表面等离激元金属纳米结构的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面等离子共振是金属表面自由电子在光的电磁场作用下的的集体振动的现象,在传感、检测、发光、波导、太阳能光伏等多方面有重要应用前景,近年来引起了极大的关注。等离子共振的重要性质之一是使金属颗粒表面附近的局域电磁场极大增强,因而可以增强拉曼散射的强度(SERS)和提高发光体的激发强度。而金属纳米结构的尺寸、形状和结构将影响表面等离子振动的峰位和强度。因此,制备不同尺寸和结构的金属纳米结构,研究生长的动力学和热力学因素,对其实际应用具有非常重要的意义。
     本文用湿化学法制备了几种不同结构的金,银纳米颗粒,系统研究了控制颗粒形貌、结构的因素,探讨了颗粒的生长机理。进一步利用自组装的方法将颗粒形成薄膜,研究了颗粒薄膜的SERS'性能。并对金属颗粒的等离子振动与量子点的荧光耦合进行了初步研究。论文取得了如下有创新意义的主要结果:
     (1)用一步化学反应的方法,制备了不同尺寸的Ag颗粒。研究发现实验参数如AgNO3和PVP浓度、反应温度、氨水加入量等因素对产物的形貌和尺寸均有影响。并提出了颗粒生长的两种模式:扩散生长和团聚生长,小尺寸颗粒主要通过扩散生长长成,较大的颗粒则是由团聚生长得到。
     (2)采用油—水界面自组装的方法制备了由密排Ag颗粒形成的薄膜,研究了其SERS性能。实验发现,密排颗粒薄膜增强了R6G和pMA的拉曼信号,而且SERS效果与颗粒尺寸有关。密排颗粒膜比滴加Ag溶胶形成的稀疏薄膜具有更好的增强效果。将沉积在衬底上的密排银颗粒薄膜经过500℃热处理,制备了银岛膜;研究进一步发现,Ag岛尺寸和颗粒间距可以由薄膜层数和热处理温度来调节。
     (3)用改进的种子调节的化学镀方法,制备得到了具有均匀的、厚度可控的Ag层的SiO2@Ag颗粒。研究发现,加入Si02球的相对量可以来调节Ag层的厚度,而合适浓度的PVP和Ag核心的快速长大则是形成理想银层的关键。研究还指出,提高生长阶段反应物浓度,并调节温度和PVP浓度,可以提高SiO2@Ag颗粒的产量。SiO2@Ag颗粒具有从可见到近红外的可调的吸收峰,吸收峰的位置与Ag层厚度有关。SiO2@Ag核壳颗粒的SERS性能与Ag层形貌有关。
     (4)在无表面活性剂限制条件下,通过快速的化学反应制备了一种新型的由银核心和三维伸展的棒状凸起构成的花状Ag结构。提高反应物浓度后,得到了棒状凸起尺寸更小、更密的花状Ag结构。TEM和XRD等分析表明,花状结构的一部分棒状凸起由通常的FCC相Ag构成,而另一些棒则由HCP相的Ag构成。实验发现,HCP相的形成是在特定的还原剂甲醛的还原作用下,核心快速自由生长的结果。花状银颗粒是由HCP银的各向异性生长和甲醛氧化产物—甲酸在颗粒表面吸附导致。
     (5)将制备花状银结构的工艺拓展应用到表面覆盖有银核心的SiO2球上,制备得到了由SiO2@Ag核壳和Ag纳米棒组成的复合结构—海胆状SiO2@Ag结构。在海胆状结构中的Ag纳米棒中也发现了HCP相。提高反应物浓度后,海胆状结构Ag纳米棒的尺寸变小,数量更多。对比实验表明,海胆状结构形成的关键是在特定还原剂作用下,SiO2球表面Ag核心的自由和快速生长。
     (6)用种子法制备了不同长径比的金纳米棒,在生长阶段用维生素C作为还原剂。研究发现加入过量的维生素C时,金棒的头部会长的较大,形成肉骨头形状,同时在吸收谱中会出现第三个峰。在金棒表面包覆较薄的Si02隔离层减弱了Au棒对CdTe量子点的荧光淬灭效应。另外,由于金纳米棒的等离子共振作用,CdTe量子点的荧光寿命变短。
     (7)利用油—水界面自组装的方法,制备了由密排的Ag@SiO2和Au@SiO2构成的薄膜。发现由于二氧化硅的隔离作用,避免了金属核心之间的等离子振动耦合,使得薄膜具有与分散的metal@silica颗粒同样窄的消光峰。实验表明由具有较薄SiO:层的Ag@SiO2颗粒自组装得到的薄膜有效增强了R6G的拉曼信号。
Surface plasmon resonance is a phenomenon that arises from the collective oscillation driven by the electromagnetic field of light. It has potential applications in sensing, fluorescence, waveguide, solar cells and so on, which have attracted a lot of attention. One of the most important properties of surface plasmon is enhancing the local filed near the surface of metallic particles greatly, which can enhance the Raman scattering intensity (SERS) and excitation intensity of fluorophore nearby. As the size, shape and structures will influence the intensity and position of surface plasmon, it is meaningful for applications to prepare metallic nanostructures of different size and shape and study the kinetic and thermodynamic factors.
     In this dissertation, several kinds of Au and Ag nanostructures were prepared with wet chemical methods. The factors that would influence the morphology and size were systematically investigated. The growth mechanism was also studied. And then, films composed of metallic particles were prepared through a self-assembly process, and the SERS properties were tested. Moreover, the coupling between metallic nanoparticles and quantum dots was analyzed. The primary significant results of this thesis are summarized as follows:
     (1) Silver particles of different size were prepared through a one-step reaction. The experimental parameters including the concentrations of PVP and AgNO3, the amount of ammonia added and reaction temperature influenced the size of the samples. Two growth modes were put forward: diffusion growth and aggregation-based growth. Small particles grew up by diffusion, while large particles grew up by aggregation.
     (2) Films composed of closely-packed silver particles were prepared through oil-water self-assembly. The films enhanced the Raman signals of R6G and pMA, and the enhancement effect correlated with the particle size. Films of closely-packed particles showed better enhancement than that composed of sparse particles. Ag island films were obtained by annealing the closely-packed particles and the size of the Ag islands the distance between particles were controlled by the layers of the film and the annealing temperature.
     (3) SiO2@Ag particles with smooth and thickness-controllable Ag shells were prepared with an improved seed-mediated electroless method. PVP of proper concentration and the rapid growth of the silver nuclei were essential to obtain perfect silver shells. The thickness of the silver shells was controlled by the amount of SiO2 spheres. By raising the concentrations of the reactants, SiCO2@Ag particles with high yield were produced. The SiO2@Ag particles displayed tunable extinction peaks spreading from the visible to near infrared region, which was dependent on the thickness of the Ag shells. The SERS effect correlated with the morphology of the Ag layers.
     (4) A kind of flower-like silver structures consisted of a silver core and several rod-like tips protruding in three dimensions were fabricated using a rapid reaction without the limitation of surfactants. By raising the concentrations of the reactants, more rod-like tips with smaller size on one core were obtained. TEM and XRD analysis suggested that some rods had the FCC structure, and others had the HCP structure. It was observed that the formation of the HCP phase was the result of rapid and free growth of silver nuclei under the special reducing agent-CH2O. The formation of the flower-like silver particles was induced by the anisotropic growth of HCP silver and the adsorption of HCOOH-the oxidation product of CH2O.
     (5) Expanding the strategies of preparing the flower-like silver particles onto the silica spheres decorated with silver nuclei, echinus-like SiO2@Ag structures, which was the hybrid structures of SiO2@Ag core-shell and silver rods were obtained. In the echinus-like SiO2@Ag structures, HCP phase of Ag was also observed. The rods on the silver shells became smaller and denser after raising the reactant concentrations. It was found that the rapid and free growth of silver nuclei on the silica spheres under the special reducing agent was also very important.
     (6) Gold nanorods of different aspect ratios were prepared using an seed-mediated method, in which AA was used in the growth step. Dogbone-like gold nanorods were obtained by adding superabundant AA into the growth solution. A new peak arose in the absorption spectrum of the dog-bone gold nanorods. By coating the rods with a thin silica layers, the quenching effect of gold on CdTe quantum dots was reduced. The lifetime of the excitation state of CdTe quantum dots was reduced due to the surface plasmon of gold nanorods.
     (7) Films of closely-packed Ag@SiO2 or Au@SiO2 particles were obtained by oil-water interfacial self-assembly. Due to the isolation of silica layers on the surface of the metallic particles, the plasmon coupling between the metallic particles was avoided. So the films displayer similar narrow extinction peaks as that of the dispersed particles in solution. Films of Ag@SiO2 particles with thin silica layers enhanced the Raman signals of R6G.
引文
[1]J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, M. L. Brongersma. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials,2010,9(3):193-204.
    [2]W. A. Murray, W. L. Barnes. Plasmonic materials[J]. Advanced Materials,2007,19(22): 3771-3782.
    [3]E. Fort, S. Gresillon. Surface enhanced fluorescence[J]. Journal of Physics D-Applied Physics, 2008,41(1):013001.
    [4]C. L. Haynes, A. D. McFarland, R. P. Van Duyne. Surface-enhanced Raman spectroscopy[J]. Analytical Chemistry,2005,77(17):338a-346a.
    [5]T. Sondergaard, S. I. Bozhevolnyi. Metal nano-strip optical resonators [J]. Optics Express,2007, 15(7):4198-4204.
    [6]P. F. Liao, A. Wokaun. Lightning Rod Effect in Surface Enhanced Raman-Scattering[J]. Journal of Chemical Physics,1982,76(1):751-752.
    [7]V. Guieu, D. Talaga, L. Servant, N. Sojic, F. Lagugne-Labarthet. Multitip-Localized Enhanced Raman Scattering from a Nanostructured Optical Fiber Array[J]. Journal of Physical Chemistry C, 2009,113(3):874-881.
    [8]Y. Y. Lin, J. D. Liao, Y. H. Ju, C. W. Chang, A. L. Shiau. Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus[J]. Nanotechnology,2011,22(18):185308.
    [9]M. I. Stockman. Nanofocusing of optical energy in tapered plasmonic waveguides [J]. Physical Review Letters,2004,93(13):137404.
    [10]K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environmentfJ]. Journal of Physical Chemistry B,2003, 107(3):668-677.
    [11]W. H. Yang, G. C. Schatz, R. P. Vanduyne. Discrete Dipole Approximation for Calculating Extinction and Raman Intensities for Small Particles with Arbitrary Shapes[J]. Journal of Chemical Physics,1995,103(3):869-875.
    [12]E. S. Kooij, B. Poelsema. Shape and size effects in the optical properties of metallic nanorods[J]. Physical Chemistry Chemical Physics,2006,8(28):3349-3357.
    [13]Y. Xia, Y. J. Xiong, B. Lim, S. E. Skrabalak. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?[J]. Angewandte Chemie-International Edition,2009, 48(1):60-103.
    [14]S. Link, M. A. Ei-Sayed. Optical properties and ultrafast dynamics of metallic nanocrystals[J]. Annual Review of Physical Chemistry,2003,54(331-366.
    [15]S. Link, M. A. El-Sayed. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods[J]. Journal of Physical Chemistry B,1999,103(40):8410-8426.
    [16]F. Zhou, Z. Y. Li, Y. Liu, Y. N. Xia. Quantitative Analysis of Dipole and Quadrupole Excitation in the Surface Plasmon Resonance of Metal Nanoparticles[J]. Journal of Physical Chemistry C, 2008,112(51):20233-20240.
    [17]D. D. Evanoff, G. Chumanov. Size-controlled synthesis of nanoparticles.2. Measurement of extinction, scattering, and absorption cross sections[J]. Journal of Physical Chemistry B,2004, 108(37):13957-13962.
    [18]X. D. Hoa, A. G. Kirk, M. Tabrizian. Towards integrated and sensitive surface plasmon resonance biosensors:A review of recent progress[J]. Biosensors & Bioelectronics,2007,23(2):151-160.
    [19]J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, P. Mulvaney. Gold nanorods:Synthesis, characterization and applications[J]. Coordination Chemistry Reviews,2005,249(17-18): 1870-1901.
    [20]B. Nikoobakht, M. A. El-Sayed. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method[J]. Chemistry of Materials,2003,15(10):1957-1962.
    [21]N. R. Jana, L. Gearheart, C. J. Murphy. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio[J]. Chemical Communications,2001,7):617-618.
    [22]I. Ojea-Jimenez, F. M. Romero, N. G. Bastus, V. Puntes. Small Gold Nanoparticles Synthesized with Sodium Citrate and Heavy Water:Insights into the Reaction Mechanism[J]. Journal of Physical Chemistry C,2010,114(4):1800-1804.
    [23]K. S. Chou, C. Y. Ren. Synthesis of nanosized silver particles by chemical reduction method[J]. Materials Chemistry and Physics,2000,64(3):241-246.
    [24]P. Y. Silvert, R. HerreraUrbina, N. Duvauchelle, V. Vijayakrishnan, K. T. Elhsissen. Preparation of colloidal silver dispersions by the polyol process.1. Synthesis and characterization[J]. Journal of Materials Chemistry,1996,6(4):573-577.
    [25]Y. G. Sun, Y. N. Xia. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science, 2002,298(5601):2176-2179.
    [26]S. J. Oldenburg, J. B. Jackson, S. L. Westcott, N. J. Halas. Infrared extinction properties of gold nanoshells[J]. Applied Physics Letters,1999,75(19):2897-2899.
    [27]S. A. Kalele, N. R. Tiwari, S. W. Gosavi, S. K. Kulkarni. Plasmon-assisted photonics at the nanoscale[J]. Journal of Nanophotonics,2007,1:012501.
    [28]W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg. Optical properties of two interacting gold nanoparticles[J]. Optics Communications,2003,220(1-3): 137-141.
    [29]T. Ung, L. M. Liz-Marzan, P. Mulvaney. Optical properties of thin films of Au@SiO2 particles[J]. Journal of Physical Chemistry B,2001,105(17):3441-3452.
    [30]T. Jensen, L. Kelly, A. Lazarides, G. C. Schatz. Electrodynamics of noble metal nanoparticles and nanoparticle clusters[J]. Journal of Cluster Science,1999,10(2):295-317.
    [31]E. Hao, G. C. Schatz. Electromagnetic fields around silver nanoparticles and dimers[J]. Journal of Chemical Physics,2004,120(1):357-366.
    [32]G. C. Schatz. Electrodynamics of nonspherical noble metal nanoparticles and nanoparticle aggregates [J]. Journal of Molecular Structure-Theochem,2001,573:73-80.
    [33]A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. R. Van Duyne, S. L. Zou. Plasmonic materials for surface-enhanced sensing and spectroscopy[J]. Mrs Bulletin,2005,30(5):368-375.
    [34]A. K. Holliday. The Effect of Dialysis on the Properties of Nuclear Gold Sols.3. Kinetics of Coagulation and Application of the Theory of Colloid Stability[J]. Transactions of the Faraday Society,1950,46(6):447-453.
    [35]C. H. Munro, W. E. Smith, M. Garner, J. Clarkson, P. C. White. Characterization of the Surface of a Citrate-Reduced Colloid Optimized for Use as a Substrate for Surface-Enhanced Resonance Raman-Scattering[J]. Langmuir,1995,11(10):3712-3720.
    [36]Z. S. Pillai, P. V. Kamat. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method?[J]. Journal of Physical Chemistry B,2004,108(3):945-951.
    [37]M. Singh, I. Sinha, R. K. Mandal. Role of pH in the green synthesis of silver nanoparticles[J]. Materials Letters,2009,63(3-4):425-427.
    [38]J. S. Chang, Y. P. Lee, R. C. Wang. Optimization of nanosized silver particle synthesis via experimental design[J]. Industrial & Engineering Chemistry Research,2007,46(17):5591-5599.
    [39]D. L. Van Hyning, C. F. Zukoski. Formation mechanisms and aggregation behavior of borohydride reduced silver particles[J]. Langmuir,1998,14(24):7034-7046.
    [40]K. P. Velikov, G. E. Zegers, A. van Blaaderen. Synthesis and characterization of large colloidal silver particles[J]. Langmuir,2003,19(4):1384-1389.
    [41]D. D. Evanoff, G. Chumanov. Size-controlled synthesis of nanoparticles.1. "Silver-only" aqueous suspensions via hydrogen reduction[J]. Journal of Physical Chemistry B,2004,108(37): 13948-13956.
    [42]A. Pyatenko, M. Yamaguchi, M. Suzuki. Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions[J]. Journal of Physical Chemistry C,2007,111(22): 7910-7917.
    [43]B. Chen, X. L. Jiao, D. R. Chen. Size-Controlled and Size-Designed Synthesis of Nano/Submicrometer Ag Particles[J]. Crystal Growth & Design,2010,10(8):3378-3386.
    [44]S. Schneider, P. Halbig, H. Grau, U. Nickel. Reproducible Preparation of Silver Sols with Uniform Particle-Size for Application in Surface-Enhanced Raman-Spectroscopy[J]. Photochemistry and Photobiology,1994,60(6):605-610.
    [45]J. Rodriguez-Fernandez, J. Perez-Juste, F. J. G. de Abajo, L. M. Liz-Marzan. Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes[J]. Langmuir,2006,22(16): 7007-7010.
    [46]N. R. Jana, X. G. Peng. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals[J]. Journal of the American Chemical Society,2003,125(47): 14280-14281.
    [47]I. Pastoriza-Santos, L. M. Liz-Marzan. Formation and stabilization of silver nanoparticles through reduction by N,N-dimethylformamide[J]. Langmuir,1999,15(4):948-951.
    [48]J. Park, V. Privman, E. Matijevic. Model of formation of monodispersed colloids[J]. Journal of Physical Chemistry B,2001,105(47):11630-11635.
    [49]D. L. Van Hyning, W. G. Klemperer, C. F. Zukoski. Silver nanoparticle formation:Predictions and verification of the aggregative growth model[J]. Langmuir,2001,17(11):3128-3135.
    [50]J. F. Banfield, S. A. Welch, H. Z. Zhang, T. T. Ebert, R. L. Penn. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products[J]. Science,2000,289(5480):751-754.
    [51]C. R. Martin. Membrane-based synthesis of nanomaterials[J]. Chemistry of Materials,1996,8(8): 1739-1746.
    [52]Y. Y. Yu, S. S. Chang, C. L. Lee, C. R. C. Wang. Gold nanorods:Electrochemical synthesis and optical properties[J]. Journal of Physical Chemistry B,1997,101(34):6661-6664.
    [53]F. Kim, J. H. Song, P. D. Yang. Photochemical synthesis of gold nanorods[J]. Journal of the American Chemical Society,2002,124(48):14316-14317.
    [54]M. Ahmed, R. Narain. Rapid Synthesis of Gold Nanorods Using a One-Step Photochemical Strategy[J]. Langmuir,2010,26(23):18392-18399.
    [55]T. K. Sau, C. J. Murphy. Seeded high yield synthesis of short Au nanorods in aqueous solution[J]. Langmuir,2004,20(15):6414-6420.
    [56]N. R. Jana, L. Gearheart, C. J. Murphy. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template[J]. Advanced Materials,2001,13(18):1389-1393.
    [57]N. R. Jana. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles[J]. Small,2005,1(8-9):875-882.
    [58]C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, S. Mann. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis[J]. Journal of Materials Chemistry,2002,12(6):1765-1770.
    [59]L. F. Gou, C. J. Murphy. Fine-tuning the shape of gold nanorods[J]. Chemistry of Materials,2005, 17(14):3668-3672.
    [60]X. D. Xu, M. B. Cortie. Shape change and color gamut in gold nanorods, dumbbells, and dog bones[J]. Advanced Functional Materials,2006,16(16):2170-2176.
    [61]C. J. Huang, P. H. Chiu, Y. H. Wang, T. H. Meen, C. F. Yang. Synthesis and characterization of gold nanodogbones by the seeded mediated growth method[J]. Nanotechnology,2007, 18(39):395603.
    [62]S. J. Oldenburg, R. D. Averitt, S. L. Westcott, N. J. Halas. Nanoengineering of optical resonances[J]. Chemical Physics Letters,1998,288(2-4):243-247.
    [63]S. J. Oldenburg, G. D. Hale, J. B. Jackson, N. J. Halas. Light scattering from dipole and quadrupole nanoshell antennas[J]. Applied Physics Letters,1999,75(8):1063-1065.
    [64]C. Graf, A. van Blaaderen. Metallodielectric colloidal core-shell particles for photonic applications[J]. Langmuir,2002,18(2):524-534.
    [65]J. H. Zhang, J. B. Liu, S. Z. Wang, P. Zhan, Z. L. Wang, N. B. Ming. Facile methods to coat polystyrene and silica colloids with metal[J]. Advanced Functional Materials,2004,14(11): 1089-1096.
    [66]H. Wang, D. W. Brandl, P. Nordlander, N. J. Halas. Plasmonic nanostructures:Artificial molecules[J]. Accounts of Chemical Research,2007,40(1):53-62.
    [67]F. Tarn, G. P. Goodrich, B. R. Johnson, N. J. Halas. Plasmonic enhancement of molecular fluorescence[J]. Nano Letters,2007,7(2):496-501.
    [68]H. Wang, D. W. Brandl, F. Le, P. Nordlander, N. J. Halas. Nanorice:A hybrid plasmonic nanostructure[J]. Nano Letters,2006,6(4):827-832.
    [69]D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. B. Li, L. W. Wang, A. P. Alivisatos. Colloidal nanocrystal heterostructures with linear and branched topology[J]. Nature,2004,430(6996): 190-195.
    [70]X. W. Teng, X. Y. Liang, S. Maksimuk, H. Yang. Synthesis of porous platinum nanoparticles[J]. Small,2006,2(2):249-253.
    [71]J. Watt, S. Cheong, M. F. Toney, B. Ingham, J. Cookson, P. T. Bishop, R. D. Tilley. Ultrafast Growth of Highly Branched Palladium Nanostructures for Catalysis[J]. Acs Nano,2010,4(1): 396-402.
    [72]C. G. Khoury, T. Vo-Dinh. Gold Nanostars For Surface-Enhanced Raman Scattering:Synthesis, Characterization and Optimization[J]. Journal of Physical Chemistry C,2008,112(48): 18849-18859.
    [73]X. Q. Wang, H. Itoh, K. Naka, Y. Chujo. Tetrathiafulvalene-assisted formation of silver dendritic nanostructures in acetonitrile[J]. Langmuir,2003,19(15):6242-6246.
    [74]Y. L. Wang, P. H. C. Camargo, S. E. Skrabalak, H. C. Gu, Y. N. Xia. A Facile, Water-Based Synthesis of Highly Branched Nanostructures of Silver[J]. Langmuir,2008,24(20):12042-12046.
    [75]X. G. Wen, Y. T. Xie, W. C. Mak, K. Y. Cheung, X. Y. Li, R. Renneberg, S. Yang. Dendritic nanostructures of silver:Facile synthesis, structural characterizations, and sensing applications[J]. Langmuir,2006,22(10):4836-4842.
    [76]J. X. Fang, H. J. You, P. Kong, Y. Yi, X. P. Song, B. J. Ding. Dendritic silver nanostructure growth and evolution in replacement reaction[J]. Crystal Growth & Design,2007,7(5):864-867.
    [77]X. H. Liu, R. Huang, J. Zhu. Functional faceted silver nano-hexapods:Synthesis, structure characterizations, and optical properties[J]. Chemistry of Materials,2008,20(1):192-197.
    [78]M. J. Mulvihill, X. Y. Ling, J. Henzie, P. D. Yang. Anisotropic Etching of Silver Nanoparticles for Plasmonic Structures Capable of Single-Particle SERS[J]. Journal of the American Chemical Society,2010,132(1):268-274.
    [79]S. M. Humphrey, M. E. Grass, S. E. Habas, K. Niesz, G. A. Somorjai, T. D. Tilley. Rhodium nanoparticles from cluster seeds:Control of size and shape by precursor addition rate[J]. Nano Letters,2007,7(3):785-790.
    [80]B. Lim, Y. N. Xia. Metal Nanocrystals with Highly Branched Morphologies[J]. Angewandte Chemie-International Edition,2011,50(1):76-85.
    [81]S. Maksimuk, X. Teng, H. Yang. Roles of twin defects in the formation of platinum multipod nanocrystals[J]. Journal of Physical Chemistry C,2007,111(39):14312-14319.
    [82]S. Cheong, J. Watt, B. Ingham, M. F. Toney, R. D. Tilley. In Situ and Ex Situ Studies of Platinum Nanocrystals:Growth and Evolution in Solution[J]. Journal of the American Chemical Society, 2009,131(40):14590-14595.
    [83]B. Lim, M. J. Jiang, J. Tao, P. H. C. Camargo, Y. M. Zhu, Y. N. Xia. Shape-Controlled Synthesis of Pd Nanocrystals in Aqueous Solutions[J]. Advanced Functional Materials,2009,19(2): 189-200.
    [84]H. M. Zheng, R. K. Smith, Y. W. Jun, C. Kisielowski, U. Dahmen, A. P. Alivisatos. Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories[J]. Science,2009,324(5932): 1309-1312.
    [85]B. Lim, H. Kobayashi, P. H. C. Camargo, L. F. Allard, J. Y. Liu, Y. N. Xia. New Insights into the Growth Mechanism and Surface Structure of Palladium Nanocrystals[J]. Nano Research,2010, 3(3):180-188.
    [86]Y. Yin, A. P. Alivisatos. Colloidal nanocrystal synthesis and the organic-inorganic interfacefJ]. Nature,2005,437(7059):664-670.
    [87]J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki. Evolution of nanoporosiry in dealloying[J]. Nature,2001,410(6827):450-453.
    [88]R. Li, K. Sieradzki. Ductile-Brittle Transition in Random Porous Au[J]. Physical Review Letters, 1992,68(8):1168-1171.
    [89]T. K. Sau, C. J. Murphy. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution[J]. Journal of the American Chemical Society,2004,126(28): 8648-8649.
    [90]E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, S. Y. Li. Synthesis and optical properties of "branched" gold nanocrystals[J]. Nano Letters,2004,4(2):327-330.
    [91]B. K. Jena, B. K. Mishra, S. Bohidar. Synthesis of Branched Ag Nanoflowers Based on a Bioinspired Technique:Their Surface Enhanced Raman Scattering and Antibacterial Activity[J]. Journal of Physical Chemistry C,2009,113(33):14753-14758.
    [92]P. Taneja, R. Banerjee, P. Ayyub, G. K. Dey. Observation of a hexagonal (4H) phase in nanocrystalline silver[J]. Physical Review B,2001,6403(3):033405.
    [93]X. H. Liu, J. Luo, J. Zhu. Size effect on the crystal structure of silver nanowires[J]. Nano Letters, 2006,6(3):408-412.
    [94]T. K. Huang, T. H. Cheng, M. Y. Yen, W. H. Hsiao, L. S. Wang, F. R. Chen, J. J. Kai, C. Y. Lee, H. T. Chiu. Growth of Cu nanobelt and Ag belt-like materials by surfactant-assisted galvanic reductions[J]. Langmuir,2007,23(10):5722-5726.
    [95]H. Y. Liang, H. X. Yang, W. Z. Wang, J. Q. Li, H. X. Xu. High-Yield Uniform Synthesis and Microstructure-Determination of Rice-Shaped Silver Nanocrystals[J]. Journal of the American Chemical Society,2009,131(17):6068-6069.
    [96]X. S. Shen, G. Z. Wang, X. Hong, X. Xie, W. Zhu, D. P. Li. Anisotropic Growth of One-Dimensional Silver Rod-Needle and Plate-Belt Heteronanostructures Induced by Twins and hep Phase[J]. Journal of the American Chemical Society,2009,131(31):10812-10813.
    [97]A. Haider, N. Ravishankar. Ultrafine single-crystalline gold nanowire arrays by oriented attachment[J]. Advanced Materials,2007,19(14):1854-1858.
    [98]A. P. Alivisatos. Biomineralization-Naturally aligned nanocrystals[J]. Science,2000,289(5480): 736-737.
    [99]Y. J. Song, Y. Yang, C. J. Medforth, E. Pereira, A. K. Singh, H. F. Xu, Y. B. Jiang, C. J. Brinker, F. van Swol, J. A. Shelnutt. Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures[J]. Journal of the American Chemical Society,2004,126(2):635-645.
    [100]X. W. Lou, C. L. Yuan, L. A. Archer. An unusual example of hyperbranched metal nanocrystals and their shape evolution[J]. Chemistry of Materials,2006,18(17):3921-3923.
    [101]Y. Zhou, S. H. Yu, C. Y. Wang, X. G. Li, Y. R. Zhu, Z. Y. Chen. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites[J]. Advanced Materials,1999,11(10):850-852.
    [102]S. C. Tang, X. K. Meng, C. C. Wang, Z. H. Cao. Flowerlike Ag microparticles with novel nanostructure synthesized by an electrochemical app roach[J]. Materials Chemistry and Physics, 2009,114(2-3):842-847.
    [103]L. J. Hong, Q. Li, H. Lin, Y. A. Li. Synthesis of flower-like silver nanoarchitectures at room temperature[J]. Materials Research Bulletin,2009,44(6):1201-1204.
    [104]L. Fan, R. Guo. Growth of dendritic silver crystals in CTAB/SDBS mixed-surfactant solutions[J]. Crystal Growth& Design,2008,8(7):2150-2156.
    [105]Y. C. Han, S. H. Liu, M. Han, J. C. Bao, Z. H. Dai. Fabrication of Hierarchical Nanostructure of Silver via a Surfactant-Free Mixed Solvents Route[J]. Crystal Growth & Design,2009,9(9): 3941-3947.
    [106]M. A. Correa-Duarte, N. Sobal, L. M. Liz-Marzan, M. Giersig. Linear assemblies of silica-coated gold nanoparticles using carbon nanotubes as templates[J]. Advanced Materials,2004,16(23-24): 2179-2184.
    [107]L. T. Qu, G. Q. Shi, X. F. Wu, B. Fan. Facile route to silver nanotubes[J]. Advanced Materials, 2004,16(14):1200-1203.
    [108]S. Duraiswamy, S. A. Khan. Plasmonic Nanoshell Synthesis in Microfluidic Composite Foams[J]. Nano Letters,2010,10(9):3757-3763.
    [109]Z. Q. Li, W. Y. Li, P. H. C. Camargo, Y. N. Xia. Facile Synthesis of Branched An Nanostructures by Templating Against a Self-Destructive Lattice of Magnetic Fe Nanoparticles[J]. Angewandte Chemie-International Edition,2008,47(50):9653-9656.
    [110]J. X. Fang, Y. Yi, B. J. Ding, X. P. Song. A route to increase the enhancement factor of surface enhanced Raman scattering (SERS) via a high density Ag flower-like pattern[J]. Applied Physics Letters,2008,92(13):131115.
    [111]B. Wiley, Y. G. Sun, B. Mayers, Y. N. Xia. Shape-controlled synthesis of metal nanostructures: The case of silver[J]. Chemistry-a European Journal,2005,11(2):454-463.
    [112]X. M. Lu, L. Au, J. McLellan, Z. Y. Li, M. Marquez, Y. N. Xia. Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)(3) or NH4OH[J]. Nano Letters,2007,7(6):1764-1769.
    [113]A. J. de Vries, E. S. Kooij, H. Wormeester, A. A. Mewe, B. Poelsema. Ellipsometric study of percolation in electroless deposited silver films[J]. Journal of Applied Physics,2007, 101(5):053703.
    [114]O. P. Khatri, K. Murase, H. Sugimura. Structural organization of gold nanoparticles onto the ITO surface and its optical properties as a function of ensemble size[J]. Langmuir,2008,24(8): 3787-3793.
    [115]D. L. Pilloud, F. Rabanal, B. R. Gibney, R. S. Farid, P. L. Dutton, C. C. Moser. Self-assembled monolayers of synthetic hemoproteins on silanized quartz[J]. Journal of Physical Chemistry B, 1998,102(11):1926-1937.
    [116]X. G. Hu, W. L. Cheng, T. Wang, Y. L. Wang, E. K. Wang, S. J. Dong. Fabrication, characterization, and application in SERS of self-assembled polyelectrolyte-gold nanorod multilayered films[J]. Journal of Physical Chemistry B,2005,109(41):19385-19389.
    [117]S. Malynych, I. Luzinov, G. Chumanov. Poly(vinyl pyridine) as a universal surface modifier for immobilization of nanoparticles[J]. Journal of Physical Chemistry B,2002,106(6):1280-1285.
    [118]C. G. Wang, Z. F. Ma, Z. M. Su. Synthesis and self-assembly of silica-coated anisotropic gold nanoparticle films[J]. Nanotechnology,2006,17(8):1819-1824.
    [119]K. Ray, R. Badugu, J. R. Lakowicz. Metal-enhanced fluorescence from CdTe nanocrystals:A single-molecule fluorescence study[J]. Journal of the American Chemical Society,2006,128(28): 8998-8999.
    [120]L. Shang, H. J. Chen, S. J. Dong. Electrochemical preparation of silver nanostructure on the planar surface for application in metal-enhanced fluorescence[J]. Journal of Physical Chemistry C, 2007,111(29):10780-10784.
    [121]K. S. Chou, K. C. Huang, H. H. Lee. Fabrication and sintering eiiect on the morphologies and conductivity of nano-Ag particle films by the spin coating method[J]. Nanotechnology,2005. 16(6):779-784.
    [122]H. M. Liu, X. P. Zhang, Z. H. Gao. Lithography-free fabrication of large-area plasmonic nanostructures using colloidal gold nanoparticles[J]. Photonics and Nanostructures-Fundamentals and Applications,2010,8(3):131-139.
    [123]H. Mertens, A. Polman. Plasmon-enhanced erbium luminescence[J]. Applied Physics Letters, 2006,89(21):211107.
    [124]J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, A. Polman. Spectral tuning of plasmon-enhanced silicon quantum dot luminescence[J]. Applied Physics Letters,2006,88(13): 131109.
    [125]P. B. Dayal, F. Koyama. Polarization control of 0.85 mu m vertical-cavity surface-emitting lasers integrated with gold nanorod arrays[J]. Applied Physics Letters,2007,91(11):111107.
    [126]J. B. You, X. W. Zhang, J. J. Dong, X. M. Song, Z. G. Yin, N. F. Chen, H. Yan. Localized-Surface-Plasmon Enhanced the 357 nm Forward Emission from ZnMgO Films Capped by Pt Nanoparticles[J]. Nanoscale Research Letters,2009,4(10):1121-1125.
    [127]P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, D. R. Yang. Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film[J]. Applied Physics Letters,2008, 92(4):041119.
    [128]J. C. Hulteen, R. P. Vanduyne. Nanosphere Lithography-a Materials General Fabrication Process for Periodic Particle Array Surfaces[J]. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,1995,13(3):1553-1558.
    [129]T. R. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne. Nanosphere lithography:Tunable localized surface plasmon resonance spectra of silver nanoparticles[J]. Journal of Physical Chemistry B,2000,104(45):10549-10556.
    [130]J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, R. P. Van Duyne. Nanosphere lithography:Size-tunable silver nanoparticle and surface cluster arrays[J]. Journal of Physical Chemistry B,1999,103(19):3854-3863.
    [131]M. J. Xu, N. Lu, H. B. Xu, D. P. Qi, Y. D. Wang, L. F. Chi. Fabrication of Functional Silver Nanobowl Arrays via Sphere Lithography [J]. Langmuir,2009,25(19):11216-11220.
    [132]L. Baia, M. Baia, J. Popp, S. Astilean. Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR[J]. Journal of Physical Chemistry B,2006,110(47):23982-23986.
    [133]G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, R. P. Van Duyne. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography [J]. Nano Letters,2007,7(7): 1947-1952.
    [134]C. Langhammer, Z. Yuan, I. Zoric, B. Kasemo. Plasmonic properties of supported Pt and Pd nanostructures[J]. Nano Letters,2006,6(4):833-838.
    [135]G. H. Chan, J. Zhao, G. C. Schatz, R. P. Van Duyne. Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles[J], Journal of Physical Chemistry C,2008, 112(36):13958-13963.
    [136]X. Y. Zhang, E. M. Hicks, J. Zhao, G. C. Schatz, R. P. Van Duyne. Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography[j]. Nano Letters,2005,5(7):1503-1507.
    [137]Y. B. Zheng, L. Jensen, W. Yan, T. R. Walker, B. K. Juluri, L. Jensen, T. J. Huang. Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays[J]. Joumal of Physical Chemistry C,2009,113(17):7019-7024.
    [138]G. Walters, I. P. Parkin. The incorporation of noble metal nanoparticles into host matrix thin films:synthesis, characterisation and applications[J]. Journal of Materials Chemistry,2009,19(5): 574-590.
    [139]L. Lagonigro, A. C. Peacock, S. Rohrmoser, T. Hasell, S. M. Howdle, P. J. A. Sazio, P. G. Lagoudakis. Time and spectrally resolved enhanced fluorescence using silver nanoparticle impregnated polycarbonate substrates[J]. Applied Physics Letters,2008,93(26):261114.
    [140]Fleischm.M, P. J. Hendra, Mcquilla.Aj. Raman-Spectra of Pyridine Adsorbed at a Silver Electrode[J]. Chemical Physics Letters,1974,26(2):163-166.
    [141]D. L. Jeanmaire, R. P. Vanduyne. Surface Raman Spectroelectrochemistry.1. Heterocyclic, Aromatic, and Aliphatic-Amines Adsorbed on Anodized Silver Electrode[J]. Journal of Electroanalytical Chemistry,1977,84(1):1-20.
    [142]M. G. Albrecht, J. A. Creighton. Anomalously Intense Raman-Spectra of Pyridine at a Silver Electrode[J]. Journal of the American Chemical Society,1977,99(15):5215-5217.
    [143]M. Osawa, N. Matsuda, K. Yoshii, Ⅰ. Uchida. Charge-Transfer Resonance Raman Process in Surface-Enhanced Raman-Scattering from P-Aminothiophenol Adsorbed on Silver-Herzberg-TellerContribution[J]. Journal of Physical Chemistry,1994,98(48):12702-12707.
    [144]J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, Z. Q. Tian. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature,2010,464(7287):392-395.
    [145]H. Y. Guo, F. X. Ruan, L. H. Lu, J. W. Hu, J. A. Pan, Z. L. Yang, B. Ren. Correlating the Shape, Surface Plasmon Resonance, and Surface-Enhanced Raman Scattering of Gold Nanorods[J]. Journal of Physical Chemistry C,2009,113(24):10459-10464.
    [146]T. W. H. Oates, S. Noda. Thickness-gradient dependent Raman enhancement in silver island films[J]. Applied Physics Letters,2009,94(5):053106.
    [147]J. J. Feng, Y. H. Lu, U. Gernert, P. Hildebrandt, D. H. Murgida. Electrosynthesis of SER-Active Silver Nanopillar Electrode Arrays[J]. Journal of Physical Chemistry C,2010,114(16): 7280-7284.
    [148]J. S. Hwang, K. Y. Chen, S. J. Hong, S. W. Chen, W. S. Syu, C. W. Kuo, W. Y. Syu, T. Y. Lin, H. P. Chiang, S. Chattopadhyay, K. H. Chen, L. C. Chen. The preparation of silver nanoparticle decorated silica nanowires on fused quartz as reusable versatile nanostructured surface-enhanced Raman scattering substrates [J]. Nanotechnology,2010,21(2):025502.
    [149]L. Rodriguez-Lorenzo, R. A. Alvarez-Puebla, F. J. G. de Abajo, L. M. Liz-Marzan. Surface Enhanced Raman Scattering Using Star-Shaped Gold Colloidal Nanoparticles[J]. Journal of Physical Chemistry C,2010,114(16):7336-7340.
    [150]T. Qiu, Y. J. Zhou, J. Q. Li, W. J. Zhang, X. Z. Lang, T. J. Cui, P. K. Chu. Hot spots in highly Raman-enhancing silver nano-dendrites[J]. Journal of Physics D-Applied Physics,2009,42(17): 175403.
    [151]J. N. Chen, W. S. Yang, K. Dick, K. Deppert, H. Q. Xu, L. Samuelson, H. X. Xu. Tip-enhanced Raman scattering of p-thiocresol molecules on individual gold nanoparticles[J]. Applied Physics Letters,2008,92(9):093110.
    [152]S. E. J. Bell, M. R. McCourt. SERS enhancement by aggregated Au colloids:effect of particle size[J]. Physical Chemistry Chemical Physics,2009,11(34):7455-7462.
    [153]P. H. C. Camargo, M. Rycenga, L. Au, Y. N. Xia. Isolating and Probing the Hot Spot Formed between Two Silver Nanocubes[J]. Angewandte Chemie-International Edition,2009,48(12): 2180-2184.
    [154]P. Anger, P. Bharadwaj, L. Novotny. Enhancement and quenching of single-molecule fluorescence[J]. Physical Review Letters,2006,96(11):113002.
    [155]S. Kuhn, U. Hakanson, L. Rogobete, V. Sandoghdar. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna[J]. Physical Review Letters, 2006,97(1):017402.
    [156]O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, J. G. Rivas. Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas[J]. Nano Letters,2007,7(9):2871-2875.
    [157]T. H. Taminiau, F. D. Stefani, F. B. Segerink, N. F. Van Hulst. Optical antennas direct single-molecule emission[J]. Nature Photonics,2008,2(4):234-237.
    [158]P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer. Enhancement and Quenching Regimes in Metal-Semiconductor Hybrid Optical Nanosources[J]. Acs Nano,2010,4(2):759-764.
    [159]K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer. Surface-plasmon-enhanced light emitters based on InGaN quantum wells[J]. Nature Materials, 2004,3(9):601-605.
    [160]A. P. Abiyasa, S. F. Yu, S. P. Lau, E. S. P. Leong, H. Y. Yang. Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance[J]. Applied Physics Letters,2007,90(23):231106.
    [161]N. G. Liu, B. S. Prall, V. I. Klimov. Hybrid gold/silica/nanocrystal-quantum-dot superstructures: Synthesis and analysis of semiconductor-metal interactions[J]. Journal of the American Chemical Society,2006,128(48):15362-15363.
    [162]F. Zhang, G. B. Braun, Y. F. Shi, Y. C. Zhang, X. H. Sun, N. O. Reich, D. Y. Zhao, G. Stucky. Fabrication of Ag@SiO2@Y2O3:Er Nanostructures for Bioimaging:Tuning of the Upconversion Fluorescence with Silver Nanoparticles[J]. Journal of the American Chemical Society,2010, 132(9):2850-2851.
    [163]O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, H. C. Gerritsen. Fluorescence enhancement by metal-core/silica-shell nanoparticles[J]. Advanced Materials,2006, 18(1):91-95.
    [164]K. Aslan, M. Wu, J. R. Lakowicz, C. D. Geddes. Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms[J]. Journal of the American Chemical Society,2007,129(6):1524-1525.
    [165]Z. Yang, W. H. Ni, X. S. Kou, S. Z. Zhang, Z. H. Sun, L. D. Sun, J. F. Wang, C. H. Yan. Incorporation of Gold Nanorods and Their Enhancement of Fluorescence in Mesostructured Silica Thin Films[J]. Journal of Physical Chemistry C,2008,112(48):18895-18903.
    [166]X. Li, F. J. Kao, C. C. Chuang, S. L. He. Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one-and two-photon excitation[J]. Optics Express,2010, 18(11):11335-11346.
    [167]M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner. Demonstration of a spaser-based nanolaser[J]. Nature,2009, 460(7259):1110-U1168.
    [168]J. Henson, J. C. Heckel, E. Dimakis, J. Abell, A. Bhattacharyya, G. Chumanov, T. D. Moustakas, R. Paiella. Plasmon enhanced light emission from InGaN quantum wells via coupling to chemically synthesized silver nanoparticles[J]. Applied Physics Letters,2009,95(15):151109.
    [169]H. A. Atwater, A. Polman. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 2010,9(3):205-213.
    [170]I. M. Pryce, D. D. Koleske, A. J. Fischer, H. A. Atwater. Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells[J]. Applied Physics Letters,2010, 96(15):153501.
    [171]H. S. Qian, M. Antonietti, S. H. Yu. Hybrid "golden fleece":Synthesis and catalytic performance of uniform carbon nanoribers and silica nanotubes embedded with a high population of noble-metal nanoparticles[J]. Advanced Functional Materials,2007,17(4):637-643.
    [172]M. A. Mahmoud, C. E. Tabor, M. A. El-Sayed, Y. Ding, Z. L. Wang. A new catalytically active colloidal platinum nanocatalyst:The multiarmed nanostar single crystal[J]. Journal of the American Chemical Society,2008,130(14):4590-4591.
    [173]H. G. Liao, Y. X. Jiang, Z. Y. Zhou, S. P. Chen, S. G. Sun. Shape-Controlled Synthesis of Gold Nanoparticles in Deep Eutectic Solvents for Studies of Structure-Functionality Relationships in Electrocatalysis[J]. Angewandte Chemie-International Edition,2008,47(47):9100-9103.
    [174]A. Nitzan, L. E. Brus. Theoretical-Model for Enhanced Photochemistry on Rough Surfaces[J]. Journal of Chemical Physics,1981,75(5):2205-2214.
    [175]G. Baffou, R. Quidant, C. Girard. Heat generation in plasmonic nanostructures:Influence of morphology [J]. Applied Physics Letters,2009,94(15):153109.
    [176]A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, N. A. Kotov. Gold nanoparticle ensembles as heaters and actuators:melting and collective plasmon resonances[J]. Nanoscale Research Letters,2006,1(1):84-90.
    [177]L. Y. Cao, D. N. Barsic, A. R. Guichard, M. L. Brongersma. Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes[J]. Nano Letters, 2007,7(11):3523-3527.
    [178]S. R. Sershen, S. L. Westcott, N. J. Halas, J. L. West. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery[J]. Journal of Biomedical Materials Research,2000,51(3):293-298.
    [179]L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J], Proceedings of the National Academy of Sciences of the United States of America,2003,100(23):13549-13554.
    [180]S. Kalele, S. W. Gosavi, J. Urban, S. K. Kulkarni. Nanoshell particles:synthesis, properties and applications[J]. Current Science,2006,91(8):1038-1052.
    [181]G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, A. Chilkoti. Rational Selection of Gold Nanorod Geometry for Label-Free Plasmonic Biosensors[J]. Acs Nano,2009,3(4):795-806.
    [182]I. Pastoriza-Santos, A. Sanchez-lglesias, F. J. G. de Abajo, L. M. Liz-Marzan. Environmental optical sensitivity of gold nanodecahedra[J]. Advanced Functional Materials,2007,17(9): 1443-1450.
    [183]蓝闽波等.纳米材料测试技术[M].上海:华东理工大学出版社,2009.
    [184]杨德仁等.半导体材料测试与分析[M].北京:科学出版社,2010:263-266.
    [185]Y. X. Zhang, L. N. Mandeng, N. Bondre, A. Dragan, C. D. Geddes. Metal-Enhanced Fluorescence from Silver-SiO2-Silver Nanoburger Structures[J]. Langmuir,2010,26(14): 12371-12376.
    [186]Y. N. Li, Y. L. Wu, B. S. Ong. Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics[J]. Journal of the American Chemical Society, 2005,127(10):3266-3267.
    [187]P. K. Chu, Y. M. Yang, Z. W. Wu, S. H. Pu, T. F. Hung, K. F. Huo, G. X. Qian, W. J. Zhang, X. L. Wu. Catalysis of dispersed stlver particles on directional etching of silicon[J]. Applied Surface Science,2008,254(10):3061-3066.
    [188]D. N. Rao, R. Sathyavathi, M. B. Krishna, S. V. Rao, R. Saritha. Biosynthesis of Silver Nanoparticles Using Coriandrum Sativum Leaf Extract and Their Application in Nonlinear Optics[J]. Advanced Science Letters,2010,3(2):138-143.
    [189]C. S. Seney, B. M. Gutzman, R. H. Goddard. Correlation of Size and Surface-Enhanced Raman Scattering Activity of Optical and Spectroscopic Properties for Silver Nanoparticles[J], Journal of Physical Chemistry C,2009,113(1):74-80.
    [190]R. J. Phaneuf, S. H. Guo, S. J. Tsai, H. C. Kan, D. H. Tsai, M. R. Zachariah. The effect of an active substrate on nanoparticle-enhanced fluorescence[J]. Advanced Materials,2008,20(8): 1424-1428.
    [191]Y. N. Xia, C. M. Cobley, M. Rycenga, F. Zhou, Z. Y. Li. Controlled Etching as a Route to High Quality Silver Nanospheres for Optical Studies[J]. Journal of Physical Chemistry C,2009, 113(39):16975-16982.
    [192]N. R. Jana, T. K. Sau, T. Pal. Growing small silver particle as redox catalyst[J]. Journal of Physical Chemistry B,1999,103(1):115-121.
    [193]W. Wang, S. Efrima, O. Regev. Directing oleate stabilized nanosized silver colloids into organic phases[J]. Langmuir,1998,14(3):602-610.
    [194]R. M. Bright, M. D. Musick, M. J. Natan. Preparation and characterization of Ag colloid monolayers[J]. Langmuir,1998,14(20):5695-5701.
    [195]W. S. Yang, X. Y. Dong, X. H. Ji, H. L. Wu, L. L. Zhao, J. Li. Shape Control of Silver Nanoparticles by Stepwise Citrate Reduction[J]. Journal of Physical Chemistry C,2009,113(16): 6573-6576.
    [196]L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, G. Morcillo. Growth of silver colloidal particles obtained by citrate reduction to increase the Raman enhancement factor[J]. Langmuir, 2001,17(3):574-577.
    [197]B. J. Lawrie, R. F. Haglund, R. Mu. Enhancement of ZnO photoluminescence by localized and propagating surface plasmons[J]. Optics Express,2009,17(4):2565-2572.
    [198]B. H. Kim, C. H. Cho, J. S. Mun, M. K. Kwon, T. Y. Park, J. S. Kim, C. C. Byeon, J. Lee, S. J. Park. Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons[J]. Advanced Materials,2008,20(16):3100-3104.
    [199]Y. D. Yin, Z. Y. Li, Z. Y. Zhong, B. Gates, Y. N. Xia, S. Venkateswaran. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process[J]. Journal of Materials Chemistry,2002,12(3):522-527.
    [200]R. C. Maher, S. A. Maier, L. F. Cohen, L. Koh, A. Laromaine, J. A. G. Dick, M. M. Stevens. Exploiting SERS Hot Spots for Disease-Specific Enzyme Detection[J]. Journal of Physical Chemistry C,2010,114(16):7231-7235.
    [201]X. M. Lin, Y. Cui, Y. H. Xu, B. Ren, Z. Q. Tian. Surface-enhanced Raman spectroscopy: substrate-related issues[J]. Analytical and Bioanalytical Chemistry,2009,394(7):1729-1745.
    [202]X. S. Shen, G. Z. Wang, X. Hong, W. Zhu. Nanospheres of silver nanoparticles:agglomeration, surface morphology control and application as SERS substrates[J]. Physical Chemistry Chemical Physics,2009,11(34):7450-7454.
    [203]S. Deng, H. M. Fan, X. Zhang, K. P. Loh, C. L. Cheng, C. H. Sow, Y. L. Foo. An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array[J]. Nanotechnology,2009,20(17):175705.
    [204]S. H. Chen, D. L. Carroll. Silver nanoplates:Size control in two dimensions and formation mechanisms[J]. Journal of Physical Chemistry B,2004,108(18):5500-5506.
    [205]N. Halas. Playing with plasmons. Tuning the optical resonant properties of metallic nanoshells[J]. Mrs Bulletin,2005,30(5):362-367.
    [206]E. Prodan, C. Radloff, N. J. Halas, P. Nordlander. A hybridization model for the plasmon response of complex nanostructures[J]. Science,2003,302(5644):419-422.
    [207]A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy[J]. Nano Letters,2007,7(7):1929-1934.
    [208]Y. Kobayashi, V. Salgueirino-Maceira, L. M. Liz-Marzan. Deposition of sliver nanoparticles on silica spheres by pretreatment steps in electroless plating[J]. Chemistry of Materials,2001,13(5): 1630-1633.
    [209]Z. J. Jiang, C. Y. Liu, Y. Liu, Z. Y. Zhang, Y. J. Li. Fabrication of silver nanoshell on functionalized silica sphere through layer-by-layer technique[J]. Chemistry Letters,2003,32(8): 668-669.
    [210]J. B. Jackson, N. J. Halas. Silver nanoshells:Variations in morphologies and optical properties[J]. Journal of Physical Chemistry B,2001,105(14):2743-2746.
    [211]M. M. Mdleleni, T. Hyeon, K. S. Suslick. Sonochemical synthesis of nanostructured molybdenum sulfide[J]. Journal of the American Chemical Society,1998,120(24):6189-6190.
    [212]J. B. Jackson, N. J. Halas. Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(52):17930-17935.
    [213]Y. Horiuchi, M. Shimada, T. Kamegawa, K. Mori, H. Yamashita. Size-controlled synthesis of silver nanoparticles on Ti-containing mesoporous silica thin film and photoluminescence enhancement of rhodamine 6G dyes by surface plasmon resonance[J]. Journal of Materials Chemistry,2009,19(37):6745-6749.
    [214]X. Y. Dong, X. H. Ji, H. L. Wu, L. L. Zhao, J. Li, W. S. Yang. Shape Control of Silver Nanoparticles by Stepwise Citrate Reduction[J]. Journal of Physical Chemistry C,2009,113(16): 6573-6576.
    [215]W. X. Niu, Z. Y. Li, L. H. Shi, X. Q. Liu, H. J. Li, S. Han, J. Chen, G. B. Xu. Seed-Mediated Growth of Nearly Monodisperse Palladium Nanocubes with Controllable Sizes[J]. Crystal Growth & Design,2008,8(12):4440-4444.
    [216]P. S. Kumar, I. Pastoriza-Santos, B. Rodriguez-Gonzalez, F. J. Garcia de Abajo, L. M. Liz-Marzan. High-yield synthesis and optical response of gold nanostars[J]. Nanotechnology, 2008,19(1):015606.
    [217]A. Mohanty, N. Garg, R. C. Jin. A Universal Approach to the Synthesis of Noble Metal Nanodendrites and Their Catalytic Properties[J]. Angewandte Chemie-International Edition,2010, 49(29):4962-4966.
    [218]H. Zhang, X. H. Xia, W. Y. Li, J. Zeng, Y. Q. Dai, D. R. Yang, Y. N. Xia. Facile Synthesis of Five-fold Twinned, Starfish-like Rhodium Nanocrystals by Eliminating Oxidative Etching with a Chloride-Free Precursor[J]. Angewandte Chemie-International Edition,2010,49(31):5296-5300.
    [219]E. S. Allgeyer, A. Pongan, M. Browne, M. D. Mason. Optical Signal Comparison of Single Fluorescent Molecules and Raman Active Gold Nanostars[J]. Nano Letters,2009,9(11): 3816-3819.
    [220]K. M. Bratlie, H. Lee, K. Komvopoulos, P. D. Yang, G. A. Somorjai. Platinum nanoparticle shape effects on benzene hydrogenation selectivity[J]. Nano Letters,2007,7(10):3097-3101.
    [221]X. D. Chen, S. Z. Li, C. Xue, M. J. Banholzer, G. C. Schatz, C. A. Mirkin. Plasmonic Focusing in Rod-Sheath Heteronanostruture[J]. Acs Nano,2009,3(1):87-92.
    [222]R. Klajn, A. O. Pinchuk, G. C. Schatz, B. A. Grzybowski. Synthesis of heterodimeric sphere-prism nanostructures via metastable gold supraspheres[J]. Angewandte Chemie-International Edition,2007,46(44):8363-8367.
    [223]Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, Y. Q. Yan. One-dimensional nanostructures:Synthesis, characterization, and applications[J]. Advanced Materials,2003,15(5):353-389.
    [224]L. Wang, H. J. Wang, Y. Nemoto, Y. Yamauchi. Rapid and Efficient Synthesis of Platinum Nanodendrites with High Surface Area by Chemical Reduction with Formic Acid[J]. Chemistry of Materials,2010,22(9):2835-2841.
    [225]X. Zhong, Y. Feng, I. Lieberwirth, W. Knoll. Facile synthesis of morphology-controlled platinum nanocrystals[J]. Chemistry of Materials,2006,18(10):2468-2471.
    [226]X. W. Teng, H. Yang. Synthesis of platinum multipods:An induced anisotropic growth[J]. Nano Letters,2005,5(5):885-891.
    [227]D. V. Goia, E. Matijevic. Preparation of monodispersed metal particles[J]. New Journal of Chemistry,1998,22(11):1203-1215.
    [228]M. Grouchko, I. Popov, V. Uvarov, S. Magdassi, A. Kamyshny. Coalescence of Silver Nanoparticles at Room Temperature:Unusual Crystal Structure Transformation and Dendrite Formation Induced by Self-Assembly[J]. Langmuir,2009,25(4):2501-2503.
    [229]F. Hao, C. L. Nehl, J. H. Hafner, P. Nordlander. Plasmon resonances of a gold nanostar[J]. Nano Letters,2007,7(3):729-732.
    [230]C. L. Nehl, H. W. Liao, J. H. Hafner. Optical properties of star-shaped gold nanoparticles[J]. Nano Letters,2006,6(4):683-688.
    [231]X. L. Tang, P. Jiang, G. L. Ge, M. Tsuji, S. S. Xie, Y. J. Guo. Poly(N-vinyl-2-pyrrolidone) (PVP)-capped dendritic gold nanoparticles by a one-step hydrothermal route and their high SERS effect[J]. Langmuir,2008,24(5):1763-1768.
    [232]R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X. W. Qi, L. T. Li, S. Buddhudu. Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane[J]. Journal of Physical Chemistry B,2004,108(43):16713-16716.
    [233]J. L. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, A. Camacho-Bragado, M. J. Yacaman. Corrosion at the nanoscale:The case of silver nanowires and nanoparticles[J]. Chemistry of Materials,2005,17(24):6042-6052.
    [234]P. Zijlstra, J. W. M. Chon, M. Gu. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature,2009,459(7245):410-413.
    [235]R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, T. L. Sabo-Attwood. Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods[J]. Nano Letters, 2008,8(1):302-306.
    [236]J. W. Stone, P. N. Sisco, E. C. Goldsmith, S. C. Baxter, C. J. Murphy. Using gold nanorods to probe cell-induced collagen deformation[J]. Nano Letters,2007,7(1):116-119.
    [237]P. Zijlstra, J. W. M. Chon, M. Gu. Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning[J]. Optics Express, 2007,15(19):12151-12160.
    [238]A. L. Rogach, A. Eychmuller, S. G. Hickey, S. V. Kershaw. Infrared-emitting colloidal nanocrystals:Synthesis, assembly, spectroscopy, and applications[J]. Small,2007,3(4):536-557.
    [239]G. Schneider, G. Decher, N. Nerambourg, R. Praho, M. H. V. Werts, M. Blanchard-Desce. Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes[J]. Nano Letters,2006,6(3):530-536.
    [240]X. Li, J. Qian, L. Jiang, S. L. He. Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection[J]. Applied Physics Letters,2009,94(6):063111.
    [241]R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, N. J. Halas. Fluorescence Enhancement by Au Nanostructures:Nanoshells and Nanorods[J]. Acs Nano,2009,3(3):744-752.
    [242]A. Yoshida, N. Uchida, N. Kometani. Synthesis and Spectroscopic Studies of Composite Gold Nanorods with a Double-Shell Structure Composed of Spacer and Cyanine Dye J-Aggregate Layers[J]. Langmuir,2009,25(19):11802-11807.
    [243]V. I. Klimov, N. G. Liu, B. S. Prall. Hybrid gold/silica/nanocrystal-quantum-dot superstructures: Synthesis and analysis of semiconductor-metal interactions[J]. Journal of the American Chemical Society,2006,128(48):15362-15363.
    [244]L. Zou, Z. Y. Gu, N. Zhang, Y. L. Zhang, Z. Fang, W. H. Zhu, X. H. Zhong. Ultrafast synthesis of highly luminescent green- to near infrared-emitting CdTe nanocrystals in aqueous phase[J]. Journal of Materials Chemistry,2008,18(24):2807-2815.
    [245]A. M. Funston, C. Novo, T. J. Davis, P. Mulvaney. Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries[J]. Nano Letters,2009,9(4):1651-1658.
    [246]P. K. Jain, S. Eustis, M. A. El-Sayed. Plasmon coupling in nanorod assemblies:Optical absorption, discrete dipole approximation simulation, and exciton-coupling model[J]. Journal of Physical Chemistry B,2006,110(37):18243-18253.
    [247]S. O. Obare, N. R. Jana, C. J. Murphy. Preparation of polystyrene-and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes[J]. Nano Letters,2001, 1(11):601-603.
    [248]F. Caruso. Nanoengineering of particle surfaces[J]. Advanced Materials,2001,13(1):11-22.
    [249]J. Perez-Juste, M. A. Correa-Duarte, L. M. Liz-Marzan. Silica gels with tailored, gold nanorod-driven optical functionalities[J]. Applied Surface Science,2004,226(1-3):137-143.
    [250]C. G. Wang, Z. F. Ma, T. T. Wang, Z. M. Su. Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing[J]. Advanced Functional Materials,2006, 16(13):1673-1678.
    [251]J. Lee, T. Javed, T. Skeini, A. O. Govorov, G. W. Bryant, N. A. Kotov. Bioconjugated Ag nanoparticles and CdTe nanowires:Metamaterials with field-enhanced light absorption[J]. Angewandte Chemie-International Edition,2006,45(29):4819-4823.
    [252]F. Q. Hu, L. Wei, Z. Zhou, Y. L. Ran, Z. Li, M. Y. Gao. Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer[J]. Advanced Materials,2006, 18(19):2553-2556
    [253]J. Lee, A. O. Govorov, J. Dulka, N. A. Kotov. Bioconjugates of CdTe nanowires and Au nanoparticles:Plasmon-exciton interactions, luminescence enhancement, and collective effects[J]. Nano Letters,2004,4(12):2323-2330.
    [254]V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun'ko, N. Gaponik, A. Eychmuller. Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots[J]. Applied Physics Letters,2006,89(25):253118.
    [255]Y. Lu, Y. D. Yin, Z. Y. Li, Y. A. Xia. Synthesis and self-assembly of Au@SiO2 core-shell colloids[J]. Nano Letters,2002,2(7):785-788.
    [256]R. M. Corn, I. E. Sendroiu, M. E. Warner. Fabrication of Silica-Coated Gold Nanorods Functionalized with DNA for Enhanced Surface Plasmon Resonance Imaging Biosensing Applications[J]. Langmuir,2009,25(19):11282-11284.
    [257]C. A. Mirkin, C. Xue, X. Chen, S. J. Hurst. Self-assembled monolayer mediated silica coating of silver triangular nanoprisms[J]. Advanced Materials,2007,19(22):4071-4074.
    [258]Y. J. Li, W. I. J. Huang, S. G. Sun. A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface[J]. Angewandte Chemie-International Edition,2006,45(16):2537-2539.
    [259]F. Reincke, S. G. Hickey, W. K. Kegel, D. Vanmaekelbergh. Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface[J]. Angewandte Chemie-International Edition,2004,43(4):458-462.
    [260]C. Graf, D. L. J. Vossen, A. Imhof, A. van Blaaderen. A general method to coat colloidal particles with silica[J]. Langmuir,2003,19(17):6693-6700.
    [261]S. Yun, Y. K. Park, S. K. Kim, S. Park. Linker-molecule-free gold nanorod layer-by-layer films for surface-enhanced Raman scattering[J]. Analytical Chemistry,2007,79(22):8584-8589.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700