arsenic-exposed individuals and concomitant cytogenetic damage [J]. Toxicology and Applied Pharmacology,2010,249(1):47-54.
    [204]Wang G, Conover R C, Olczak A A, et al. Oxidative stress defense mechanisms to counter iron-promoted DNA damage in Helicobacter pylori [J]. Free Radical Research,2005, 39(11):1183-1191.
    [205]Saafi E B, Louedi M, Elfeki A, et al. Protective effect of date palm fruit extract (Phoenix dactylifera L.) on dimethoate induced-oxidative stress in rat liver [J]. Experimental and Toxicologic Pathology,2011,63(5):433-441.
    [206]Ghosh S, Janocha A J, Aronica M A, et al. Nitrotyrosine proteome survey in asthma identifies oxidative mechanism of catalase inactivation [J]. Journal of Immunology,2006, 176(9):5587-5597.
    [207]Nguyen K C, Willmore W G, Tayabali A F. Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells [J]. Toxicology,2013,306(0):114-123.
    [208]Wang Y, Caruso F. Nanoporous protein particles through templating mesoporous silica spheres [J]. Advanced Materials,2006,18(6):795-800.
    [209]Zhang X, Du X, Huang X, et al. Creating Protein-Imprinted Self-Assembled Monolayers with Multiple Binding Sites and Biocompatible Imprinted Cavities [J]. Journal of the American Chemical Society,2013,135(25):9248-9251.
    [210]Zhou S, Du X, Cui F, et al. Multi-Responsive and Logic Controlled Release of DNA-Gated Mesoporous Silica Vehicles Functionalized with Intercalators for Multiple Delivery [J]. Small,2013,10(5):980-988.
    [211]Prasad A, Luduena R F, Horowitz P M. Detection of energy transfer between tryptophan residues in the tubulin molecule and bound bis (8-anilinonaphthalene-l-sulfonate), an inhibitor of microtubule assembly, that binds to a flexible region on tubulin [J]. Biochemistry,1986,25(12):3536-3340.
    [212]Berger I, Winston W, Manoharan R, et al. Spectroscopic characterization of a DNA-binding domain, Z alpha, from the editing enzyme, dsRNA adenosine deaminase: evidence for left-handed Z-DNA in the Z alpha-DNA complex [J]. Biochemistry,1998, 37(38):13313-13321.
    [213]Jayabharathi J, Thanikachalam V, Sathishkumar R, et al. Fluorescence investigation of the interaction of 2-(4-fluorophenyl)-1-phenyl-lH-phenanthro [9,10-d] imidazole with bovine serum albumin [J]. Journal of Photochemistry and Photobiology B:Biology,2012,117(0): 222-227.
    [214]Han X L, Tian F F, Ge Y S, et al. Spectroscopic, structural and thermodynamic properties of chlorpyrifos bound to serum albumin:A comparative study between BSA and HSA [J]. Journal of Photochemistry and Photobiology B:Biology,2012,109(0):1-11.
    [215]Hu Y J, Yue H L, Li X L, et al. Molecular spectroscopic studies on the interaction of morin with bovine serum albumin [J]. Journal of Photochemistry and Photobiology B: Biology,2012,112(0):16-22.
    [216]Li D, Hong D, Guo H, et al. Probing the influences of urea on the interaction of sinomenine with human serum albumin by steady-state fluorescence [J], Journal of Photochemistry and Photobiology B:Biology,2012,117(0):126-131.
    [217]Mansur H S, Lobato Z P, Orifice R L, et al. Surface functionalization of porous glass networks:effects on bovine serum albumin and porcine insulin immobilization [J]. Biomacromolecules,2000,1(4):789-797.
    [218]Mahato M, Pal P, Kamilya T, et al. Hemoglobin-silver interaction and bioconjugate formation:a spectroscopic study [J]. Journal of Physical Chemistry B,2010,114(20): 7062-7070.
    [219]Tune S, etinkaya A, Duman O. Spectroscopic investigations of the interactions of tramadol hydrochloride and 5-azacytidine drugs with human serum albumin and human hemoglobin proteins [J]. Journal of Photochemistry and Photobiology B:Biology,2013, 120(0):59-65.
    [220]Gouet P, Jouve H M, Dideberg O. Crystal structure of Proteus mirabilis PR catalase with and without bound NADPH [J]. Journal of Molecular Biology,1995,249(5):933-954.
    [221]Bravo J, Mate M J, Schneider T, et al. Structure of catalase HPII from Escherichia coli at 1.9 angstrom resolution [J]. Proteins-Structure Function and Genetics,1999,34(2): 155-166.
    [222]Diaz A, Horjales E, Rudino-Pinera E, et al. Unusual Cys-Tyr covalent bond in a large catalase [J]. Journal of Molecular Biology,2004,342(3):971-985.
    [223]Fita I, Rossmann M G. The active center of catalase [J]. Journal of Molecular Biology, 1985,185(1):21-37.
    [224]Moller I. Plant mitochondria and oxidative stress:electron transport, NADPH turnover, and metabolism of reactive oxygen species [J]. Annual Review of Plant Physiology and Plant Molecular Biology,2001,52:561-591.
    [225]Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction [J]. Annual Review of Plant Biology,2004,55:373-399.
    [226]Chan P H. Reactive oxygen radicals in signaling and damage in the ischemic brain [J]. Journal of Cerebral Blood Flow & Metabolism,2001,21(1):2-14.
    [227]Sena L, Chandel N. Physiological roles of mitochondrial reactive oxygen species [J]. Molecular cell,2012,48(2):158-167.
    [228]Verma N, Vinayak M. Antioxidant action of Andrographis paniculata on lymphoma [J]. Molecular Biology Reports,2008,35(4):535-540.
    [229]Cabreiro F, Ackerman D, Doonan R, et al. Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage [J]. Free Radical Biology and Medicine,2011,51(8):1575-1582.
    [230]Brigelius-Flohe R. Tissue-specific functions of individual glutathione peroxidases [J]. Free Radical Biology and Medicine,1999,27(9-10):951-965.
    [231]Fridovich Ⅰ. Superoxide radical and superoxide dismutases [J]. Annual Review of Biochemistry,1995,64:97-112.
    [232]王宜庆,唐萌,张婷,等.不同量子点诱导L929细胞氧化损伤及凋亡作用[J].中国公共卫生,2011,27(8):975-977.
    [233]梁丽君,张静妹,郭昌胜,等.硫化镉量子点对人胚肝细胞L-02的毒性研究[J].生态毒理学报,2011,5(4):525-530.
    [234]Saez G. Aye M, De Meo M, et al. Genotoxic and oxidative responses in coelomocytes of Eisenia fetida and Hediste diversicolor exposed to lipid-coated CdSe/ZnS quantum dots and CdCl2 [J]. Environmental Toxicology,2014, http://dx.doi.org/10.1002/tox.21966.
    [235]史安怀.α-萘胺比色法测定水中亚硝酸盐氮的研究[J].山西建筑,2002,28(3):105-106.
    [236]萧华山,曹红云.一种用分光光度计检测氧自由基的新方法[J].生物化学与生物物理进展,1999,26(2):180-182.
    [237]季健平,吴再彬,刘歧山,等.超氧化物岐化酶超微量快速测定法[J].南京铁道医学院学报,1991(1):27-30.
    [238]Tian Y, Shioda M, Kasahara S, et al. A facilitated electron transfer of copper-zinc superoxide dismutase (SOD) based on a cysteine-bridged SOD electrode [J]. Biochimica et Biophysica Acta(BBA)-General Subjects,2002,1569(1-3):151-158.
    [239]Goto J J, Zhu H, Sanchez R J, et al. Loss of in vitro metal ion binding specificity in mutant copper-zinc superoxide dismutases associated with familial amyotrophic lateral sclerosis [J]. Journal of Biological Chemistry,2000,275(2):1007-1014.
    [240]Oneda H, Inouye K. Effect of nitration on the activity of bovine erythrocyte Cu, Zn-superoxide dismutase (BESOD) and a kinetic analysis of its dimerization-dissociation reaction as examined by subunit exchange between the native and nitrated BESODs [J]. Journal of Biochemistry,2003,134(5):683-690.
    [241]Inouye K, Nakamura K, Mitoma Y, et al. Application of a new ion exchanger TSK-GEL DEAE-5PW, to the purification of Cu, Zn-superoxide dismutase of bovine erythrocytes [J]. Journal of Chromatography A,1985,327:301-311.
    [242]Tsoi K M, Dai Q, Alman B A, Chan W C. Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies [J]. Accounts of Chemical Research, 2013,46(3):662-671.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700