半导体及纳米结构的自旋动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,以荷电性为基础的传统半导体电子器件的运行速度和集成度仍然以Moore律发展。但是,随着器件尺寸的缩小,量子效应越来越明显,并严重地制约着传统电子学的发展,因此必须寻找传统电子学器件的替代品,自旋电子学便应运而生。半导体自旋电子学(spintronics=spin+electronics)是一个由多学科交叉形成的新兴领域,主要研究如何有效地操作/控制电子自旋自由度,以期在器件设计中用自旋自由度结合或代替电荷自由度。与传统的半导体器件相比,自旋电子器件具有稳定性更好、数据处理速度更快、功率损耗更低以及集成密度更高等优点。
     自旋弛豫时间常数是研制自旋电子器件必须考虑的一个参数。利用自旋弛豫过程的超快特性,可以实现超快的自旋开关;另一方面,在量子信息存储以及自旋输运中要实现较长的输运距离则又需要保持较长的自旋弛豫时间。影响自旋弛豫时间的因素很多,例如,温度,载流子浓度,半导体带结构和外场等。因此,自旋弛豫动力学的实验现象相当丰富,很多实验结果不能被合理解释,理论工作也需要进一步的深入探究。本文集中研究了半导体及纳米结构中的自旋弛豫时间与激发光子能量、载流子浓度之间的关系,取得了一些有意义的结果。主要的创新点如下:
     第一、利用抽运探测技术研究了常温下CdTe单晶的载流子超快动力学。载流子的弛豫过程存在2个成分,随着激发强度的不断增加,与载流子冷却有关的快过程逐渐变慢,而慢的复合时间基本上与激发光强度无关。
     第二、系统研究了CdTe单晶和InP单晶的电子自旋弛豫时间τs和激发光子能量E的依赖关系。结果显示随着抽运光光子能量的增加,自旋弛豫时间单调减小,这和传统的D’yakonov- Perel’(DP)机制是一致的。
     第三、CdTe单晶和InP单晶的电子自旋弛豫时间τs随着载流子浓度n的增加并非单调变化,而是出现一个峰值τsmax,而且常温的τsmax对应的电子浓度要明显高于低温(70K)时的电子浓度,这与基于全微观动力学自旋Bloch方程方法预言结果相同。
     第四、InP单晶的电子自旋弛豫过程表现出了明显的激发光子能量依赖关系。从近带隙开始增加光子能量,反射率的变化率ΔR /R出现了变号行为,由漂白变为吸收。考虑带填充效应和带隙重效应计算了ΔR /R随着激发光子能量的变化曲线,与实验结果基本吻合。
     第五、利用抽运探测技术研究了CdSe核结构量子点的激子自旋弛豫动力学,自旋弛豫只有一个几皮秒的快过程。量子点的尺寸变小,比表面积增加,表面缺陷迅速捕获电子和空穴,导致自旋极化消失。而对于表面修饰了ZnS之后的核/壳结构量子点中缺陷态的捕获被减弱,自旋弛豫过程与核结构明显不同,除了快过程之外,还有一个慢过程,常温下共振激发的自旋弛豫时间达到纳秒量级,比体材料的自旋弛豫时间长1-2个量级,这是因为量子点中与自旋-轨道相互作用有关的自旋弛豫机制被抑制。
     第六、利用法拉第旋光技术研究了CdTe量子点的磁光效应。结果发现,随着抽运光激发功率的增加,法拉第旋转角和椭圆率线性增加;随着抽运光波长的变化,在最低激子吸收峰附近法拉第旋转角的符号发生改变,而椭圆率达到极值,二者满足K-K关系,这是由于量子限制效应引起的能级分裂所致。
Processing speed and integration of traditional electronic devices based on the degree of freedom of a charge still follow the prediction of Moore’s law. However, quantum effect of the device becomes more and more predominant with the decrease of the size, which restricts the development of the traditional electronic devices. Semiconductor spintronics aims at utilizing or incorporating the spin degree of freedom in electronics for a new generation of spintronic devices. Spintronic devices are more stable, smaller size, faster speed, and lower power consumption than traditional electronic devices.
     Spin relaxation/dephasing time is an important parameter in the fabrication of spintronic devices. Experimental results about the spin relaxation/dephasing time are extreme complex because it is affected by many factors, such as temperature, density, bandgap structure, and external field etc. In this dissertation, carrier density and photon energy dependence of spin dynamics in bulk semiconductor and semiconductor nanostructrues are systematically investigated by time resolved pump-probe technique. The main results in this dissertation are concluded as follows:
     1. The transient carrier dynamics of intrinsic cadmium telluride (CdTe) was investigated by femtosecond time-resolved pump-probe reflectivity (fs-TRPPR) method at different photon energy and carrier density. Two relaxation processes are observed. The fast one related to carrier cooling process with typical decay time of several picoseconds (ps) increases with the carrier density, while the slow one owing to the electron hole recombination almost keeps a constant.
     2. Electron spin dynamics in intrinsic bulk CdTe and Indium Phosphide (InP) semiconductor crystal was studied by fs-TRPPR technique using the co-circularly and counter-circularly polarized femtosecond pulses at room temperature and 70 K. The results show that spin relaxation time decreases monotonously with increasing photon energy.
     3. With increasing carrier density, the electron spin relaxation time in bulk semiconductor increases initially and then decreases after reaching a maximum value. Our experimental results agree well with the recent theoretical prediction based on a fully microscopic kinetic spin Bloch equation (KSBE) approach and D’yakonov-Perel’mechanism is considered as a dominate contribution to the electron spin relaxation in intrinsic bulk semiconductor.
     4. The reflectivity change from bleaching to absorption in InP crystal is observed with increasing pump photon energy, which has been explained successfully in terms of the spin sensitive band filling and band gap renormalization effects.
     5. Exciton spin dynamics of CdSe as well as CdSe/ZnS quantum dots (QDs) was investigated with circularly polarized pump-probe transmission spectroscopy at room temperature. The excitation photon energy is tuned to be on-resonant with the 1S(h)-1S(e) exicton of the CdSe QDs. The spin dynamics of core CdSe QD shows single exponential decay with typical time constant of about several ps, while the spin dynamics in the CdSe/ZnS core/shell structure shows biexponential relaxation: a several-ps-fast-component and a slow-component with time constant of hundreds of ps. The time constant of slow process decreases with increasing the excited power. The fast spin relaxation component in both CdSe and CdSe/ZnS arises from the surface-state-trapping effect. ZnS-capped-CdSe QD can greatly reduce the surface states at the CdSe surface, and the slow spin decay comes from the long exicton lifetime in core/shell structure. Spin relaxation mechanisms based on the spin-orbit interaction are strongly inhibited in spatial confined systems, and the absence of translational motion in QDs prolongs the carriers spin lifetimes as compared to the bulk counterpart.
     6. Magneto-optical dynamics of water dispersed CdTe quantum dots is investigated by time-resolved Faraday rotation technique at room temperature. Wavelength dependence of Faraday rotation and ellipticity are studied across the lowest exciton absorption in CdTe QDs. It is found that a sign reversal of Faraday rotation occurs around the exciton abosprtion peak, where the Faraday ellipticity reaches the maximum. This phenomenon is caused by the level splitting owing to the quantum confinement effect.
引文
[1] T. Dietl, Why ferromagnetic semiconductors? [J]. Acta Phys. Polon. A 100, p139 (2001).
    [2] D. D. Awschalom and J. M. Kikkawa, Electron Spin and Optical Coherence in semicondutors [J]. Physics Today. 52, p33 (1999).
    [3] S. D. Sarma, A new class of device based on electron spin, rather than on charge, may yield the next generation of microelectronics [J]. American Seientist 89, p516 (2001).
    [4] D. Grundler, Spintronics [J]. Physics World 55, p39 (2002).
    [5] P. Grünberg, R. Schreiber and Y. Pang, et al. Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers [J]. Phys. Rev. Lett. 57, p2442 (1986).
    [6] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau and F. Petroff. Giant magnetoresistance of (001) Fe/(001)Cr magnetic superlattices [J]. Phys. Rev. Lett. 61, p2472 (1988).
    [7] B. Dieny, V. S. Speriosu, S. S. P. arkin, B. A. Gurney, D. R. Wilhoit, and D. Mauri, Giant magnetoresistive in soft ferromagnetic multilayers [J]. Phys. Rev. B 43, p1297 (1991).
    [8] J. S. Moodera, Lisa R. Kinder, Terrilyn M. Womg, and R. Meservey. Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions [J]. Phys. Rev. Lett. 74, p3273 (1995).
    [9] T. Miyazaki and N. Tezuka, Giant magnetic tunneling effect in Fe/Al2O3/Fe junction [J]. J. magn. Magn. Mater. 151, p403 (1995).
    [10] Koh G H, KimH J, Jeong W C, et al. Fabrication of high performance 64 kb MRAM [J]. J. magn. Magn. Mater. 272-276, p1941 (2004).
    [11] Tetsuya Y, Hilroshi K, Yutaka H, et al. Magneto- resistive random access memory operation error by thermally activated reversal [J]. J. Appl. Phys. 97, p503 (2005).
    [12]焦正宽,曹光旱,磁电子学[M].浙江大学出版社,(2005).
    [13] I. ?uti?,J. Fabian,and S. D. Sarma, Spintronics: Fundamentals and applications [J]. Rev. Mod. Phys.76, p323 (2004).
    [14] D. D. Awsehalom and M. E. Flatté, Challenges for semiconductor spintronics [J]. Nature Phys. 3, p153 (2007).
    [15] M. E. Flatté, Spintronics [J]. IEEE Transaction on Electron Devices 54, p907 (2007).
    [16] W. V. Roy, P. V. Dorpe,R. Vanheertum,P. J. Vandormae and G. Borghs,Spin Injection and Detection in Semiconductors—Electrical Issues and Device Aspects. IEEE Tanscation on Electron Deviees 54, p933 (2007).
    [17] In Future Trends in microelectronics: The Nano, The Giga, and the ultra., edited by S. Luryi, J. Xu, and A. Zaslavsky (Wiley-IEEE Press 2004), p157 (2004).
    [18] J. Fabian, A. Matos-Abiague, C. Ertler, p. stano, and I. ?uti?. J. Fabian,Semiconductor Spintronics, Acta Phys. Slov. 57, p565 (2007).
    [19]薛其坤,半导体自旋电子学[J]. 2003科学发展报告(2003).
    [20] S. Oertel, J. Hübner, and M. Oestreich, High temperature electron spin relaxation in bulk GaAs [J]. Appl. Phys. Lett. 93, p132112 (2008).
    [21] M. W. Wu, J. H. Jiang and M. Q. Weng, Spin dynamics in semiconductors [J]. Phys. Rep. 493, p61 (2010).
    [22] Z. Chen, S. G. Carter, R. Bratschitsch, S. T. Cundiff, Optical excitation and control of electron spins in semiconductor quantum wells [J]. Physica E 42, p1803 (2010).
    [23] D. D. Awschalom, M. E. Flatté, and N. Samarth, Spintronics [J]. Scientific American 286, p66 (2002).
    [24] J. Berezovsky, O. Gywat, F. Meier, D. Battaglia, X. Peng, D. D. Awschalom, Initialization and read-out of spins in coupled core–shell quantum dots [J]. Nature Physics 2, p831 (2006).
    [25] G. Burkard, Spin qubits: Connect the dots [J]. Nature Physics 2, p807 (2006).
    [26] J. Tang and R. A. Marcus, Diffusion-Controlled Electron Transfer Processes and Power-Law Statistics of Fluorescence Intermittency of Nanoparticles [J]. Phys. Rev. Lett. 94, p107401 (2005).
    [27] Optical Orientation, edited by F. Meier and B. P. Zakharchenya (Elsevier, Amsterdam, 1984).
    [28] A. V. Kimel, A. A. Tsvetkov, A. Kirilyuk, Th. Rasing, V. N. Gridnev, Picosecond dynamics of bleaching and spin splitting in InP revealed by the photoinduced magneto-optical Kerr effect near the spin-orbit split-off exciton transition [J]. Phys. Rev. B 69, p165214 (2004).
    [29] A. V. Kimel, A. A. Tsvetkov, A. Kirilyuk, V. N. Gridnev, Th. Rasing, Ultrafast spin dynamics in InP probed by the photo-induced magneto-optical Kerr effect [J]. Phys. Stat. Sol. (c) 0, p1527 (2003).
    [30]徐海红,焦中兴,刘晓东,雷亮,文锦辉,王惠,林位株,赖天树, GaAs中电子g因子的温度和能量依赖性的飞秒激光吸收量子拍研究[J].物理学报55 , p2618 (2006).
    [31] H. Ma, Z. M. Jin, G. H. Ma, W. M. Liu, and S. H. Tang, Photon energy and carrier density dependence of spin dynamics in bulk CdTe crystal at roomtemperature [J]. Appl. Phys. Lett. 94, p241112 (2009).
    [32] E. L. Ivchenko, Light energy-dependent interactions in materials [J]. Sov. Phys. Solid State 14, p2942 (1973).
    [33] R. D. R. Bhat and J. E. Sipe, Optically injected spin currents in semiconductors [J]. Phys. Rev. Lett. 85, p5432 (2000).
    [34] Martin J. Stevens, R. D. R. Bhat, J. E. Sipe, H. M. van Driel, and Arthur L. Smirl, Coherent control of carrier population and spin in (111)‐GaAs [J]. Phys. Status Solidi (b) 238, p568 (2003).
    [35] R. D. R. Bhat, P. Nemec, Y. Kerachian, H. M. van Driel, J. E. Sipe, and Arthur L. Smirl, Two-photon spin injection in semiconductors [J]. Phys. Rev. B 71, p035209 (2005).
    [36] T. Matsuyama, H. Horinaka, W. Wada, T. Kondo, M. Hangyo, T. Nakanishi, S. Okumi, and K. Togawa, Spin-Dependent Luminescence of Highly Polarized Electrons Generated by Two-Photon Absorption in Semiconductors [J]. Jpn. J. Appl. Phys. 40, p555(L) (2001).
    [37] Michio Ikezawa, Bipul Pal, and Yasuaki Masumoto Ivan V. Ignatiev and Sergey Yu. Verbin Il’ya Ya. Gerlovin. Submillisecond electron spin relaxation in InP quantum dots [J]. Phys. Rev. B 72, p153302 (2005).
    [38] J. A. Gupta and D. D. Awschalom, X. Peng and A. P. Alivisatos. Spin coherence in semiconductor quantum dots [J]. Phys. Rev. B 59, p10421(R) (1999).
    [39] H. Biqin, D. J. Monsma, and I. Appelbaum, Coherent spin transport through a 350 micron thick silicon wafer [J]. Phys. Rev. Lett. 99, p177209 (2007).
    [40] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Electrical spin injection in a ferromagnetic semiconductor heterostructure [J]. Nature 402, p790 (1999).
    [41] P. R. Hammar, B. R. Bennett, M. J. Yang, and Mark Johnson, Observation of Spin Injection at a Ferromagnet-Semiconductor Interface [J]. Phys. Rev. Lett. 83, p203 (1999).
    [42] X. Jiang, R. Wang, R. M. Shelby, R. M. Macfarlane, S. R. Bank, J. S. Harris, and S. S. P. Parkin, Highly Spin-Polarized Room-Temperature Tunnel Injector for Semiconductor Spintronics using MgO(100) [J]. Phys. Rev. Lett. 94, p056601 (2005).
    [43] D. J. Monsma, J. C. Lodder, Th. J. A. Popma, and B. Dieny, Perpendicular Hot Electron Spin-Valve Effect in a New Magnetic Field Sensor: The Spin-Valve Transistor [J]. Phys. Rev. Lett. 74, p5260 (1995).
    [44] R. Sato and K. Mizushima, Spin-valve transistor with an Fe/Au/Fe(001) base[J]. Appl. Phys. Lett. 79, p1157 (2001).
    [45] W. H. Rippard, R. A. Buhrman, Spin-Dependent Hot Electron Transport in Co/Cu Thin Films [J]. Phys. Rev. Lett. 84, p971 (2000).
    [46] M. Kohda, Y. Ohno, K. Takamura, F. Matsukura, and H. Ohno, A spin Esaki diode [J]. Jpn. J. Appl. Phys. 40, p1274(L) (2001).
    [47] E. Johnston-Halperin, D. Lofgreen, R. K. Kawakami, D. K. Young, L. Coldren, A. C. Gossard, and D. D. Awschalom, Spin-polarized Zener tunneling in (Ga,Mn)As [J]. Phys. Rev. B 65, p041306 (2002).
    [48] S. E. Andresen, B. S. S?rensen, F. B. Rasmussen, P. E. Lindelof, J. Sadowski, C. M. Guertler, and J. A. C. Bland, Spin-polarized electron tunneling across a Si delta-doped GaMnAs/n-GaAs interface [J]. J. Appl. Phys. 94, p3990 (2003).
    [49] P. Van Dorpe, Z. Liu, W. Van Roy, V. F. Motsnyi, M. Sawicki, G. Borghs, and J. De Boeck, Very high spin polarization in GaAs by injection from a (Ga, Mn) As Zener diode [J]. Appl. Phys. Lett. 84, p3495 (2004).
    [50] T. Kita, M. Kohda, Y. Ohno, F. Matsukura, and H. Ohno, Spin injection with three terminal device based on (Ga,Mn) As/n+-GaAs tunnel junction [J]. Phys. Stat. Sol. (c) 3, p4164 (2006).
    [51] M. Ciorga, A. Einwanger, J. Sadowski, W. Wegscheider, and D. Weiss, Tunneling anisotropic magnetoresistance effect in a p+-(Ga,Mn)As/n+-GaAs Esaki diode [J]. Phys. Stat. Sol. (a) 204, p186 (2007).
    [52] M. Kohda, T. Kita, Y. Ohno, F. Matsukura, and H. Ohno, Bias voltage dependence of the electron spin injection studied in a three-terminal device based on a (Ga,Mn) As∕n+-GaAs Esaki diode [J]. Appl. Phys. Lett. 89, p012103 (2006).
    [53] A. Einwanger, M. Ciorga, U. Wurstbauer, D. Schuh, W. Wegscheider, and D. Weiss, Tunneling anisotropic spin polarization in lateral (Ga, Mn) As/GaAs spin Esaki diode devices [J]. Appl. Phys. Lett. 95, p152101 (2009).
    [54] E. I. Rashba, Theory of electrical spin injection: Tunnel contacts as a solution ofthe conductivity mismatch problem [J]. Phys. Rev. B 62, p16267(R) (2000).
    [55] R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag & L. W. Molenkamp, Injection and detection of a spin-polarized current in a light-emitting diode [J]. Nature 402, p787 (1999).
    [56] J. H. Jiang, M. W. Wu, and Y. Zhou, Kinetics of spin coherence of electrons in n-type InAs quantum wells under intense terahertz laser fields [J]. Phys. Rev. B 78, p125309 (2008).
    [57] Qing-feng Sun, Hong Guo, and Jian Wang, A Spin Cell for Spin Current [J]. Phys. Rev. Lett. 90, p258301 (2003).
    [58] Sergey D. Ganichev, Vasily V. Bel’kov, Sergey A. Tarasenko, Sergey N. Danilov, Stephan Giglberger, Christoph Hoffmann, Eougenious L. Ivchenko, Dieter Weiss, Werner Wegscheider, Christian Gerl, Dieter Schuh, Joachim Stahl, Jo De Boeck, Gustaaf Borghs, and Wilhelm Prettl, Zero-bias spin separation [J], Nat. Phys. 2, p609 (2006).
    [59] V. V. Bel’kov and S. D. Ganichev, Magneto-gyrotropic effects in semiconductor quantum wells [J]. Semicond. Sci. Technol. 23, p114003 (2008).
    [60] V. V. Bel’kov, S. D. Ganichev, E. L. Ivchenko, S. A. Tarasenko, W. Weber, S. Giglberger, M. Olteanu, H. P. Tranitz, S. N. Danilov, P. Schneider, W. Wegscheider, D. Weiss, and W. Prettl, Magneto-gyrotropic photogalvanic effects in semiconductor quantum wells [J]. J. Phys.: Condens. Matt. 17, p3405 (2005).
    [61] S. A. Tarasenko, Spin orientation of a two-dimensional electron gas by a high-frequency electric field [J]. Phys. Rev. B 73, 115317 (2006).
    [62] M. I. D’Yakonov and V. I. Perel’, et al., Possibility of Orienting Electron Spins with Current [J]. JETP Lett. 13, p467 (1971).
    [63] M. I. D'Yakonov and V. I. Perel’, Current-induced spin orientation of electrons in semiconductors [J]. Phys. Lett. A 35, p459 (1971).
    [64] Nevill Francis Mott and Harrie Stewart Wilson Massey, The theory of atomic collisions [M]. Oxford University Press, (1965).
    [65] Y. K. Kato, R. C. Myers, A. C. Gossard and D. D. Awschalom, Observation of the Spin Hall Effect in Semiconductors [J]. Science 306, p1910 (2004).
    [66] P Kacman, Spin interactions in diluted magnetic semiconductors and magnetic semiconductor structures [J]. Semicond. Sci. Technol. 16, p25(R) (2001).
    [67] P. W. Anderson, Localized Magnetic States in Metals [J]. Phys. Rev. 124, 41-43 (1961).
    [68] T. Jungwirth, J. Sinova, J. Ma?ek, J. Ku?era, and A.?H. MacDonald, Theory of ferromagnetic (III,Mn)V semiconductors [J]. Rev. Mod. Phys. 78, p809 (2006).
    [69] J. K. Furdyna, Diluted magnetic semiconductors [J]. J. Appl. Phys. 64, p29(R) (1988).
    [70] M. Q. Weng and M. W. Wu, Spin dephasing in n-type GaAs quantum wells [J]. Phys. Rev. B 68, p075312 (2003).
    [71] D. Stich, J. Zhou, T. Korn, R. Schulz, D. Schuh, W. Wegscheider, M. W. Wu, and C. Schüller, Effect of Initial Spin Polarization on Spin Dephasing and the Electron g Factor in a High-Mobility Two-Dimensional Electron System [J]. Phys. Rev. Lett. 98, p176401 (2007).
    [72] D. Stich, J. Zhou, T. Korn, R. Schulz, D. Schuh, W. Wegscheider, M. W. Wu, and C. Schüller, Dependence of spin dephasing on initial spin polarization in a high-mobility two-dimensional electron system [J]. Phys. Rev. B 76, p205301 (2007).
    [73] T. Korn, D. Stich, R. Schulz, D. Schuh, W. Wegscheider, and C. Schüller, Spin Dynamics in High-Mobility Two-Dimensional Electron Systems [J].Adv. Solid State Phys. 48, p143 (2009).
    [74] F. Zhang, H. Z. Zheng, Y. Ji, J. Liu, and G. R. Li, Electrical control of dynamic spin splitting induced by exchange interaction as revealed by time-resolved Kerr rotation in a degenerate spin-polarized electron gas [J]. Europhys. Lett. 83, p47006 (2008).
    [75]蒋建华,Ⅲ-Ⅴ族半导体及其纳米结构中的自旋动力学[D].中国科技大学博士学位论文(2010).
    [76] M. I. D’yakonov and V. I. Perel’, Optical orientation in a system of electrons and lattice nuclei in semiconductors [J]. Sov. Phys. JETP 38, p177 (1974).
    [77] R. J. Elliott, Theory of the Effect of Spin-Orbit Coupling on Magnetic Resonance in Some Semiconductors [J]. Phys. Rev. 96, p266 (1954).
    [78] Y. Yafet, g Factors and Spin-Lattice Relaxation of Conduction Electrons [J]. Solid State Phys. 14, p1 (1963).
    [79] G. L. Bir, A. G. Aronov, and G. E. Pikus, Spin relaxation of electrons scatteredby holes [J]. Sov. Phys. JETP 42, p705 (1976).
    [80] K. Zerrouati, Fabre F, Bacquet G, et al. Spin-lattice relaxation in p-type gallium arsenide single crystals [J]. Phys. Rev. B 37, p1334 (1988).
    [81] A. G. Aronov, G. E. Pikus, and A. N. Titkov, Zh. Eksp. Teor. Fiz. 84, 1170 (1983) [Sov. Phys. -- JETP 57 680 (1983)]. Spin relaxation of conduction electrons in p-type III-V compounds [J]. 57, p680 (1983).
    [82] A. H. Clark, R. D. Burnham, D. J. Chadi, et al. Spin relaxation of conduction electrons in AlxGa1-xAs [J]. Phys. Rev. B. 12, p5758 (1975).
    [83] J. M. Kikkawa and D. D. Awschalom, Resonant Spin Amplification in n-Type GaAs [J]. Phys. Rev. Lett. 80, p4313 (1998).
    [84] R. I. Dzhioev, B. P. Zakharchenya, V. L. Korenev, et al. Long electron spin memory times in gallium arsenide [J]. JETP Lett 74, p182 (2001).
    [85] A. V. Kimel, F. Bentivegna, V. N. Gridnev, V. V. Pavlov, R. V. Pisarev, and Th. Rasing,Room-temperature ultrafast carrier and spin dynamics in GaAs probed by the photoinduced magneto-optical Kerr effect [J]. Phys. Rev. B 63, p235201 (2001)
    [86] A. V. Kimel, V. V. Pavlov, R. V. Pisarev, V. N. Gridnev, F. Bentivegna and Th. Rasing, Ultrafast dynamics of the photo-induced magneto-optical Kerr effect in CdTe at room temperature [J]. Phys. Rev. B. 62, p10610(R) (2000).
    [87] Pil Hun Song and Kim K W, Spin relaxation of conduction electrons in bulk III-V semiconductors [J]. Phys. Rev. B, 66, p035207 (2002).
    [88] Rogerio de Sousa and S. Das Sarma, Considerations for a spin-based Electron spin coherence in semiconductors: solid-state quantum computer architecture [J]. Phys. Rev. B 67, p033301 (2003).
    [89] J. J. Baumberg, S. A. Crooker, D. D. Awschalom, N. Samarth, H. Luo, and J. K. Furdyna, Ultrafast Faraday spectroscopy in magnetic semiconductor quantum structures [J]. Phys. Rev. B 50, p7689 (1994).
    [90] S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells [J]. Phys. Rev. B 56, p7574 (1997).
    [91] S. A. Crooker, J. J. Baumberg, F. Flack, N. Samarth, and D. D. Awschalom Terahertz spin precession and coherent transfer of angular momenta in magnetic
    quantum wells [J]. Phys. Rev. Lett 77, p2814 (1996).
    [92] Th. Ostreich,K. Sch6nhammer,and L. J. Sham,Exciton-Exciton Correlation in the Nonlinear Optical Regime [J]. Phys. Rev. Lett. 74, p4698 (1995)
    [93] N. Linderand, L. J. Sham, Theory of the coherent spin dynamics in magnetic semiconductor quantum wells [J]. Physica E, 2, p412 (1998).
    [94] B. Li, M. C. Tamargo, and C. A. Meriles, Electron spin dynamics in Fe-doped InP [J]. Appl. Phys. Lett. 91, p222114 (2007).
    [95] Y. Ohno,R. Terauchi,T. Adachi,F. Matsukura,and H. Ohno,Spin Relaxation in GaAs(110) Quantum Wells [J]. Phys. Rev. Lett. 83, p4196 (1999).
    [96] T. Sogawa,H. Ando,S. Ando and H. Kanbe,Spin-polarization spectroscopy in rectangular GaAs quantum wires [J]. Phys. Rev. B. 58, p15652 (1998).
    [97] M. W. Taylor, E. Harbord, P. Spencer, E. Clarke, G. Slavcheva, R. Murray, Optical spin-filtering effect in charged InAs/GaAs quantum dots [J]. Appl. Phys. Lett. 97, p171907 (2010).
    [98] Yun-Ju Lee, Douglas S. Ruby, David W. Peters, Bonnie B. McKenzie and Julia W. P. Hsu, ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells [J]. Nano. Lett. 8, p1501 (2008).
    [99] William K. Liu, Kelly M. Whitaker, Alyssa L. Smith, Kevin R. Kittilstved, Bruce H. Robinson, and Daniel R. Gamelin, Room-Temperature Electron Spin Dynamics in Free-Standing ZnO Quantum Dots [J]. Phys. Rev. Lett. 98, p186804 (2007).
    [100] He, Jun, Haizheng Zhong, Gregory D. Scholes, Electron-Hole Overlap Dictates the Hole Spin Relaxation Rate in Nanocrystal Heterostructures [J]. Phys. Rev. Lett. 105, p046601 (2010).
    [101] T. Adachi, Y. Ohno, F. Matsuku-ra, and H. Ohno, Spin relaxation in n-modulation doped GaAs/AlGaAs (110) quantum wells [J]. Phys E 10, p36 (2001).
    [102] A. Malinowski,R. S. Britton,T. Grevatt,R. T. Harle, D. A. Ritehie,and M. Y. Simmons,Spin relaxation in GaAs/AlxGa1-xAs quantum wells [J]. Phys. Rev. B 62, p13034 (2000).
    [103] Lai T S, Liu L N, Shou Q, et al. Elliptically polarized pump-probe spectroscopy and its application to observation of electron-spin relaxation inGaAs quantum wells. Appl. Phys. Lett. 85, p4040 (2004).
    [104] Lai T S, Liu X D, Xu H H, et al. Elliptically polarized absorption spectroscopy and observation of spin coherence in intrinsic GaAs [J]. Appl. Phys. Lett. 87, p262110 (2005)
    [105] Lai T S, Liu X D, Xu H H, et al. Temperature dependence of electron-spin coherence in intrinsic bulk GaAs [J]. Appl. Phys. Lett. 88, p192106 (2006).
    [106] Hua-Liang Yu, Xiu-Min Zhang, Peng-Fei Wang, Hai-Qiao Ni, Zhi-Chuan Niu, and Tianshu Lai. Measuring spin diffusion of electrons in bulk n-GaAs using circularly dichromatic absorption difference spectroscopy of spin gratings [J]. Appl. Phys. Lett. 94, p202109 (2009).
    [107] X. Z. Ruan, H. H. Luo, Yang Ji, and Z. Y. Xu, Effect of electron-electron scattering on spin dephasing in a high-mobility low-density two-dimensional electron gas [J]. Phys. Rev. B 77, p193307 (2008).
    [108] H. Ma, Z. M. Jin, L. H Wang, and G. H. Ma, Electron spin relaxation in intrinsic bulk InP semiconductor [J]. J. Appl. Phys. 109, p023105 (2011).
    [109] J. H. Jiang and M. W. Wu, Electron-spin relaxation in bulk III-V semiconductors from a fully microscopic kinetic spin Bloch equation approach [J]. Phys. Rev. B. 79, p125206 (2009).
    [110] M. Q. Weng, M. W. Wu, and L. Jiang, Hot-electron effect in spin dephasing in n-type GaAs quantum wells [J]. Phys. Rev. B 69, p245320 (2004).
    [111] M. Krau?, H. C. Schneider, R. Bratschitsch, Z. Chen, and S. T. Cundiff, Ultrafast spin dynamics in optically excited bulk GaAs at low temperatures [J]. Phys. Rev. B 81, p035213 (2010).
    [112] L. F. Han, Y. G. Zhu, X. H. Zhang, P. H. Tan, H. Q. Ni, Z. C. Niu, Temperature and Electron Density Dependence of Spin Relaxation in GaAs/AlGaAs Quantum Well [J]. Nanoscale Research Letters 6, p84 (2011).
    [1] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, and P. Agostini, Observation of a Train of Attosecond Pulses from High Harmonic Generation [J]. Science 292, p1689 (2001).
    [2] N. A. Papadogiannis, B. Witzel, C. Kalpouzos, and D. Charalambidis, Observation of Attosecond Light Localization in Higher Order Harmonic Generation [J]. Phys. Rev. Lett. 83, p4289 (1999).
    [3] V. P. Kalosha and J. Herrmann, Phase Relations, Quasicontinuous Spectra and Subfemtosecond Pulses in High-Order Stimulated Raman Scattering with Short-Pulse Excitation [J]. Phys. Rev. Lett. 85, p1226 (2000).
    [4]马国宏,郭立俊,钱士雄,飞秒物理、飞秒化学和飞秒生物学[J].物理30, p349 (2001).
    [5] A. H. Zewail, Laser Femtochemistry [J]. Science 242, p1645 (1988).
    [6]周炳琨,高以智,陈倜嵘等,激光原理[M],国防工业出版社,北京(1999).
    [7]赵凯华,钟锡华,光学[M],北京大学出版社,北京(1982).
    [8] A. J. Sabbah and D. M. Riffe, Femtosecond pump-probe reflectivity study of silicon carrier dynamics [J]. Phys. Rev. B 66, p165217 (2002).
    [9] I. ?uti?,J. Fabian,aand S. nasSarma. Spintronics: Fundamentals and applications [J]. Rev. Mod. phys. 76, p323 (2004).
    [10] Optical Orientation, edited by F. Meier and B. P. Zakharchenya (Elsevier, Amsterdam, 1984).
    [11] R. J. Seymour, R. R. Alfano. Time-resolved measurement of the electron-spin relaxation kinetics in GaAs [J]. Appl. Phys. Lett. 37, p231 (1980).
    [12] A. Tackeuchi, S. Muto, T. Inata, and T. Fujii. Direct observation of picosecond spin relaxation of excitons in GaAs/AlGaAs quantum wells using spin-dependent optical nonlinearity [J]. Appl. Phys. Lett. 56, p2213 (1990).
    [13] A. Tackeuchi, O. Wada, and Y. Mishikawa, Electron spin relaxation in GaAlAs/InP multiple-quantum well [J]. Appl. Phys. Lett. 70, p1131 (1997).
    [14] A. Tackeuchi, O. Wada, and Y. Mishikawa, Electron spin relaxation in GaAlAs/InP multiple-quantum well [J]. Physica B 272, p318 (1999).
    [15] D. J. Hilton, C. L.Tang. Optical Orintation and Femtosecond relaxation of spin-polarized holes in GaAs [J]. Phys. Rev. B. 89, p146601 (2002).
    [16]朱荣义,金属酞菁的光物理性质研究[D].复旦大学博士学位论文(2006).
    [17] Kikkawa J M and Awschalom D D. Lateral drag of spin coherence in gallium arsenide [J]. Nature 397, p139 (1999).
    [18] Kikkawa J M and Awschalom D D. Resonant spin amplification in n-type GaAs [J]. Phys. Rev. Lett. 80, p4313 (1998).
    [19] Gupta J A, Knobel R, Samarth N, et al. Ultrafast manipulation of electron spin coherence [J]. Science 292, p2458 (2001).
    [20] Salis G, Kato Y, Ensslin K, et al. Electrical control of spin coherence in semiconductor nanostructures [J]. Nature 414, p619 (2001).
    [21] Young D K, Gupta J A, Johnston-Halperin E, et al. Optical, electrical andmagnetic manipulation of spins in semiconductors [J]. Semicond. Sci. Technol. 17, p275 (2002).
    [22]刘公强,乐志强,沈德芳,磁光学[M].上海科学技术出版社,上海(2001).
    [23] http://www.physics.ucsb.edu/~awschalom/.
    [24]刘晓东,半导体与铁磁薄膜中超快自旋动力学研究[D].中山大学博士学位论文(2008).
    [1] K. Zerrouati, Fabre F, Bacquet G, et al. Spin-lattice relaxation in p-type gallium arsenide single crystals [J]. Phys. Rev. B 37, p1334 (1988).
    [2] J. M. Kikkawa and D. D.Awschalom, Resonant spin amplification in n-type GaAs [J]. Phys. Rev. Lett. 80, p4313 (1998).
    [3] T. S. Lai, X. D. Liu, H. H. Xu, Z. X. Jiao, J. H. Wen, and W. Z. Lin, Temperature dependence of electron-spin coherence in intrinsic bulk GaAs [J]. Appl. Phys. Lett. 88, p192106 (2006).
    [4] P. E. Hohage, G. Bacher1, D. Reuter, and A. D. Wieck, Coherent spin oscillations in bulk GaAs at room temperature [J]. Appl. Phys. Lett. 89, p231101 (2006).
    [5] Y. D. Glinka, T. V. Shahbazyan, I. E. Perakis, N. H. Tolk, X. Liu, Y. Sasaki, and J.K. Furdyna. Ultrafast spin dynamics in GaAs/GaSb/InAs heterostructures probed by second harmonic generation [J]. Appl. Phys. Lett. 81, p220 (2002).
    [6] S. Oertel, J. Hübner, and M. Oestreich, High temperature electron spin relaxation in bulk GaAs [J]. Appl. Phys. Lett. 93, p132112 (2008).
    [7] Y. Chen, T. Okuno, Y. Masumoto, Y. Terai, S. Kuroda, and K. Takita, Spin relaxation in CdTe quantum dots [J]. Phys. Rev. B. 71, p033314 (2005).
    [8] A. V. Kimel, V. V. Pavlov, R. V. Pisarev, V. N. Gridnev, F. Bentivegna and Th. Rasing, Ultrafast dynamics of the photo-induced magneto-optical Kerr effect in CdTe at room temperature [J]. Phys. Rev. B. 62, p10610 (R) (2000).
    [9] H. Ma, Z. M. Jin, G. H. Ma, W. M. Liu, and S. H. Tang, Photon energy and carrier density dependence of spin dynamics in bulk CdTe crystal at room temperature [J]. Appl. Phys. Lett. 94, p241112 (2009).
    [10]金钻明,马红,李栋,马国宏,抽运—探测反射技术研究本征CdTe的载流子动力学[J].光学学报29, p2343 (2009).
    [11] J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures [M]. (Springer, Berlin, 1999).
    [12] S. S. Prabhu and A. S. Vengurlekar, Dynamics of the pump-probe reflectivity spectra in GaAs and GaN [J]. J Appl. Phys. 95, p7803 (2004).
    [13] K. C. Hall, S. W. Leonard, H. M. van Driel, A. R. Kost, E. Selvig, and D. H. Chow, Subpicosecond spin relaxation in GaAsSb multiple quantum wells [J]. Appl. Phys. Lett. 75, p3665 (1999).
    [14] T. F. Boggess, J. T. Olesberg, C. Yu, M. E. Flatté, and W. H. Lau, Room-temperature electron spin relaxation in bulk InAs [J]. Appl. Phys. Lett. 77, p1333 (2000).
    [15] http://www.physics.ucsb.edu/~awschalom/.
    [16] M. I. D’yakonov and V. I. Perel’, Optical orientation in a system of electrons and lattice nuclei in semiconductors [J]. Sov. Phys. JETP 38, p177 (1974).
    [17] R. J. Elliott, Theory of the Effect of Spin-Orbit Coupling on Magnetic Resonance in Some Semiconductors [J]. Phys. Rev. 96, p266 (1954).
    [18] Y. Yafet, g Factors and Spin-Lattice Relaxation of Conduction Electrons [J]. Solid State Phys. 14, p1 (1963).
    [19] G. L. Bir, A. G. Aronov, and G. E. Pikus, Spin relaxation of electrons scatteredby holes [J]. Sov. Phys. JETP 42, p705 (1976).
    [20] Optical Orientation [M], edited by F. Meier and B. P. Zakharchenya (North-Holland, 1984).
    [21] M. W. Wu, J. H. Jiang and M. Q. Weng, Spin dynamics in semiconductors [J]. Phys. Rep. 493, p61 (2010).
    [22] J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic, Semiconductor Spintronics [J]. Acta Phys. Slov. 57, p565 (2007).
    [23] S. Arlt, U. Siegner, J. Kunde, F. Morier-Genoud, and U. Keller, Ultrafast dephasing of continuum transitions in bulk semiconductors [J]. Phys. Rev. B. 59, p14860 (1999).
    [24] Y. Zhou, J. H. Jiang, and M. W. Wu, Electron spin relaxation in p-type GaAs quantum wells [J]. New J. of Phys. 11, p113039 (2009).
    [25] J. H. Jiang and M. W. Wu, Electron-spin relaxation in bulk III-V semiconductors from a fully microscopic kinetic spin Bloch equation approach [J]. Phys. Rev. B 79, p125206 (2009).
    [26] J. H. Jiang, Y. Zhou, T. Korn, C. Schüller, and M. W. Wu, Electron spin relaxation in paramagnetic Ga(Mn)As quantum wells [J]. Phys. Rev. B 79, p155201 (2009).
    [27] J. Zhou, M. W. Wu, Spin relaxation due to the Bir-Aronov-Pikus mechanism in intrinsic and p-type GaAs quantum wells from a fully microscopic approach [J]. Phys. Rev. B 77, p075318 (2008).
    [28] M. Q. Weng and M. W. Wu, Spin dephasing in n-type GaAs quantum wells [J]. Phys. Rev. B 68, p075312 (2003).
    [29] M. Q. Weng, M. W. Wu, and L. Jiang, Hot-electron effect in spin dephasing in n-type GaAs quantum wells [J]. Phys. Rev. B 69, p245320 (2004).
    [30] M. Q. Weng and M. W. Wu, Multisubband effect in spin dephasing in semiconductor quantum wells [J]. Phys. Rev. B 70, p195318 (2004).
    [31] Bo Li, Maria C. Tamargo, Carlos A. Meriles. Electron spin dynamics in Fe-doped InP [J]. Appl. Phys. Lett. 91, p222114 (2007).
    [1] I. ?uti?,J. Fabian,and S. nas Sarma. Spintronics: Fundamentals and applications [J]. Rev. Mod. phys.76, p323 (2004).
    [2] M. W. Wu, J. H. Jiang and M. Q. Weng, Spin dynamics in semiconductors [J]. Phys. Rep. 493, p61 (2010).
    [3] A. Tackeuchi, H. Otake, Y. Ogawa, T. Ushiyama, T. Fujita, F. Takano and H. Akinaga. Nanosecond excitonic spin relaxation in cubic GaN [J]. Appl. Phys. Lett. 88, p162114 (2006).
    [4] J. M. Kikkawa and D. D. Awschalom. Resonant Spin Amplification in n-Type GaAs [J]. Phys. Rev. Lett. 80, p4313 (1998).
    [5] T. S. Lai, X. D. Liu, H. H. Xu, Zh. X. Jiao, J. H. Wen, and W. Zh. Lin, Temperature dependence of electron-spin coherence in intrinsic bulk GaAs [J]. Appl. Phys. Lett. 88, p192106 (2006).
    [6] P. E. Hohage, G. Bacher, D. Reuter and A. D. Wieck, Coherent spin oscillations in bulk GaAs at room temperature [J]. Appl. Phys. Lett. 89, p231101 (2006).
    [7] Yu. D. Glinka, T. V. Shahbazyan, I. E. Perakis, N. H. Tolk, X. Liu, Y. Sasaki, and J. K. Furdyna. Ultrafast spin dynamics in GaAs/GaSb/InAs heterostructures probed by second harmonic generation [J]. Appl. Phys. Lett. 81, p220 (2002).
    [8] Bo Li, Maria C. Tamargo, Carlos A. Meriles. Electron spin dynamics in Fe-doped InP [J]. Appl. Phys. Lett. 91, p222114 (2007).
    [9] A. V. Kimel, A. A. Tsvetkov, A. Kirilyuk, V. N. Gridnev, and Th. Rasing. Ultrafast spin dynamics in InP probed by the photo-induced magneto-optical Kerr effect [J]. phys. stat. sol. (c) 0, p1527 (2003).
    [10] A. V. Kimel, A. A. Tsvetkov, A. Kirilyuk, and Th. Rasing. Picosecond dynamics of bleaching and spin splitting in InP revealed by the photoinduced magneto-optical Kerr effect near the spin-orbit split-off exciton transition [J]. Phys. Rev. B 69, p165214 (2004).
    [11]夏建白,葛惟昆,常凯,半导体自旋电子学[M],科学出版社(2008).
    [12] M. I. Dyakonov, Spin Physics in Semiconductors, Springer, (2008).
    [13] B. R. Bennett, R. A. Soref, J. A. Del Alamo, Carrier-Induced Change in Refractive GaAs, and InGaAsP Index of InP [J]. IEEE J. Quantum Electron. 26, p113 (1990).
    [14] S. S. Prabhu, and A. S. Vengurlekar, Dynamics of the pump-probe reflectivity spectra in GaAs and GaN [J]. J. Appl. Phys. 95, p7803 (2004).
    [15] Jasprit Singh, Optoelectronic [M], p203 (1996).
    [16] Frank Stern, Optical Properties of Lead-Salt andⅢ-ⅤSemiconductors [J], J Appl. Phys. 32, p2166 (1961).
    [17] P. Nemec, Y. Kerachian, and H. M. van Driel, Arthur L. Smirl, Spin-dependent electron many-body effects in GaAs [J], Phys. Rev. B 72, p245202 (2005).
    [18] Frank Stern, Dispersion of the Index of Refraction Near the Absorption Edge of Semiconductors [J], Phys. Rev 133, p1653(A) (1964).
    [19] K. F. Berggren and B. E. Sernelius, Band-gap narrowing in heavily doped many-valley semiconductors [J]. Phys. Rev. E 24, p1971 (1981).
    [20] P. A. Wolff, Theory of the band structure of very degenerate semiconductors. [J] Phys. Rev. 126, p405 (1962).
    [1] Y. Nishikawa, A. Takeuchi, and M. Yamaguchi, et al., Ultrafast all-optical spin polarization switch using quantum-well etalon [J]. IEEE J. Quantum Electron. 2, p661 (1996).
    [2] J. T. Hyland, G. T. Kennedy, and A. Miller, et al., Spin relaxation and all optical polarization switch at 1.52 micrometers in InGaAs(P)/InGaAsP multiple quantum wells [J]. Semicond. Sci. Technol. 14, p215 (1999).
    [3] K. C. Hall, S. W. Leonard, and H. M. Direl, et al., Subpiosecond spin relaxation in GaAsSb multiple quantum wells [J]. Appl. Phys. Lett. 75, p3665 (1999).
    [4] Z. M. Jin, H. Ma, L. H. Wang, G. H. Ma, F. Y. Guo, and J. Zh. Chen. Ultrafast all-optical magnetic switching in NaTb(WO4)2 [J]. Appl. Phys. Lett. 96, p201108 (2010).
    [5] Our choice from the recent literature [J], Nature Photonics 4, p500.
    [6] N. A. Gershenfeld, I. Chuang, The usefulness of NMR quantum computing [J]. Science 275, p350 (1997).
    [7] B. E. Kane. A silicon-based nuclear spin quantum computer [J]. Nature 393, p133 (1998).
    [8] K. V. Kavokin, Spin relaxation of localized electrons in n-type semiconductors [J]. Semicond. Sci. Technol. 23, p114009 (2008).
    [9] R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev, B. Ya. Meltser, M. N. Stepanova, B. P. Zakharchenya, D. Gammon, and D. S. Katzer, Low- temperature spin relaxation in n-type GaAs [J]. Phys. Rev. B 66, p245204 (2002).
    [10] K. V. Kavokin, Anisotropic exchange interaction of localized conduction-band electrons in semiconductors [J]. Phys. Rev. B 64, p075305 (2001).
    [11] M. I. D’yakonov and V. I. Perel’, Optical orientation in a system of electrons and lattice nuclei in semiconductors. [J]. Sov. Phys. JETP 38, p177 (1974).
    [12] R. J. Elliott, Theory of the Effect of Spin-Orbit Coupling on Magnetic Resonance in Some Semiconductors [J]. Phys. Rev. 96, p266 (1954).
    [13] Y. Yafet, g Factors and Spin-Lattice Relaxation of Conduction Electrons [J]. Solid State Phys. 14, p1 (1963).
    [14] G. L. Bir, A. G. Aronov, and G. E. Pikus, Spin relaxation of electrons scattered by holes [J]. Sov. Phys. JETP 42, p705 (1976).
    [15] M. I. D’yakonov and V. I. Perel’, Spin Orientation of Electrons Associated with the Interband Absorption of Light in Semiconductors [J].Sov. Phys. JETP 33, p1053 (1971).
    [16] Optical Orientation, edited by F. Meier and B. P. Zakharchenya (North-Holland, 1984).
    [17] A. Tackeuchi, T. Kuroda, S. Muto, Y. Nishikawa and O.Wada, Electron Spin-relaxation Dynamics in GaAs/AlGaAs Quantum Wells and InGaAs/InPQuantum Wells [J]. Jpn. J. Appl. Phys. 38, p4680 (1999).
    [18] A. Tackeuchi, Y. J. Nishikawa, and O. Wada, Room-temperature electron spin dynamics in GaAs/AlGaAs quantum wells [J]. Appl. Phys. Lett. 68, p797 (1996).
    [19] A. Tackeuchi, O. Wada, and Y. Mishikawa, Electron spin relaxation in InGaAs/InP multiple-quantum wells [J]. Appl. Phys. Lett. 70, p1131 (1997).
    [20] J. H. Jiang and M. W. Wu, Electron-spin relaxation in bulk III-V semiconductors from a fully microscopic kinetic spin Bloch equation approach [J]. Phys. Rev. B 79, p125206 (2009).
    [21] H. Ma, Z. M. Jin, G. H. Ma, W. M. Liu, and S. H. Tang, Photon energy and carrier density dependence of spin dynamics in bulk CdTe crystal at room temperature [J]. Appl. Phys. Lett. 94, p241112 (2009).
    [22] C. Lü, J. L. Cheng, M. W. Wu, Hole spin dephasing in p-type semiconductor quantum wells [J]. Phys. Rev. B 73, p125314 (2006).
    [23] S. Oertel, J. Hübner, and M. Oestreich, High temperature electron spin relaxation in bulk GaAs [J]. Appl. Phys. Lett. 93, p132112 (2008).
    [1] K. Brunner, G. Abstreiter, G. B?hm, G. Tr?nkle, and G. Weimann, Sharp-Line Photo-luminescence and Two-Photon Absorption of Zero-Dimensional Biexcitons in a GaAs/AlGaAs Structure [J]. Phys. Rev. Lett. 73, p1138 (1994).
    [2] K. Brunner, G. Abstreiter, G. B?hm, G. Tr?nkle, and G. Wiemann, Sharp‐line photoluminescence of excitons localized at GaAs/AlGaAs quantum well inhomogeneities [J]. Appl. Phys. Lett. 64, p3320 (1994).
    [3] O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, Regulated and Entangled Photons from a Single Quantum Dot [J]. Phys. Rev. Lett. 84, p2513 (2000).
    [4] C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, Triggered Single Photons from a Quantum Dot [J]. Phys. Rev. Lett. 86, p1502 (2001).
    [5] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu, A Quantum Dot Single-Photon Turnstile Device [J]. Science 290, p2282 (2000).
    [6] N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, and D. G. Steel, Coherent Optical Control of the Quantum State of a Single Quantum Dot [J].Science 282, p1473 (1998).
    [7] Y. Toda, T. Sugimoto, M. Nishioka, and Y. Arakawa, Near-field coherent excitation spectroscopy of InGaAs/GaAs self-assembled quantum dots [J]. Appl. Phys. Lett. 76, p3887 (2000).
    [8] J. Berezovsky, O. Gywat, F. Meier, D. Battaglia, X. Peng, D. D. Awschalom, Initialization and read-out of spins in coupled core–shell quantum dots [J]. Nature Physics 2, p831 (2006).
    [9] G. Burkard, Spin qubits: Connect the dots [J]. Nature Physics 2, p807 (2006).
    [10] Michael N. Leuenberger and Michael E. Flatté, D. D. Awschalom, Teleportation of Electronic Many-Qubit States Encoded in the Electron Spin of Quantum Dots via Single Photons [J]. Phys. Rev. Lett. 94, p107401 (2005).
    [11] T. H. Stievater, Xiaoqin Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, Rabi Oscillations of Excitons in Single Quantum Dots [J]. Phys. Rev. Lett. 87, p133603 (2001).
    [12] D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, Homogeneous Linewidths in the Optical Spectrum of a Single Gallium ArsenideQuantum Dot [J]. Science 273, p87 (1996).
    [13] D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, Fine Structure Splitting in the Optical Spectra of Single GaAs Quantum Dots [J]. Phys. Rev. Lett. 76, p3005 (1996).
    [14] J. Bai Xia and J. B. Li, Electronic structure of quantum spheres with wurtzite structure [J]. Phys. Rev. B 60, p11540 (1999).
    [15] Y. H. Zhu, X. W. Zhang, and J. B. Xia, Electronic states in InAs quantum spheres and ellipsoids [J]. Phys. Rev. B 73, p165326 (2006).
    [16] L. W. Wang, J. Kim, and A. Zunger, Electronic structures of [110]-faceted self-assembled pyramidal InAs/GaAs quantum dots [J]. Phys. Rev. B 59, p5678 (1999).
    [17] Victor I. Klimov. Nanocrystal quantum dots from fundamental photophysics to multicolor lasing [J]. Los Alamos Science 28, p214 (2003)
    [18] T. Kuroda, T. Yabushita, T. Kosuge, and A. Tackeuchi, Subpicosecond exciton spin relaxation in GaN [J]. Appl. Phys. Lett. 85, p3116 (2004).
    [19] J. A. Gupta and D. D. Awschalom, X. Peng and A. P. Alivisatos. Spin coherence in semiconductor quantum dots [J]. Phys. Rev. B 59, p10421(R) (1999).
    [20] Y. Q. Li, D. W. Steuerman, J. Berezovsky, D. S. Seferos, G. C. Bazan, and D. D. Awschalom, Cavity enhanced Faraday rotation of semiconductor quantum dots [J]. Appl. Phys. Lett. 88, p193126 (2006).
    [21] K. Brunner, G. Abstreiter, G. B?hm, G. Tr?nkle, and G. Weimann, Sharp-Line Photo-luminescence and Two-Photon Absorption of Zero-Dimensional Biexcitons in a GaAs/AlGaAs Structure [J]. Phys. Rev. Lett. 73, p1138 (1994).
    [22] D. Lagarde, A. Balocchi, P. Renucci, H. Carrère, F. Zhao, T. Amand, X. MarieZ. X. Mei, X. L. Du, and Q. K. Xue, Exciton and hole spin dynamics in ZnO investigated by time-resolved photoluminescence experiments [J]. Phys. Rev. B 78, p033203 (2008).
    [23] H. Otake, T. Kuroda, T. Fujita, T. Ushiyama1, A. Tackeuchi1, T. Chinone, J.-H. Liang, and M. Kajikawa, Picosecond spin relaxation of acceptor-bound exciton in wurtzite GaN [J]. Appl. Phys. Lett. 89, p182110 (2006).
    [24] Christelle Brimont, Mathieu Gallart, Olivier Crégut, Bernd H?nerlage, and Pierre Gilliot, Experimental investigation of excitonic spin relaxation dynamics in GaN[J]. Phys. Rev. B 77, p125201 (2008).
    [25] J. H. Bu?, J. Rudolph, F. Natali, F. Semond, and D. H?gele, Anisotropic electron spin relaxation in bulk GaN [J]. Appl. Phys. Lett. 95, p192107 (2009).
    [26] Xiaobo Chen, Yongbing Lou, Clemens Burda. Spectroscopic investigation of II-VI core-shell nanoparticles: CdSe/CdS [J]. J. of Nanotechnology, 1, p105 (2004).
    [27]唐爱伟,滕枫,王元敏,周庆成,王永生. II-VI族半导体量子点的发光特性及其应用研究进展[J].液晶与显示. 20, p302 (2005).
    [28] Eychmuller A, Mews A, Weller H. A quantum dot quantum well: CdS/HgS/CdS [J]. Chem. Phys. Lett. 208, p59 (1993).
    [29] Kortan A R, Hull R, Opila R L, Bawendi M G, Steigerwald M L, Carroll P J, Brus L E. Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. [J] J. Am. Chem. Soc. 112, p1327 (1990).
    [30]马红,CdSe半导体量子点的非线性光学性质和超快动力学的研究[D],上海大学硕士学位论文,(2008).
    [31] S. Bar-Ad and I. Bar-Joseph, Exciton spin dynamics in GaAs heterostructures [J]. Phys. Rev. Lett. 68, p349 (1992).
    [32] Y. Chen, T. Okuno, and Y. Masumoto, Y. Terai, S. Kuroda, and K.Takita, Spin relaxation in CdTe quantum dots [J]. Phys. Rev. B 71, p033314 (2005).
    [33] M. I. Dyakonov, Spin Physics in Semiconductors, Springer, (2008).
    [1] C. Buss, R. Pankoke, P. Leisching, J. Cibert, R. Frey, and C. Flytzanis, Giant Photoinduced Excitonic Faraday Rotation in CdTe/Cd1-xMnxTe Multiple Quantum Wells [J], Phys. Rev. Lett. 78, p4123 (1997).
    [2] I. A. Yugova, M. M. Glazov, E. L. Ivchenko and Al. L. Efros, Pump-probe Faraday rotation and ellipticity in an ensemble of singly charged quantum dots[J], Phys. Rev. B 80, p104436 (2009).
    [3] A. V. Kimel, V. V. Pavlov, R. V. Pisarev, and V. N. Gridnev F. Bentivegna and Th. Rasing. Ultrafast dynamics of the photo-induced magneto-optical Kerr effect in CdTe at room temperature [J]. Phys. Rev. B 62, p10610(R) (2000).
    [4] J. A. Gupta and D. D. Awschalom, X. Peng and A. P. Alivisatos. Spin coherence in semiconductor quantum dots [J]. Phys. Rev. B 59, p10421(R) (1999).
    [5] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Spintronics: A Spin-Based Electronics Vision for the Future [J], Science 294, p1488 (2001).
    [6]何耀,性能优良水溶性量子点和量子点一聚合物纳米微球的微波辐射制备及研究[D],复旦大学博士学位论文(2007).
    [7] L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media. Pergamon Press, Oxford, (1984).
    [8] A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov and Th. Rasing. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses [J]. Nature 435, p655 (2005).
    [9] C. D. Stanciu, F. Hansteen1, A. V. Kimel, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, Ultrafast Interaction of the Angular Momentum of Photons with Spins in the Metallic Amorphous Alloy GdFeCo [J]. Phys. Rev. Lett. 98, p207401 (2007).
    [10] G. P. Ju, A. Vertikov, A. V. Nurmikko, C. Canady, G. Xiao, R. F. C. Farrow andA. Cebollada, Ultrafast nonequilibrium spin dynamics in a ferromagnetic thin film [J]. Phys. Rev. B 57, p700(R) (1998).
    [11] Y. R. Shen, The Principles of Nonlinear Optics [M]. Wiley, New York, (1984).
    [12] Th. ?streich, K. Sch?nhammer, and L. J. Sham, Theory of Spin Beatings in the Faraday Rotation of Semiconductors [J].Phys. Rev. Lett. 75, p2554 (1995).
    [13] L. J. Sham, Theory of spin coherence in semiconductor heterostructures [J]. J. Magn. Magn. Mater. 200, p219 (1999).
    [14] J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, Springer, Berlin, (1996).
    [15] K. Leung, S. Pokrant, and K. B. Whaley. Exciton fine structure in CdSe nanoclusters [J]. Phys. Rev. B 57, p12291 (1998).
    [16] U. Woggon, F. Gindele, O. Wind, and C. Klingshirn Exchange interaction and phonon confinement in CdSe quantum dots [J]. Phys. Rev. B 54, p1506 (1996).
    [17] A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C. Flytzanis, I. A. Kudryavtsev, T. V. Yazeva, A. V. Rodina, and Al. L. Efros. Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions [J]. J. Opt. Soc. Am. B 10, p100 (1993).
    [18] Shintaro Nomura, Yusaburo Segawa, Takayoshi Kobayashi. Confined excitons in a semiconductor quantum dot in a magnetic field [J]. Phys. Rev. B 49, p13571 (1994).
    [19] Alberto Franceschetti and Alex Zunger. Direct Pseudopotential Calculation of Exciton Coulomb and Exchange Energies in Semiconductor Quantum Dots [J]. Phys. Rev. Lett. 78, p915 (1997).
    [20] J. A. Gupta, D. D. Awschalom, Al. L. Efros, A. V. Rodina, Spin dynamics in semiconductor nanocrystals [J]. Phys. Rev. B 66, p125307 (2002).
    [21] Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states [J]. Phys. Rev. B 54, p4843 (1996).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700