GaAs光电导开关中载流子输运规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光电导开关(Photoconductive semiconductor switches)是利用超短脉冲激光器与光电导体(如:Si,GaAs,InP等)相结合形成的一类新型开关器件,具有快速响应(皮秒上升、下降时间),GHz的重复率,无触发晃动,寄生电感电容小等优点。在THz技术、超高速电子学、超宽带雷达、脉冲功率技术等高科技领域具有广阔的应用前景。
     光电导开关中光生载流子的输运及输运引起的瞬态电磁过程决定开关的输出特性。本文以光电导开关载流子输运规律为研究目标,利用理论和数值方法,分别对线性和非线性工作模式下的载流子输运规律及其对输出的影响进行了研究,完成以下工作:
     一、提出光电导开关线性模式下的全电流导通模型
     利用电磁学理论研究了横向光电导开关光生载流子输运引起的瞬态电磁过程。在低电场偏置,均匀弱光触发条件下的线性工作模式中,将光电导开关内瞬态电磁过程形成的位移电流分为两类:1.由光生载流子输运在光电导体内形成的瞬变内建电场所引起的位移电流;2.由测试电路中负载与光电导开关瞬态分压引起的位移电流。分析了两者对横向光电导开关的激活条件。建立了基于载流子输运过程与瞬态电磁过程的全电流模型。与仅考虑载流子输运的电导率模型相比,全电流模型能够更精确的描述载流子输运与输出电流之间的时域关系,并描绘出光电导开关输出电流清晰的形成机理。
     二、提出光激发电荷畴限制流效应
     在强电场偏置,非均匀触发弱光触发条件下的线性GaAs光电导开关中,利用数值方法研究了光生电子在负微分迁移率作用下的非线性输运规律。分析了线性工作模式下光激发电荷畴形成的物理过程,提出光激发电荷畴限制流效应,认为线性模式下光电导开关的输出电流受光激发电荷畴限制流的限制。
     三、提出了二次光子激励下的雪崩畴模型来解释GaAs光电导开关非线性模式。
     首先,利用数值方法,研究了光生载流子输运规律及内建电场瞬态分布规律。在此基础上结合GaAs材料光学特性,研究了非线性模式下光电导体内的瞬态光学特性。结果表明非线性模式下的光电导体内不但存在电学非均匀性,同时还存在强光学非均匀特性。其次,研究了强光学非均匀特性的作用下,光生载流子通过二次光子的发射和再吸收过程重新分布的规律。结果表明:二次光子的再吸收能够对已经达到稳态的光激发电荷畴进行二次激励。在足够的激励强度下,光激发电荷畴成长为雪崩畴。最后,提出了二次光子激励下的雪崩畴模型来解释光电导开关非线性模式,该模型能够较全面解释GaAs光电导开关非线性模式下的各项特征。
     四、实验验证了光激发电荷畴限制流效应。
     在对GaAs光电导开关电极制作、绝缘保护、传输电路设计等制作技术研究的基础上,制作了SI-GaAs光电导开关,对光激发电荷畴限制流效应进行了实验验证。利用光电导开关和超宽带天线,产生了带宽达覆盖650MHz-2GHz的电磁辐射。
As a new class of switching devices, Photoconductive semiconductor switches (PCSS's) are a combination of ultra-fast pulsed laser and photoconductor. PCSS bears such advantages as high power, fast switching speed, small parasitic capacitance, high repetition frequency, and jitterfree, Therefore it possesses a broad application prospect in the fields of superspeed electronics, generation of high power electrical pulses, fine-synchronization control and terahertz technology.
     PCSS's output characteristic depended on the transportation of the photogenerated carriers and the transient electromagnetism process caused by the transportation of the photogenerated carriers. The transportation of the photogenerated carriers and the output characteristic under the linear mode and the nonlinear mode are studied individually, and the major points are summarized as below:
     1. A total current mode for linear mode of PCSS's is proposed.
     The transient electromagnetism process is studied under the condition of low biased field, the study shows that there are two types displacement current in the PCSS's generated by the transient electromagnetism process:1. Displacement current created by the built-in field in the photoconductor, which is formed by the transportation of the photogenerated carriers; 2. Displacement current created by the electric voltage shifting from the PCSS's to the load in the test circuit. Then, activation conditions of the two types of displacements are analyzed, and a Total Current mode is built based on the transportation of the photogenerated carriers and the transient electromagnetism process. In contrast with conductivity mode, the relationship of the transportation of the photogenerated carriers and the output current are described accurately by the new mode.
     2. The current limiting effect of photoactivated charge domain is proposed.
     Under the condition of high bias electric field and nonuniform weak trigger laser, the nonlinear transportation process of photogenerated carriers in the linear GaAs PCSS's is studied by simulation method. The formation and transporting process of photoactivated charge domain (PACD) in linear mode are discussed. The current limiting effect of PACD is proposed, and the max output current is limited by the PACD.
     3. The secondary photo excited avalanche charge domain mode is proposed.
     First, the transient built-in field in the photoconductor of the nonlingear GaAs PCSS's is studied by simulation method. According to the GaAs optical characteristic, the transient optical characteristics are explored based on the transient built-in field and the transient photogenerated carries distribution. The result shows that there are not only an intense nonuniform electrical characteristic but also an intense nonuniform optical characteristic. Next, the redistribution law of photogenerated carriers through emitting and absorbing secondary photo is explored. The result shows that the PACD reached steady state can be excited once again by the secondary photo. Under adequate exciting by the secondary photo, the PACD grow into avalanche charge domain. Finally, the secondary photo excited avalanche charge domain mode is proposed for nonlinear mode of GaAs PCSS's, this mode is more comprehensive and more accurate.
     4. An experiment is performed to proof current limiting effect of PACD.
     Based on study on the electrode making、insulation protection、transmission line design, A series of GaAs PCSS's are made. A confirmatory experiment is successful performed and the results confirmed the current limiting effect of PACD. Then, an ultra-broadband electromagnetic wave is radiated by a horn antenna connected to the PCSS, and the spectrum covers from 650MHz to 2GHz.
引文
【1】 Auston D H. Picosecond photo-electronic switching gating in silicon [J]. Appl. Phys. Lett., 1975,26(2):101-103.
    【2】 Rosen A, Zutavem F J. High-power optical activated solid-state switches [M]. Boston: ArtechHouse,1993:252-257.
    【3】 Thibaut D S. GaAs avalanche photoconductive switches:new technological developments [C]. In:proc SPIE. LosAngeles,1992:167-176.
    【4】 黄裕年,任国光.高功率超宽带电磁脉冲技术[J].微波学报,2002,18(4):90-94.
    【5】 黄裕年.采用光导半导体开关的脉冲功率系统[J].半导体光电,2000,21(5):321-325.
    【6】 施卫,梁振宪,徐传骧.高倍增GaAs光电导开关的设计与研制[J].西安交通大学学报.1998,32(8):19-23.
    【7】 Evans A, Kantrowitz w. A User Authentication Scheme for requiring secrecy in the computer [J]. Comm. ACM,1974,17(8):437-442.
    【8】 Lee C. H. et al. Pieoseeond Photoconductivity and its applications [J]. IEEE J. Quantum Eleetron,1981,17(10):2098-2112
    【9】 W C Nunnally, R B Hammond.80MW photoconductor power switches [J]. Appl. Phys. Lett., 1984,44:980-983.
    【10】 Shi Wei, Tian Liqiang et al.30 kV and 3 kA semi-insulating GaAs photoconductive semiconductor switch[J]. Appl. Phys. Lett..2008,92(4):043511.
    【11】 Shi Wei, Optically Activated Charge Doma in Model for High-Ga in GaAs Photoconductive Switches[J]. Chinese Journal of Semiconductors,2001,22(12):1481-1485.
    【12】 施卫.高倍增高压超快GaAs光电导开关中的光激发畴现象[J].半导体学报,1999,21(1):53-57.
    【13】 Shi Wei, Chen Er-Zhu, Zhang Xian-Bin, et al. Monopole Charge Domain in High-Gain Gallium Arsenide Photoconductive Switches[J]. Chin. Phys. Lett.2002,19(8):1119-1121.
    【14】 Shi W, Tian L. Mechanism analysis of periodicity and weakening surge of GaAs photoconductive semiconductor switches [J]. Appl. Phys. Lett.,2006,89(20):202103.
    【15】 Shi W, Dai H, Sun X. Photon-activated charge domain in high-gain photoconductive switches [J]. Chinese Optics Letters,2003,1(9):553-555.
    【16】 Agee F J. Powerful ultra-wideband RF emitter:status and challenges[J]. Proc. of SPIE, 1995,2(557):98-109.
    【17】 Peter H Siegel. Terahertz Technology [J]. IEEE Transactions on Microwave Theory AND Techniques,2002,50(3):910-928.
    【18】 Bradley Ferguson, Xi-Cheng ZHANG. Materials for Terahertz Science and Technology [J]. Nature Materials,2002,1(1):26-33.
    【19】 王少宏,许景周,汪力,张希成.THz技术的应用及展望[J].物理,2001,30(10):612-615.
    【20】 王秀敏,徐新龙,李福利.THz技术进展[J].首都师范大学学报(自然科学版),2003,24(3):17-26.
    【21】 程兆华,祝大军,刘盛纲.THz探测技术研究进展[J].电子测量与仪器学报,2005,19(4):1-5.
    【22】 Kohler, TredicncciA, BeltramF, Beere,HE, Linfield EH, DaviesAG, Ritchie DA, Iotti RC, Rossi F, Terahertz semiconductor hetero structure laser [J]. Nature,2002,417(6885):156-159.
    【23】 H C Liu, Wachter M, Ban D, et al. Effect of doping concentration on the performance of terahertz quantum-cascade lasers [J]. Appl. Phys. Lett.,2005,87(14):141102.
    【24】 姚建铨,路洋,张百钢等.THz辐射的研究和应用新进展[J].光电子激光,2005,16(4):503-600.
    【25】 张蕾,徐新龙,李福利.太赫兹(THz)成像的进展概况[J].量子电子学报,2005,22(2):129-134.
    【26】 逯美红,沈京玲,郭景伦,张存林.太赫兹成像技术对玉米种子的鉴定和识别[J].光学技术,2006,32(3):361-363.
    【27】 张振伟,崔伟丽,张岩,张存林.太赫兹成像技术的实验研究[J].红外与毫米波学报.2006,25(3):217-220.
    【28】 孙红起,赵国忠,田艳,贾新峰,王洋,石小溪,梁卫华.太赫兹波传播过程中横模分布的成像[J].中国激光,2006,33(9):1225-1229.
    【29】 马士华,施宇蕾,徐新龙,严伟.用太赫兹时域光谱技术探测天冬酸胺的低频集体吸收频谱[J].物理学报,2006,55(8):4091-4095.
    【30】 孙红起.太赫兹时域光谱系统的性能研究[D].北京:首都师范大学,2007:39-40.
    【31】 Nishizawa S, Tsumura N, Kitahara H, Takeda. MW, Kojima S. New application of terahertz time-domain spectrometry (THz-TDS) to the phonon-polariton observation on ferroelectric crystals [J], Physics in Medicine and Biology,2002,1(47):3771~3776.
    【32】 张兴宁.太赫兹应用技术研究[D].杭州:浙江大学,2005:22-25.
    【33】 赵红卫,葛敏,王文锋.太赫兹时域光谱技术在化学和生物学研究中的应用[J].化学通报,2005,68(2):87-93.
    【34】 李福利,任荣东,王新柯等.太赫兹辐射原理与若干应用[J].激光与红外,2006,36(B09):785-791.
    【35】 赵尚弘,陈国夫,赵卫.THz射线产生技术及应用最新进展.激光技术[J],2000,24(6):351-361.
    【36】 Z M Sheng, H C Wu, K Li, J Zhang. Terahertz radiation from the vacuum-plasma interface driven by ultra-short intense laser pulses [J], Phys. Rev. E,2004,69,025401.
    【37】 Hattori T, Tukamoto K, Nakatsuka H., Time-resolved study of intense terahertz pulses generated by a large-aperture photoconductive antenna [J]. Jpn. J. Appl. Phys.,2001,40(8):4907.
    【38】 T Hattori, K Tukamoto, S Ookuma et al., Intense Terahertz pulses from Large-Aperture Antenna with Interdigitated Electrodes [J], Jpn. J. Appl. phys,2006,45(15):L422~L424.
    【39】 Shi W, Jia W L, Hou L, Xu J Z, Zhang X-C, Terahertz Radiation from Large Aperture Bulk Semi-insulating GaAs Photoconductive Dipole Antenna[J], Chinese Physis Letter; 2004, Vol.21: 1842-1844.
    【40】 施卫,张显斌,贾婉丽,李孟霞,徐景周,张希成.用飞秒激光触发GaAs光电导体产生THz电磁波的研究[J].半导体学报,2004,Vol.25.1735.
    【41】 Taniuchi T, Okada S, Nakanishi H. Widely-tunable THz-wave generation in 2-20 THz range from DAST crystal by nonlinear difference frequency mixing[J], Elect. Lett.,2004,40(1):60-62.
    【42】 J C Cao, Interband impact ionization and nonlinear absorption of terahertz radiations in semiconductor heterostructures[J], Phys. Rev. Lett.,2003,91(23):7401.
    【43】 J C Cao, X L Lei. Multiphoton-assisted absorption of terahertz radiations in InAs/AlSb heterojunctions[J], Phys. Rev. B.2003,67(8):085309.
    【44】 W Shi, J Z Xu, X C Zhang. Terahertz generation from Si3N4 covered photoconductive dipole antenna[J]. Chinese optics letters,2003,1(50):308-310.
    【45】 吴晓君,黄敏,陈晓妹.飞秒激光作用ZnSe晶体产生和探测THz辐射的实验[J].半导体学报,2006,7(8):1412-1416.
    【46】 S G Park, A M Weiner, M R Melloch, C W Siders, J L Siders, A J Taylor. High power narrow band Terahertz generation using large aperture photoconductors[J], IEEE J. Quantum Electron,1999, 35(8):1257-1268.
    【47】 Z Piao, M Tani, K Sakai. Carrier dynamics and Terahertz radiation in photoconductive antennas [J]. Jpn J. Appl. Phys.,2000,1(39):96-100.
    【48】 J T Darrow, X C Zhang, D H Auston, Power scaling of large-aperture photoconducting antennas [J]. Appl. Phys. Lett.,1991,58:25-27.
    【49】 J T Darrow, X-C Zhang, D H Auston, J D Morse. Saturation properties of large-aperture photoconducting antennas [J], IEEE J. Quantum Electron.28(6),1992:1607-1616.
    【50】 G Rodriguez, A J Taylor. Screening of the bias field in terahertz generation from photoconductors [J]. Opt. Lett.,21(14),1996:1046-1048.
    【51】 J E Pedersen, V G Lyssenko, J M Hvam, P U Jepsen, S R Keiding, C B Sorensen, P E Lindelof. Ultrafast local field dynamics in pkotoconductive THz antennas [J]. Appl. Phys. Lett.,1992, 62(11):1265-1267.
    【52】 Zhang Tong-Yi, Cao Jun-Cheng. Study of the surface and far fields of terahertz radiation generated by large-aperture photoconductive antennas[J]. Chinese Physics,13(10),2004:1742-1746.
    【53】 Gabriel C. Loata, Mark D. Thomson, Torsten Loffler, and Hartmut G. Roskos. Radiation field screening in photoconductive antennae studied via pulsed terahertz emission spectroscopy [J]. Appl. Phys. Lett.,2007,91(23):232506.
    【54】 刘锐,顾春明,贺莉蓉等.ZnTe晶体中光学整流产生的THz辐射及其电光探测研究[J].物理学报,2004,53(4):1217-1222.
    【55】 Dae Sin Kim, D S Citrin. Coulomb and radiation screening in photoconductive terahertz sources, Appl. Phys. Lett. [J],2006,88:161117.
    【56】 王璐,刘庆纲等.超高速电光采样技术及应用[J].微纳电子技术,43(4),2006:197-202.
    【57】 姜玉稀,程东方,赵冷柱,李娇.用电光晶体测量超快电磁辐射脉冲的几个问题[J].2002,20(3):291-295.
    【58】 Liu T A, Tani M, Nakajima M, Hangyo M, Pan C L. Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs[J]. Appl. Phys. Lett.,2003,83:1322-1324.
    【59】 Lee C H. Picsecond opto-electronic switching in GaAs. Appl. Phys. Lett.,1977, 30(7):84-86.
    【60】 Zutavern F J, Loubriel G M, McKenzie B B et al. Photoconductive semiconductor switch (PCSS) recovery[C]. Proc.7th IEEE Pulsed Power Conf.,1989:412-417.
    【61】 Foyt A G, Leonberger F J. Picosecond InP optoelectronic switches[J]. Appl. Phys. Lett., 1982,40:447.
    【62】 Cho P S, Ho P T, Goldhar J, et al. Photoconductivity in ZnSe under high electric fields [J]. IEEE Journal of Quantum Electronics,1994,30(6):1489-1497.
    【63】 Sheng S, Spencer M G, Tang X, et al. An investigation of 3C-SiC photoconductve power switch devies[J]. Materials Science Engineering,13(46),1997:147-151.
    【64】 Saddow S E, Cho P S, Goldhar J, et al. Photoconductive measurements on P-type 6H-SiC [C]. SPIE 1873, Optically Activated Switching III,1993:110-116.
    【65】 Dogan, S Teke, A Huang, et al.4H-SiC photoconductive switching devices for use in high-power applications [J]. Appl. Phys. Lett.,2003,82(18):3107-3109.
    【66】 Tsiapalas S D, Hur J H, Choi M S and Gundersen M A. A high current density thyristor-like gallium phosphide based optoelectronic switch[C]. Pulsed Power Conference,7th,1989:426-429.
    【67】 刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社,2003:27-44.
    【68】 Kingsley L E, Donaldson W R. Numerical analysis of electric filed profiles in high-voltage GaAs photoconductive switches comparison to experiment[J]. IEEE Trans. Electron Devices,1993,40(12): 2344-2351.
    【69】 Loubriel G M, O'Malley M W, Zutaven F J, Toward pulsed power uses for photoconductive semiconductor switch:closing switches[C]. Proc.6th IEEE Pulsed Power Conference, Arlington, VA, 1987:145-148.
    【70】 Zutavern F J,Loubriel G M, O'Malley M W, et al. Rise time recovery of GaAs photoconductive semiconductor switches[C]. SPIE Vol.1378, Optically Activated Switch,1990:271-278. 【71】 Kelkar K S, Islam N E, Fessler C M, Silicon carbide photoconductive switch for high-power,
    linear-mode operations through sub-band-gap triggering, Journal of Applied Physics,2005,98(9):93-102. 【72】 Brinlcmann R P. Nonlinear behavior of optically activat switches at high electrical
    fields. Proc. IEEE 20th Power Modulator Symposium [C], Myrtle Beach, SC,1992:316-319. 【73】 Peterkin F E, Schoenbach K H, Dougal R, et al. Developments toward laser diode driven bitable
    photoconductive switches[C]. IEEE 10 Pulsed Power Conf.,1995:366-371. 【74】 Loubriel G M, Zutavern F J, O'malley M W, et al. Measurement of filament velocity reduced
    trigger energy[C]. SPIE Optically Activated Switching IV,1994,2343:21-31. 【75】 Adams J C, Falk R A, Capps C D, et al. Characterization of current filamention in GaAs
    photoconductive switches[C]. SPIE Vol.1873 Optically Activated Switching Ⅲ, Los Angeles,1993: 10-20.
    【76】 龚仁喜.GaAs光导开关的线性及非线性特性研究[D].西安电子科技大学,2002:33-39.
    【77】 张同意.非线性光电导开关高功率超短电脉冲产生技术研究[D].西安电子科技大学,2002:43-75.
    【78】 张同意,石顺样,龚仁喜等.非线性光电导开关快速导通特性[J].光学学报,2002,22(3):327-331.
    【79】 施卫,梁振宪.高倍增超快高压GaAs光电导开关触发瞬态特性分析[J].电子学报,28(2),2000:19-23.
    【80】 施卫.高倍增超快高压半导体光电导开关的研究[D].西安交通大学博士论文,1997:36-50.
    【81】 Loubriel G M, Zutavern F J, Hjalmarson H P. Closing photoconductive semiconductor switches [C]. Proc.7th IEEE Pulsed Power Conference, Monterey, CA,1989:365-367.
    【82】 Capps C D. Impact ionization in optocally-activated switches[C]. Optically Activated Switching II, SPIE,1992,1632:254-261.
    【83】 Shi W, Qu GH, Xu M, Xue H, Ji W, Zhang L, Tian L. Current limiting effects of photoactivated charge domain in semi-insulating GaAs photoconductive switch [J]. Appl. Phys. Lett.,2009,94: 072110.
    【84】 Kingsley L E, Donaldson W R. Numerical analysis of electric field profiles in high-voltage GaAs photoeonductive switches comparison to experiment[C]. IEEE Traps. Electron Devices,1993,40(12): 2344-2351.
    【85】 Loubriel G M, Zutavern F J, Hjalmarson H P. Closing photoconductive semiconductor switches [C]. Proc.7th IEEE Pulsed Power Conference,1989:365-367.
    【86】 Capps C D. Impact ionization in optocally-activated switches[C]. SPIE Vol.1632 Optically Activated Switching Ⅱ,1992,254-261.
    【87】 Yee J H, Khanaka G H, Druce R L, et al. Modeling the effect of deep impurity ionization on GaAs photoconductive switches[C]. SPIE Vol.1632 Optically Activated Switching II,1992:21-31.
    【88】 Zhao H, Hadizad P, Hur J H, et al. Avalanche injection model for the lock-on effect in III-V power photoconductive switches [J]. J. Appl. Phys.1993,73(4):1807-1812.
    【89】 Hadizad P, Hur J H, Zhao H, et al. A comparative study of Si-GaAs-based devices for repetitive high-energy pulsed switching applications [J]. J. Appl. Phys.,1992,71(7):3586-3592.
    【90】 Brinlcmann R P. Nonlinear behavior of optically activated switches at high electrical fields [C]. Proc. IEEE 20th Power Modulator Symposium, Myrtle Beach, SC,1992:316-319.
    【91】 Stout P J, Kushner K J. Two dimensional modeling of high power semiconductor switches [C]. Proc.21st Pulsed Modulator Symp.,1994:224-227.
    【92】 Stout P J, Kushner K J, Modeling of high power semiconductor switches operated in the nonlinear mode [J]. J. Appl. Phys.,,1996,79:2084-2090.
    【93】 White Ⅲ W T; Dease C G, Pocha M D, et al. Modeling GaAs high-voltage subnanosecond photoconductive switches in one sptial dimension[J]. IEEE Trans. Electron Devices,1990,37(12): 2532-2541.
    【94】 White Ⅲ W T, Dease C G, Khanaka G H. Analysis of performance of gallium arsenide photoavalanche switches [C]. Proc.7th IEEE Pulsed Power Conf.,1989,422-425.
    【95】 Adams J C, Falk R A, Capps C D, et al. Characterization of current filamention in GaAs photoconductive switches[C]. SPIE Vol.1873 Optically Activated Switching Ⅲ, Los Angeles, CA.1993, 10-20.
    【96】 Hjamarson H P, Loubriel G M, Zutavern F J, et al. A collective impact ionization theory of lock-on [C]. Proc.12th IEEE Pulsed Power Conf., Monterey, CA,1999:299-302.
    【97】 Kambour K, Kang S, Myles C W, et al. Steady-state properties of lock-on current filaments in GaAs[C]. IEEE Transactions on Plasma Science,2000,28(5):1497-1499.
    【98】 M D Cummings, J F Holzman, A Y Elezzabi, Femtosecond carrier dynamics in an asymmetrically excited GaAs photoconductive switch[C], Appl. Phys. Lett.,2001,78(22):3535-3538.
    【99】 Zhao H, Hadizad P, Hur J H, et al. Avalanche injection model for the lock-on effect in III-V power photoconductive switches[J]. J. Appl. Phys.1993,73{4):1807-1812.
    【100】 Portella M T, Rigot J Y, Schoenlein R W. K-space carriers dynamics in GaAs [J]. Uttrafast Phenomena,1990,7:285-287.
    【101】 Heinrich H K, Bloom D M, Hemenway B R. Noninvasive sheet charge density probe for integrated silicon devices [J]. Appl. Phys. Lett.,1986,48:1066-1068.
    【102】江剑平,陈汉祥.红外激光双光束无损检测的数据采集法[J].半导体光电.1997,18(2): 130-133.
    【103】施卫,梁振宪.Monte Carlo方法在高倍增GaAs光电导开关模拟中的应用[J].西安交通大学学报,1998,32(4):1-3.
    【104】 Kambour K, Kang S, Myles C W, Hjalmarson H P. Steady-state properties of lock-on current filaments in GaAs [J], IEEE Transactions on Plasma Science,2000,28(5):1497-1499.
    【105】焦其祥.电磁场与电磁波[M].北京:科学出版社,2004:185-187.
    【106】屈光辉,施卫.光电导开关中的感生电流与传导电流.物理学报.2006,55(11):6068-6071.
    【107】唐英,刘永安.关于运动电荷所产生的位移电流[J].工科物理,1998,8(1):9-13.
    【108】刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社,2003:27-44.
    【109】张显斌,施卫,李琦,陈二柱,赵卫.用红外激光脉冲触发半绝缘GaAs光电导开关的实验研究[J].强激光与离子束.2002,14(6):815-818.
    【110】张显斌,李琦,施卫,赵卫.用1064nm激光脉冲触发半绝缘GaAs光电导开关的研究[J].电子学报,2002,31(9):1081-1084.
    【111】沈学楚,半导体光谱学[M].北京:科学出版社,2002:158-162.
    【112】李言荣,恽正中.电子材料导论[M].北京:清华大学出版社,2001:198-206.
    【113】赵智大.高电压技术[M].北京:中国电力出版社,1998:13-15.
    【114】施卫,梁振宪,冯军等.高压超快GaAs光电导开关的耐压设计与绝缘保护[J].高电压技术.1998,24(1):12-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700