白光LED用荧光材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体白光LED光源因其节能、环保、使用寿命长、体积小、反应速度快、耐冲击等诸多优点,被视作人类新一代的光源。本论文从光转换型白光LED发展存在的两个难题——红光区域显色性能不足和多相荧光材料组分之间重吸收出发,通过对适用于455-465 nm蓝光LED芯片和395-405 nm,355-365 nm近紫外光LED芯片的荧光材料进行了研究,具体开展了以下工作:
     (1) 455-465 nm蓝光芯片激发的YAG:Ce~(3+), Eu~(3+)荧光粉
     利用水热辅助燃烧的合成方法,通过在黄光荧光粉YAG:Ce~(3+)中共掺Eu~(3+)提高了其红光区域的发射强度,既可避免添加另一相红光材料而造成的重吸收现象,又提高了红光区域的显色性能。结果表明,水热辅助燃烧合成法可以大大降低传统高温固相法所需的反应温度。YAG:Ce~(3+), Eu~(3+)荧光粉封装的白光LED弥补了YAG:Ce~(3+)荧光粉封装的白光LED在红光区域发射强度不足的缺陷,大幅提高了商业白光LED的显色性能。YAG:Ce~(3+), Eu~(3+)荧光粉封装的白光LED在20 mA电流激发下发射出色品坐标(0.3201, 0.3561),色温为4910K,显色指数82的优质白光,器件的流明效率可达78.71 lm/W。
     (2) 455-465 nm蓝光芯片激发的CdS:Cu~(2+)/ZnS量子点
     将掺杂量子点作为光转换材料应用于白光LED,以解决多相荧光材料混合后的重吸收问题。通过一锅法合成了发射红光的CdS:Cu~(2+)量子点。结果表明,通过控制体系反应的温度从195℃到235℃变化,可以控制CdS:Cu~(2+)量子点发射波长从630 nm到710 nm变化。不同掺杂Cu~(2+)浓度对CdS:Cu的发射波长影响不大,但可决定CdS:Cu~(2+)量子点中CdS本征发射峰与Cu~(2+)掺杂发射峰的比例。通过在CdS:Cu~(2+)表面包覆ZnS壳层,可以将CdS:Cu~(2+)量子效率从18%~30%提高到40%~50%,同时提高其光化学稳定性和热稳定性。利用CdS:Cu~(2+)/ZnS量子点、YAG:Ce~(3+)荧光粉与蓝光LED芯片制成的白光LED,在120 mA驱动电流条件下,可发射出色品坐标为(0.3449, 0.3282),显色指数86的优质白光,器件的流明效率可达37.43 lm/W。
     (3) 395-405 nm近紫外芯片激发的CaIn_2O_4:Eu~(3+)荧光粉
     首次合成了物理化学性能更稳定的,能被近紫外光有效激发的新型红光荧光粉CaIn_2O_4:Eu~(3+)。通过共掺碱金属离子M+(M=Li,Na,K),利用M+ + Eu~(3+)→2Ca~(2+)方式弥补Eu~(3+)替位Ca~(2+)造成的电荷不平衡,可以大幅提高CaIn_2O_4:Eu~(3+)荧光粉的发射强度。通过掺杂Sm~(3+),利用Sm~(3+)→Eu~(3+)的能量传递,可以拓宽CaIn_2O_4:Eu~(3+)荧光粉近紫外区域的激发光谱,并提高CaIn_2O_4:Eu~(3+)荧光粉400-405 nm波段的近紫外光的激发强度
     (4) 355-365 nm近紫外芯片激发的单一相LiCa_3MgV_3O_(12_:Eu~(3+)和SrZn_2(PO_4)_2: Eu~(2+), Mn~(2+)白光荧光粉
     针对近紫外光激发三基色荧光粉材料之间重吸收的问题,研发了近紫外光激发的单一相白光荧光粉体系LiCa_3MgV_3O_(12_:Eu~(3+)和SrZn_2(PO_4)_2: Eu~(2+), Mn~(2+)。通过高温固相法合成LiCa_3MgV_3O_(12_:Eu~(3+),利用[VO4]3-和Eu~(3+)分别对应的发射谱带复合形成白光,通过调节Eu~(3+)掺杂浓度,可获得显色性能87,色品坐标(0.33, 0.34)的白光。通过燃烧法合成SrZn_2(PO_4)2:Eu~(2+), Mn~(2+),相比高温固相法合成的样品有更小的颗粒尺寸和更高的发射强度,利用Eu~(2+)和Mn~(2+)分别对应的发射谱带复合形成白光,通过调节Eu~(2+)和Mn~(2+)掺杂浓度比例,可获得显色指数为85,色品坐标为(0.35, 0.36)的白光。
Due to the long lifetimes, high luminous efficiencies, fast response times, and low power consumptions, solid-state white LEDs have been rapidly growing as a promising option to replace the current illumination applications. In the thesis, two main problems of white LEDs are focused, which are the low color rendering of light in red region and the re-absorption problem among the multi-phased emitting materials. Light converting materials for 455-465 nm blue LED chips and 355-365 nm, 395-405 nm near-UV LED chips were investigated respectively. The main contributions were as follows:
     (1)Phosphor of YAG:Ce~(3+), Eu~(3+) for 455-465 nm blue LED chip
     Ce~(3+) and Eu~(3+) co-doped YAG phosphor was synthesized by hydrothermal-assist combustion method, and Eu~(3+) was doped to improve the emission light in red region. The sintering temperature of hydrothermal-assist combustion method was much lower than the traditional solid-state method. The emission spectrum of YAG:Ce~(3+), Eu~(3+) was composed of a yellow emission band located at 540 nm corresponding to the characteristic transition of Ce~(3+) and several red emission bands corresponding to the characteristic transitions of Eu~(3+). The fabricated white LED based on blue LED and YAG:Ce~(3+), Eu~(3+) phosphor exhibited a luminous efficiency of 78.71 lm/W, color rendering index (CRI) Ra of 82, and color temperature Tc of 4910K under 20 mA forward bias current.
     (2)Doped quantum dots (QDs) of CdS:Cu~(2+) for 455-465 nm blue LED chip
     Doped QDs of CdS:Cu~(2+) were applied in the yellow emitting phosphor of YAG:Ce~(3+) based white LEDs for the first time, not only to complement the absent red component but also to avoid color altering and the decrease of luminous efficiency caused by re-absorption. QDs with emission wavelength ranging from 630 nm to 710 nm can be obtained by controlling the reaction temperature from 195℃to 235℃, and their absorption peak positions and dopant PL peak positions were found to be independent of the Cu~(2+) dopant concentration. By growing a ZnS shell around the CdS:Cu~(2+) QDs, the quantum yields (QYs) of the QDs were observed to increase from 18%~30% to 40%~50%, and their photochemical and thermal stabilitieswere also improved. The fabricated white LED based on blue LED chip, YAG:Ce~(3+) phosphor and CdS:Cu~(2+)/ZnS QDs exhibited a luminous efficiency of 37.43 lm/W, Ra of 86 under 120 mA forward bias current, and no re-absorption between phosphor of YAG:Ce~(3+) and CdS:Cu~(2+)/ZnS QDs was observed.
     (3)Phosphor of CaIn_2O_4:Eu~(3+) for 395-405 nm near-UV LED chip
     A novel red emitting phosphor of CaIn_2O_4:Eu~(3+) with high chemical stability and high efficiency under near-UV light excitation was devoloped. By co-doping alkaline metal ions M+(M=Li,Na,K)as charge compensators, the charge imbalanced caused by the doping of Eu~(3+) was compensated in the model of M+ + Eu~(3+)→2Ca~(2+), and the emission intensity of the phosphor was greatly improved. Moveover, the absorption intensity of the phosphor of CaIn_2O_4:Eu~(3+) in 400-405 nm near-UV region was enhanced by co-doping Sm~(3+)due to the energy transfer from Sm~(3+) to Eu~(3+).
     (4)Single-phased white emitting phosphors of LiCa_3MgV_3O_(12_:Eu~(3+) and SrZn_2(PO_4)_2: Eu~(2+), Mn~(2+) for 355-365 nm near-UV LED chip
     Single-phased white emitting phosphors of LiCa_3MgV_3O_(12_:Eu~(3+) and SrZn_2(PO_4)_2: Eu~(2+), Mn~(2+) for 355-365 nm near-UV excitation were synthesized to overcome the re-absorption problem of the tricolor phosphors. The PL spectra of LiCa_3MgV_3O_(12_:Eu~(3+) showed two emission bands with peaks located at 530 nm and 610 nm, which were attributed to (VO4)3? and Eu~(3+) respectively, and white light with Ra of 87 and coordinate values of (0.33,0.34) was observed with a 10% molar doping concentration of Eu~(3+). Phosphor of SrZn_2(PO_4)_2: Eu~(2+), Mn~(2+) synthesized by combustion method exhibited higher luminous intensity than that synthesized by traditional solid-state method, and blue emission band with peak located at 416 nm from Eu~(2+) occupying the Sr~(2+) site, the green emission band with peak located at 538 nm and the red emission band with peak located at 630 nm from Mn~(2+) occupying two different Zn~(2+) sites were observed in the PL spectra. White light with Ra of 84 and coordinate values of (0.35, 0.36) was obtained by adjusting the ratio of the concentrations of Eu~(2+) and Mn~(2+) properly.
引文
[1]魏戈兵,现代照明光源的发展趋势[J].灯与照明. 2003, 27(3):26-29
    [2]张国义,陈志忠,固态照明光源的基石——氮化镓基白光发光二极管[J].物理学和高新科技. 2004, 33(11):833-842
    [3]Holonyak.N., Bevacqua.S.F. Coherent (visible) light emission from Ga(As1-xPx) junctions [J]. Appl. Phys. Lett. 1962, 1(4):82-86
    [4]Nishizawa.J., Itoh.K., Okuno.Y. et al. LPE-AlGaAs and red LED (candela class) [J]. J. Appl. Phys. 1985, 57:2210-2214
    [5]Nakamura.S., Mukai.T., Senoh.M. Candela-class high-brightness InGan/AlGaN double-heterostructure blue-light emitting diodes [J]. Appl. Phys. Lett. 1994, 64(13):1687-1689
    [6]Schubert.E.F., Kim.J.K. Solid-state light sources getting smart [J]. Science 2005,308(5726):1274–1278
    [7]崔元日,潘苏予.第四代照明光源--白光LED [J].灯与照明. 2004, 28(2):31
    [8]Hsu.J.T, Han.W.K, Chen.C, et al. Design of multi-chips LED module for lighting application [J]. Proc. SPIE, 2002, 4776:26-33
    [9]Muthu.S, Schuurmans.F.J.P, Pashley.M.D. Red, green and blue LEDs based white generation: issues and control [J]. Proc. of the 2002 IEEE Industry of Applications, 2002,1:327-333
    [10]Burroughes.J.H., Bradley.D.D.C. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347:539-541
    [11]Lamansky.S., Djurovich.P. Highly phosphorescent bis-cyclometalated iridium complexes: Synthesis, photophysical characterization, and use in organic light emitting diodes [J]. J. Am. Chem. Soc. 2001, 123(18):4304-4312
    [12]Blochwitz.J., Pfeiffer.M., Frits.T., Leo.K. Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material [J]. Appl. Phys. Lett. 1998,73(6):729-731
    [13]李建宇.稀土发光材料及其应用.北京,化学工业出版社,2003
    [14]Blasse.G., Bril.A., A new phosphor for lying-spot cathod-ray tubes for color televisions [J]. Appl. Phys. Lett. 1967,11 :53-54
    [15]Lee.S., Seo.S.Y., Optimization of yttrium aluminum garnet :Ce~(3+) phosphors for white light-emitting diodes by combinatorial chemistry method [J]. J.Electrochem.Soc. 2002, 149(11) :J85-J88
    [16]Zhang.S.S., Zhuang.W.D., Zhao.C.L., et al. Study on (Y,Gd)3(Al,Ga)5O12 phosphor [J]. J.Rare Earth, 2004, 22(1) :118-121
    [17]Jang.H.S., Im.W.B., Lee.D.C, et al. Enhancement of red spectral emission intensity of Y3Al5O12 :Ce~(3+) phosphor via Pr co-doping and Tb substitution for the application to white LEDs [J]. J.Lumin., 2007,26(2) :371-377
    [18]Lee.J.W., Lee.J.H., Woo.E.J., et al. Synthesis of nanosized Ce~(3+),Eu~(3+) codoped YAG phosphor in a continuous supercritical water system [J]. Ind.Eng.Chem.Res. 2008,47 :5994-6000
    [19]Xie.R.J., Hirosaki.N., Sakuma.K., Eu~(2+) doped Ca-α-SiAlON : A yellow phosphor for white light-emitting diodes [J]. Appl. Phys. Lett. 2004, 84(26) :5404-5406
    [20]Jang.H.S., Jeon.D.Y., Yellow-emitting Sr3SiO5 :Ce~(3+),Li+ phosphor forwhite-light-emitting diodes and yellow-light-emitting diodes [J]. Appl.Phys.Lett. 2007,90 :0419061-3
    [21]Yang.Z.P., Wang.S.L., Yang.G.W. et al. Luminescent properties of Ca2BO3Cl :Eu~(2+) yellow-emitting phosphor for white light-emitting diodes [J]. Mater. Lett. 2007,61 :5258-5260
    [22]Park.J.K., Kim.C.H., Yeon.J.H., et al. Application of strontium silicate yellow phosphor for white light-emitting diodes [J]. Appl. Phys. Lett. 2004,84(10) :1647-1649
    [23]Park.J.K., Choi.K.J., Kim.C.H., et al. Embodiment of the warm white-light-emitting diodes by using a Ba~(2+) codoped Sr3SiO5 :Eu phosphor [J]. Appl. Phys. Lett. 2006, 88 :0435111-3
    [24]Sung.H.J., Cho.Y.S., Huh.Y.D., et al. Preparation, characterization and photoluminescence of properties of Ca1-xSrxS :Eu red-emitting phosphors for a white LED [J]. B.Korean Chem.Soc. 2007,28(8) :1280-1284
    [25]Hu.Y.S., Zhuang.W.D., Ye.H.Q., et al. Prepartion and luminescent properties of (Ca1-xSrx)S :Eu~(2+) red emitting phsophor for white LED [J]. J.Lumin. 2005,111 :139-145
    [26]Guo.C.F., Huang.D.X., Su.Q., Methods to improve the fluorescence intensity of CaS :Eu~(2+) red-emitting phosphor for white LED [J]. Mater.Sci.Eng.B. 2006,130(1) :189-193
    [27]Jia.D.D., Wang.X.J., Alkali earth sulfide phosphors doped with Eu~(2+) and Ce~(3+) for LEDs [J]. Opt. Mater. 2007,30(3) :375-370
    [28]Li.Y.Q., Steen.J.E.J., Krevel.J.W.H., et al. Luminsecence properties of red-emitting M2Si5N8 :Eu~(2+) (M=Ca,Sr,Ba) LED conversion phosphors [J]. J. Alloys Compd. 2006, 417 :273-279
    [29]Piao.X.Q., Horikawa.T., Hanzawa.H., Preparation of (Sr1-xCax)2Si5N8/Eu~(2+) solid solutions and their lminescence properties [J]. J.Electrochem.Soc. 2006,153(12) :H232-H235
    [30]Li.Y.Q., With.G., Hintzen.H.T., The effect of replacement of Sr by Ca on the structural and luminescence properties of the red-emitting Sr2Si5N8 :Eu~(2+) LED conversion phosphor [J]. J.Solid State Chem. 2008,181 :515-524
    [31]Li.H.L., Xie.R.J., Hirosaki.N., et al. Synthesis and photoluminescence properties of Sr2Si5N8 :Eu~(2+) red phosphor by a gas-reduction and nitridation method [J]. J.Electrochem.Soc. 2008,155(12) :J378-J381
    [32]Toquin.R.L., Cheetham.A.K., Red-emitting cerium-based phosphor materials forsolid-state lighting applications [J]. Chem.Phys.Lett. 2006,423 :352-356
    [33]Watanaba.H., Wada.H., Seki.K., et al. Synthetic method and luminescence properties of SrxCa1-xAlSiN3:Eu~(2+) mixed nitride phosphors [J]. J.Electrochem.Soc. 2008,155(3):F31-F36
    [34]Kimura.N., Sakuma.K., Hirafune.S., et al. Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode [J]. Appl.Phys.Lett. 2007,90 :0511091-3
    [35]Kim.K.B., Kim.Y., Chun.H.G., et al. Structural and optical properties of BaMgAl10O17:Eu~(2+) phosphor [J]. Chem. Mater. 2002,14:5045-5052
    [36]Lu.C.H., Chen.C.T., Bhattacharjee.B., Sol-gel preparation and luminescence properties of BaMgAl10O17:Eu~(2+) phosphors [J]. J.Rare Earths. 2006,24:706-711
    [37]Notzold.D., Wulff.H., Structural and optical properties of the system (Sr,Eu)5(PO4)3(Cl,F) [J]. Phys.Status Solidi B. 1998, 207 :271-282
    [38] Notzold.D., Wulff.H., Structural and optical properties of the system Sr5(PO4)3(Br,F) :Eu~(2+) [J]. Phys.Status Solidi B. 2000,177 :281-292
    [39]Kang.Y.C., Sohn.J.R., Yoon.H.S., et al. Improved photoluminescence of Sr5(PO4)3Cl:Eu~(2+) phosphor particles prepared by flame spray pyrolysis [J]. J.Electrochem.Soc. 2003,150(2):H38-H42
    [40]Wu.Z.C., Shi.J.X., Wang.J., et al. A novel blue-emitting phosphor LiSrPO4 :Eu~(2+) for white LEDs [J]. J.Solid State Chem. 2006,179 :2356-2360
    [41]Wu.Z.C., Shi.J.X., Wang.J., et al. Nanosized LiSrPO4 :Eu~(2+) phosphor with blue-emission synthesized by the sol-gel method [J]. Mater.Chem.Phys. 2007,103 :415-418
    [42]Yoo.Y.S., Kim.S.H., Hong.G.Y., et al. Control of spectral properties of strontium-alkaline earth-silicate-europium phosphors for LED applications [J]. J.Electrochem.Soc. 2005,152(5) :G382-G385
    [43]Kim.J.S., Park.Y.H., Choi.J.C., et al. Optical and structural properties of Eu~(2+) doped (Sr1-xBax)2SiO4 phosphors [J]. J.Electrochem.Soc. 2005,152(9) :H135-H137
    [44]Wu.Z.C., Gong.M.L., Shi.J.X., et al. Comparative investigation on synthesis and luminescence of Sr4Al14O25:Eu~(2+) applied in InGaN LEDs [J]. J.Alloys Compd. 2008,458 :134-137
    [45]Wu.Z.C., Shi.J.X., Wang.J., et al. Synthesis and luminescent properties of Sr4Al14O25:Eu~(2+) blue-green emitting phosphor for white light-emitting diodes (LEDs) [J]. J.Mater.Sci:Mater.Electron 2008,19:339-342
    [46]Sohn.K.S., Cho.S.H., Luminescence from two different crystallographic sites in Sr6BP5O20:Eu~(2+) [J]. Appl.Phys.Lett. 2006,89:0511061-3
    [47]Zhang.M., Wang.J., Ding.W., et al. A novel white light-emitting diode (w-LED) fabricated with Sr6BP5O20:Eu~(2+) phosphor [J]. Appl.Phys.B 2007,86:647-651
    [48]Lim.M.A., Park.J.K., Kim.C.H., et al. Luminescence characteristics of green light emitting Ba2SiO4 :Eu~(2+) phosphor [J]. J.Mater.Sci.Lett. 2003,22 :1351-1353
    [49]Kim.J.S., Park.Y.H., Kim.S.M., et al. Temperature-dependent emission spectra of M2SiO4:Eu~(2+) (M=Ca,Sr,Ba) phosphors for green and greenish white LEDs [J]. Solid State Comm. 2005,133:445-448
    [50]Kim.J.S., Park.Y.H., Choi.J.C., et al. Optical and structural properties of Eu~(2+) doped (Sr1-xBax)2SiO4 phosphors [J]. J.Electrochem.Soc. 2005,152(9):H135-H137
    [51]Zhang.M., Wang.J., Zhang.Q.H., et al. Optical properties of Ba2SiO4:Eu~(2+) phosphor for green light-emitting diode (LED) [J]. Mater.Res.Bull. 2007,42:33-39
    [52]Zhang.X., Liu.X.R., Luminescence properties and energy transfer of Eu~(2+) doped Ca8Mg(SiO4)4Cl2 phosphors [J]. J.Electrochem.Soc. 1992,139:622-625
    [53]Kang.H.S., Hong.S.K., Koo.H.Y, et al. Luminescence characteristics of Eu-doped calcium magnesium chlorosilicate phosphor particles prepared by spray pyrolysis [J]. Jpn.J.Appl.Phys. 2006,45 :1617-1622
    [54]Fang.Y., Zhuang.W.D., Cui..X.Z., et al. Study on Ca8Mg(SiO4)4Cl2:Eu~(2+) doped with Sr~(2+) [J]. J.Rare Earths. 2006,24:145-148
    [55]Fang.Y., Zhuang.W.D., Hu.Y.S., et al. Luminescent properties of Dy~(3+) ion in Ca8Mg(SiO4)4Cl2 [J]. J.Alloys Compds. 2008,455:420-423
    [56]Regina.M.M., Gerd.O.M., Troy.T., et al. Green phosphor-converted LED [J]. Proceeding of SPIE 2002,4776 :131-136
    [57]Chartier.C., Barthou.C., Benalloul.P., et al. Photoluminescence of Eu~(2+) in SrGa2S4 [J]. J.Lumin. 2005,111 :147-158
    [58]Liu.J., Lian.H.Z., Sun.J.Y., et al. Characterization and properties of green emitting Ca3SiO4Cl2 :Eu~(2+) powder phosphor for white light-emitting diodes [J]. Chem.Lett. 2005,34(10)1340-1341
    [59]Ding.W.J., Wang.J., Zhang.M., et al. Luminescence properties of new Ca10(Si2O7)3Cl2 :Eu~(2+) phosphor [J]. Chem.Phys.Lett. 2007,435 :301-305
    [60]Ding.W.J., Wang.J., Liu.Z.M., et al. An intense green/yellow dual-chromatic calciumchlorosilicate phosphor Ca3SiO4Cl2 :Eu~(2+)-Mn~(2+) for yellow and white LED [J]. J.Electrochem.Soc. 2008,155(5) :J122-J127
    [61]Zhang.M., Wang.J., Zhang.Z., et al. A tunable green alkaline-earth silicon-oxynitride solid solution (Ca1-xSrx)Si2O2N2 :Eu~(2+) and its application in LED [J]. Appl.Phys.B. 2008,93(4) :829-835
    [62]Wang.W.D., Huang.F.Q., Xia.Y.J., et al. Photophysical and photoluminescence properties of co-activated ZnS :Cu, Mn phosphors [J]. J.Lumin. 2008,128 :610-614
    [63]Jung.K.Y., Lee.H.W., Jung.H.K., Luminescent properties of (Sr,Zn)Al2O4 :Eu~(2+),B~(3+) particles as a potential green phosphor for UV LEDs [J]. Chem.Mater.2006,18 :2249-2255
    [64]Chen.L.T., Hwang.C.S., Sun.I.Lei, et al. Luminescence and chromaticity of alkaline earth aluminate MxSr1-xAl2O4 :Eu~(2+) (M :Ca,Ba) [J]. J.Lumin. 2006,118 :12-20
    [65]Song.H.J., Chen.D.H., Tang.W.J., et al. Synthesis of SrAl2O4 :Eu~(2+),Dy~(3+),Gd~(3+) phosphor by combustion method and its phosphorescence properties [J]. Display. 2008,29 :41-44
    [66]Chen.R., Wang.Y.H., Hu.Y.H., et al. Modification on luminescent properties of SrAl2O4 :Eu~(2+),Dy~(3+) phosphor by Yb~(3+) ions doping [J]. J.Lumin. 2008,128 :1180-1184
    [67]Lo.C.L., Duh.J.G., Chiou.B.S., et al. Synthesis of Eu~(3+)-activated yttrium oxysulfide red phosphor by flux fusion method [J]. Mater.Chem.Phys. 2001,71 :179-189
    [68]Chi.L.S., Liu.R.S., Lee.B.J. Synthesis of Y2O3 :Eu~(3+),Bi~(3+) red phosphor by homogenous coprecipitation and their photoluminescence behaviors [J]. J.Electrochem.Soc. 2005,150(8) :J93-J98
    [69]Ligia.D.V., Elizabeth.B.S., Marian.R.D. Preparation and characterization of uniform, spherical particls of Y2O2S and Y2O2S :Eu [J]. J.Mater.Chem. 1997,7(10) :2113-2116
    [70]Kottaisamy.M., Horikawa.K., Kominami.H., et al. Synthesis and characterization of fine particle Y2O2S :Eu red phosphor at low-voltage excitation [J]. J.Electrochem.Soc. 2000,147(4) :1612-1616
    [71]Kawahara.Y., Petrykin.V., Ichihara.T., et al. Synthesis of high brightness sub-micrometer Y2O2S red phosphor powders by complex homogeneous precipitation method [J]. Chem.Mater. 2006,18 :6303-6307
    [72]Thirumalai.J., Jagannathan.R., Trivedi.D.C. Y2O2S :Eu~(3+) nanocrystals, a strong quantum-confined luminescent system [J]. J.Lumin. 2007,26 :353-358
    [73]Hu.Y.S., Zhuang.W.D., Ye.H.Q., et al. A novel red phosphor for white light emitting diodes [J]. J.Alloys Compd. 2005,390 :226-229
    [74]Yan.S.X., Zhang.J.H., Zhang.X., et al. Enhanced red emission in CaMoO4 :Bi~(3+),Eu~(3+) [J]. J.Phys.Chem.C. 2007,111 :13256-13260
    [75]Liu.J., Lian.H.Z., Shi.C.S. Improved optical photoluminescence by charge compensation in the phosphor system CaMoO4 :Eu~(3+) [J]. Opt. Mater. 2007,29 :1591-1594
    [76]Ryu.J.H., Yoon.J.W., Lim.C.S., et al. Microwave-assisted synthesis of CaMoO4 nano-powders by a citrate complex method and its photoluminescence property [J]. J.Alloys Compd. 2005,390 :245-249
    [77]Yu.S., Lin.Z.B., Zhang.L.Z., et al. Preparation of monodispersed Eu~(3+) :CaMoO4 nanocrystals with single quasihexagon [J]. Cryst.Growth Des. 2007,7(12) :2397-2399
    [78]Wang.X.X., Xian.Y.L., Wang.G., et al. Luminescence investigation of Eu~(3+)-Sm~(3+) co-doped Gd2-x-yEuxSmy(MoO4)3 phosphors as red phosphors for UV InGaN-based light-emitting diode [J]. Opt.Mater. 2007,30:521-526
    [79]Zhao.X.X., Wang.X.J., Chen.B.J., et al. Luminescent properties of Eu~(3+) dopedα-Gd2(MoO4)3 phosphor for white light emitting diodes [J]. Opt.Mater. 2007,29 :1680-1684
    [80]Zhao.X.X., Wang.X.J., Chen.B.J., et al. Novel Eu~(3+) doped red-emitting phosphor Gd2Mo3O9 for white-light-emitting-diodes (WLEDs) application [J]. J.Alloys Compd. 2007,433 :352-355
    [81]Wang.Z.L., Liang.H.B., Zhou.L.Y., et al. Luminescence of (Li0.333Na0.334K0.333)Eu(MoO4)2 and its application in near UV InGaN-based light-emitting diode [J]. Chem.Phys.Lett. 2005,412 :313-316
    [82]Wang.Z.L., Liang.H.B., Zhou.L.Y., et al. NaEu0.96Sm0.04(MoO4)2 as a promising red-emitting phosphor for LED solid-state lighting prepared by the Pechini process [J]. J.Lumin. 2008,128 :147-154
    [83]Guo.C.F., Wang.S.T., Chen.T., et al. Preparation of phosphors AEu(MoO4)2 (A=Li,Na,K and Ag) by sol-gel method [J]. Appl.Phys.A. 2009,94 :365-371
    [84]Lakshminarasimhan.N., Varadaraju.U.V. Role of crystallite size on the photoluminescence properties of SrIn2O4 :Eu~(3+) phosphor synthesized by different methods [J]. J.Solid State Chem. 2008,181 :2418-2423
    [85]Yang.Z.P., Tian.J., Wang.S.L., et al. Combustion synthesis of SrIn2O4 :Eu~(3+) red-emitting phosphor for white light-emitting diodes [J]. Mater.Lett. 2008,62 :1369-1371
    [86]Rodriguez.C.E., Lopez.N.P., Hirata.G.A., et al. Red-emitting SrIn2O4 :Eu~(3+) phosphor powders for applications in solid state white lamps [J]. J.Phys.D :Appl.Phys.2008,41 :092005
    [87]Chiu.C.H., Liu.C.H., Huang.S.B., et al. Synthesis and luminescence properties of intensely red-emitting M5Eu(WO4)4-x(MoO4)x (M=Li,Na,K) phosphors [J]. J.Electrochem.Soc. 2008,155(3) :J71-J78
    [88]Okamoto.S., Yamamoto.H. Photoluminescent properties of (La,Eu,Sm)2W3O12 red phosphor for near-UV-LED based solid-state lighting [J]. Eletrochem.Solid State Lett. 2007,10(10) :J139-J142
    [89]Lee.G.H., Kim.T.H., Yoon.C., et al. Effect of local environment and Sm~(3+) codoping on the luminescence properties in the Eu~(3+) doped potassium tungstate phosphor for white LEDs [J]. J.Lumin. 2008,128 :1922-1926
    [90]Lee.G.H., Yoon.C., Kang.S. Role of flux in the production process of red phosphors for white LEDs [J]. J.Mater.Sci. 2008,43 :6109-6115
    [91]Gundiah.G., Shimomura.Y., Kijima.N., et al. Novel red phosphors based on vanadate garnets for solid state lighting applications [J]. Chem.Phys.Lett. 2008,455 :279-283
    [92]Yan B., Wu.J.H. Solid state-hydrothermal synthesis and photoluminescence of LaVO4 :Eu~(3+) nanophosphors [J]. Mater.Lett. 2009,63 :946-948
    [93]Huang.J.P., Li.Q.X., Chen.D.H. Preparetion and luminescence properties of Ca3(VO4)2 :Eu~(3+),Sm~(3+) phosphor for light-emitting diodes [J]. Mater.Sci.Eng.B. 2010, 172(2) :108-113
    [94]Kim.J.S., Jeon.P.E., Choi.J.C., et al. Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8 :Eu~(2+),Mn~(2+) phosphor [J]. Appl.Phys.Lett. 2004, 85(15)2932-2933
    [95]Kim.J.S., Lim.K.T., Jeong.Y.S., et al. Full-color Ba3MgSi2O8 :Eu~(2+),Mn~(2+) phosphor for white-light-emitting diodes [J]. Solid State Comm. 2005,135 :21-24
    [96]Lee.S.H., Park.J.H., Kim.J.S. White-light-emitting phosphor : CaMgSi2O6 :Eu~(2+),Mn~(2+) phosphor and its related properties with blending [J]. Appl.Phys.Lett. 2006,89 :2219161-3
    [97]Kim.J.S., Kwon.A.K., Park.Y.H., et al. Luminescent and thermal properties of full-color emitting X3MgSi2O8 :Eu~(2+),Mn~(2+) (X=Ba,Sr,Ca) phosphors for white LED [J]. J.Lumin. 2007,122 :583-586
    [98]Kim.J.S., Park.Y.H., Choi.J.C., et al. Color tunability of nanophosphors by changing cations for solid-state lighting [J]. Solid State Comm. 2006,137 :187-190
    [99]Yang.W.J., Chen.T.M. White-light generation and energy transfer in SrZn2(PO4)2 :Eu, Mnphosphor for ultraviolet light-emitting diodes [J]. Appl. Phys. Lett. 2006,88 :101903
    [100]Yuan.S.L., Chen.X.L., Zhu.C.F., et al. Eu~(2+),Mn~(2+) co-doped (Sr,Ba)6BP5O20-A novel phosphor for white-LED [J]. Opt.Mater. 2007,30 :192-194
    [101]Hao.Z.D., Zhang.J.H., Zhang.X., et al. Phase dependent photoluminescence and energy transfer in Ca2P2O7 :Eu~(2+), Mn~(2+) phosphors for white LEDs [J]. J.Lumin. 2008,128 :941-944
    [102]Hao.Z.D., Zhang.J.H., Zhang.X., et al. White light emitting diode by usingα- Ca2P2O7 :Eu~(2+), Mn~(2+) phosphor [J]. Appl.Phys.Lett. 2007,90 :261113
    [103]Yang.W.J., Luo.L.Y., Chen.T.M., et al. Luminescence and energy transfer of Eu and Mn coactivated CaAl2Si2O8 as a potential phosphor for white light UVLED [J]. Chem.Mater. 2005,17 :3883-3888
    [104]Ye.S., Liu.Z.S., Wang.X.T, et al. Emission properties of Eu~(2+), Mn~(2+) in MAl2Si2O8 (M=Sr,Ba) [J]. J.Lumin. 2009,129 :50-54
    [105]Shen.C.Y., Yang.Y., Jin.S.Z. Synthesis and luminous characteristics of Ba2SiO3Cl2 :Eu~(2+), Mn~(2+) phosphor for white LED [J]. Proc. of SPIE. 2007,6828 :682815-1
    [106]Lakshminarasimhan.N., Varadaraju.U.V. White-light generation in Sr2SiO4 :Eu~(2+),Ce~(3+) under near-UV excitation [J]. J.Electrochem.Soc. 2005,152(9) :H152-H156
    [107]He.H., Fu.R.L., Song.X.F., et al. White light-emitting Mg0.1Sr1.9SiO4 :Eu~(2+) phosphors [J]. J.Lumin. 2008,128 :489-493
    [108]Zhang.X.L., He.H., Li.Z.S., et al. Photoluminescence studies on Eu~(2+) and Ce~(3+) doped Li2SrSiO4 [J]. J.Lumin. 2008,128 :1876-1879
    [109]Chang.C.K., Chen.T.M. Sr3B2O6 :Ce~(3+),Eu~(2+) : A potential single-phased white-emitting borate phosphor for ultraviolet light-emitting diodes [J]. Appl.Phys.Lett. 2007,91 :081902
    [110]Setlur.A.A., Comanzo.H.A., Srivastava.A.M., et al. Spectroscopic evaluation of a white light phosphor for UV-LEDs—Ca2NaMg2V3O12 :Eu~(3+) [J]. J.Electrochem.Soc. 2005,152(12) :H205-H208
    [111]Li.P.L., Yang.Z.P., Wang.Z.J., et al. White-light-emitting diodes of UV-based Sr3Y2(BO3)4:Dy~(3+) and luminescent properties [J]. Mater.Lett. 2008,62 :1455-1457
    [112]Liu.X.M., Lin.C.K., Lin.J. White light emission from Eu~(3+) in CaIn2O4 host lattices [J]. Appl.Phys.Lett. 2007,90 :081904
    [113]Liu.X.M., Li.C.X., Quan.Z.W., et al. Tunable luminescence properties of CaIn2O4 :Eu~(3+) phosphors [J]. J.Phys.Chem.C. 2007,111 :16601-16607
    [114]Xia.G.D., Zhou.S.M., Zhang.J.L., et al. Structural and optical properties of YAG :Ce~(3+)phosphors by sol-gel combustion method [J]. J.Cryst. Growth. 2005,279 :357-362
    [115]Bao.A., Tao.C.Y., Yang.Hua. Synthesis and luminescent properties of nanoparticles GdCaAl3O7 :RE~(3+) (RE=Eu,Tb) via the sol-gel method [J]. J.Lumin. 2007,126 :859-865
    [116]Yang.Z.P., Li.X.M., Liu.C., et al. Co-precipitation synthesis and spectral characteristics of long afterglow phosphor Y2O2S :Sm~(3+), Mg~(2+), Ti4+ [J]. J.Rare Earths. 2007,25 :23-26
    [117]Fadlalla.H.M.H., Tang.C.C. YAG :Ce~(3+) nano-sized particles prepared by precipitation technique [J]. Mater.Chem.Phys. 2009,114(1) :99-102
    [118]Li.X., Yang.Z.P., Guan.L., et al. Fabrication and luminescence properties of red emitting phosphor Y2O2S :Sm~(3+) for white LED by combustion method [J]. J.Alloys Compd. 2008,464 :565-568
    [119]Xu.Y.C., Chen.D.H. Combustion synthesis and photoluminescence of Sr2MgSi2O7 :Eu, Dy long lasting phosphor nanoparticles [J]. Ceram.Int. 2008,34 :2117-2120
    [120]Riwotzki.K., Haase.M. Wet-chemical synthesis of doped colloidal nanoparticles: YVO4 : Ln (Ln = Eu, Sm, Dy) [J]. J.Phys.Chem.B 1998, 102(50):10129
    [121]Fujishiro.Y., Ito.H., Sato.T., et al. A. Synthesis of monodispersed LaPO4 particles using the hydrothermal reaction of an La(edta)(-) chelate precursor and phosphate ions [J]. J.Alloys Compd. 1997,252:103-106
    [122]Kim.T., Kang.S. Hydrothermal synthesis and photoluminescence properties of nano-crystalline GdBO3 : Eu~(3+) phosphor [J]. Mater.Res.Bull. 2005,40(11):1945-1948
    [123]Chen.D.Y., Jordan.E.H., Renfro.M.W., et al. Dy :YAG phosphor coating using the solution precursor plasma spray process [J]. J.Am.Ceram.Soc. 2009,92(1) :268-271
    [124]李沅英,戴德昌,蔡少华.微波热效应法合成Y2O3 :Eu~(3+)荧光体[J].高等学校化学学报, 1995,16(6) :844-846
    [125]李沅英,戴德昌,蔡少华. Y2O3 :Eu~(3+)荧光体的微波热效应合成和发光性能[J].中国稀土学报, 1996,14(1) :16-19
    [126]Hirai.T., Kawamura.Y. Preparation of Sr2CeO4 blue phosphor particles and rare earth (Eu, Ho, Tm or Er) doped Sr2CeO4 phosphor particles, using an emulsion liquid membrane system [J]. J.Phys.Chem.B. 2004,108 :12763-12769
    [127]Han, M.Y., Gao, X., Nie, S.M., et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules [J]. Nat. Biotechnol., 2001,19:631–635
    [128]Leatherdale, C. A., Woo, W. K., Bawendi, M. G., et al. On the absorption cross section of CdSe nanocrystal quantum dots [J]. J. Phys. Chem. B, 2002, 106(31):7619–7622
    [129]Murray, C. B., Norris, D. J., Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites [J]. J. Am. Chem. Soc., 1993,115(19):8706–8715
    [130]Marcel, B. J., Mario, M., Alivisatos, A. P., et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998,281(25):2013–2015
    [131]Wu, X., Liu, H., Liu, J., et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots [J]. Nat. Biotechnol., 2003,21(1): 41–46
    [132]Gao, X., Cui, Y., Levenson, R. M., et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat. Biotechnol., 2004,22(8):969–976
    [133]Rogach, A. L., Nagesha, D., Ostrander, J. W., et al. "Raisin bun"-type composite spheres of silica and semiconductor nanocrystals [J]. Chem. Mater., 2000,12(9) : 2676–2685
    [134]Han, M., Gao, X., Nie, S., et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules [J] Nat. Biotechnol., 2001,19 (7) :631–635
    [135]Rogach, A., Susha, A., Caruso, F., et al. Nano-and microengineering:three-dimensional colloidal photonic crystals prepared from submicrometer-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells [J] Adv. Mater., 2000,12(5) : 333–337
    [136]Colvin.V.L., Schlamp.M.C., Alivisatos.A.P., Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer [J]. Nature,1994,370(4) :354-357
    [137]Coe.S, Woo.W.K, Bawendi.M., et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J]. Nature,2002,420 :800-803
    [138]Coe.S, Woo.W.K., Bawendi.M., et al. Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices [J]. Org. Electron. 2003, 4:123-130
    [139]Niu.Y.H., Munro.A.M, Ginger.D.S., et al. Improved performance from multilayer quantum dot light-emitting diodes via thermal annealing of the quantum dot layer [J]. Adv. Mater. 19(19) :3371-3376
    [140]Sun.Q.J., Wang. A., Li. L.S., et al. Bright, multicoloured light-emitting diodes based on quantum dots [J]. Nat. Photonics. 2007,1 :717-722
    [141]Caruge.J.M., Halpert.J.E., Bawendi.M., et al. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers [J]. Nat. Photonics. 2008,2 :247-250
    [142]Bowers.M.J., McBride.J.R., Rosenthal.S.J., White-light emission from magic-sizedcadmium selenide nanocrystals [J]. J. Am. Chem. Soc. 2005,127(44) :15378-15379
    [143]Chen.H.S., Wang.S.J., White-light emission from organics-capped ZnSe quantum dots and application in white-light-emitting diodes [J]. Appl. Phys. Lett. 2005.86 :1319051-3
    [144]Sapra.S., Mayilo.S., Klar.T.A., et al. Bright white-light emission from semoconductor nanocrystals : by chance and by design [J]. Adv. Mater. 2007,19 :569-572
    [145]Nag.A., Sarma.D.D., White light from Mn~(2+) doped CdS nanocrystals : A new approach [J]. J.Phys.Chem.C. 2007,111 :13641-13644
    [146]Nizamoglu.S., Mutlugun.E., Ozel.T., et al. Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals byrbidized on InGaN/GaN light emitting diodes fro high-quality white light generation [J]. Appl. Phys. Lett. 2008,92 :1131101-3
    [147]Ziegler.J., Xu.S., Nann.T., et al. Silica-coated InP/ZnS nanocrystals as converter materila in white LEDs [J]. Adv. Mater. 2008,20 :1-6
    [148]Jang.H.S., Yang.H., Kim.S.W., et al. White light-emitting diodes with excellent color rendering based on organically capped CdSe quantum dots and Sr3SiO5 :Ce~(3+),Li+ phosphors [J]. Adv. Mater. 2008,9999 :1-7
    [149]Rudolf.K.F., Kari.H., Steven.G.E. A bulk optically controlled semiconductor switch [J]. J. Appl. Phys. 1988, 54(2) :913-917
    [150]Pal.D., Bose.D.N. Photoconductivity and photoluminescence studies in copper diffused InP [J]. J. Electro. Mater. 1996, 25(4) :677-684
    [151]Abe.T., Kashiwaba.Y., Baba.M., et al. XPS analysis of p-type Cu-dopoed CdS thin films [J]. Appl. Surf. Sci. 2001,175 :549-554
    [152]Erwin.S.C., Zu.L., Haftel.M.I., et al. Doping semiconductor nanocrystals [J]. Nature 2005, 436 :91-94
    [153]Pradhan.N., Goorskey.D., Peng.X.G., et al. An alternative of CdSe nanocrystal emitters : pure and tunable impurity emissions in ZnSe nanocrystals [J]. J. Am. Chem. Soc. 2005, 127 :17586-17587
    [154]Yang.Y.A., Chen.O., Cao.Y.C., et al. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals [J]. J. Am. Chem. Soc. 2006,128(38) :12428-12429
    [155]Nag.A., Sapra.S., Sarma.D.D, et al. A study of Mn~(2+) doping in CdS nanocrystals [J]. Chem. Mater. 2007,19 :3252-3259
    [156]Beaulac.R., Archer.P.I., Gamelin.D.R. Luminescence in colloidal Mn~(2+)-dopedsemiconductor nanocrystals [J]. J. Solid State Chem. 2008, 181 :1582-1589
    [157]Beaulac.R., Archer.P.I., Gamelin.D.R, et al. Mn~(2+)-doped CdSe quantum dots : New inorganic materials for spin-electronics and spin-photonics [J]. Adv. Funct. Mater. 2008,18 :3873-3891
    [158]Shen.H.B., Wang.H.Z., Li.L.S. et al. Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS and Cu- Mn-doped ZnSe nanocrystals [J]. Dalton Trans. 2009 :10534-10540
    [159]Zeng.R.S., Rutherford.M., Peng.X.G., et al. Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents [J]. Chem. Mater. 2010,22 :2107-2013
    [160]Nag.A., Chakraborty.S., Sarma.D.D. To dope Mn~(2+) in a semiconducting nanocrystal [J]. J. Am. Chem. Soc. 2008, 130 :10605-10611
    [161]Singh.S.B., Limaye.M.V., Kulkarni.S.K., et al. Copper-ion-induced photoluminescence tuning in CdSe nanoparticles [J]. J. Lumin. 2008, 128 :1909-1912
    [162]Stouwdam.J.W., Janssen.R.A. Electroluminescent Cu-doped CdS quantum dots [J]. Adv. Mater. 2009, 21 :1-5
    [163]Xie.R.G., Peng.X.G. Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color tunable NIR emitters [J]. J. Am. Chem. Soc. 2009,131 :10645-10651
    [1]Lopez.O.A., Mckittrick.J., Shea.L.E. Fluorescence properties of polycrystalline Tm~(3+)-activated Y3Al5O12 and Tm~(3+)-Li+ co-activated Y3Al5O12 in the visible and near IR ranges [J]. J. Lumin. 1997,71(1):1-11
    [2]Blasse.G., Bril.A., A new phosphor for lying-spot cathod-ray tubes for color televisions [J]. Appl. Phys. Lett. 1967,11 :53-54
    [3]Lee.S., Seo.S.Y., Optimization of yttrium aluminum garnet :Ce~(3+) phosphors for whitelight-emitting diodes by combinatorial chemistry method [J]. J.Electrochem.Soc. 2002, 149(11) :J85-J88
    [4]Gessmann.T., Schubert.E.F. High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications [J]. J. Appl. Phys. 2004,95(5) :2203-2216
    [5]Lakshminarasimhan.N., Varadaraju.U.V. Role of crystallite size on the photoluminescence properties of SrIn2O4 :Eu~(3+) phosphor synthesized by different methods [J]. J. Solid State Chem. 2008,181 :2418-2423
    [6]Thirumalai.J., Jagannathan.R., Trivedi.D.C. Y2O2S :Eu~(3+) nanocrystals, a strong quantum-confined luminescent system [J]. J. Lumin. 2007,126 :353-358
    [7]Kimura.N., Sakuma.K., Asano.K., et al. Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode [J]. Appl. Phys. Lett. 2007,90 :051109
    [8]Kim.J.S., Jeon.P.E., Park.Y.H., et al. White-light generation through ultraviolet-emitting diode and white-emitting phosphor [J]. Appl. Phys. Lett. 2004, 85(17) :3696-3698
    [9]Yang.W.J., Chen.T.M. White-light genereation and energy transfer in SrZn2(PO4)2 :Eu, Mn phosphor for ultraviolet light-emitting diodes [J]. Appl. Phys. Lett. 2006,88 :101903
    [10]Yang.X., Liu.J., Yang.H., et al. Synthesis and characterization of new red phosphors for white LED applications [J]. J. Mater. Chem. 2009, 19(22) :3371-3374
    [11]Yi.L., He..X., Zhou.L., et al. A potential red phosphor LiGd(MoO4)2 :Eu~(3+) for light-emitting diode application [J]. J. Lumin. 2010,130(6) :1113-1117
    [12]Jang.H.S., Im.W.B., Lee.D.C., et al. Enhancement of red spectral emission intensity of Y3Al5O12 :Ce~(3+) phosphor via Pr co-doping and Tb substitution for application to white LEDs [J]. J. Lumin. 2007,126(2) :371-377
    [13]Yang.H., Kim.Y.S. Energy transfer-based spectral properties of Tb, Pr, or Sm codoped YAG :Ce nanocrystalline phosphors [J]. J. Lumin. 2008,128(10) :1570-1576
    [14]Sharma.P.K., Kumar.M., Singh.P.K., et al. Properties of sol-gel derived YAG :Eu~(3+) hierarachical nanostructures with their time evolution studies [J]. J. Appl. Phys. 2008,105(3) :034309
    [15]Xia.G., Zhou.S., Zhang.J. et al. Sol-gel combustion synthesis and luminescent properties of nanocrystalline YAG :Eu~(3+) phosphors [J]. J. Cryst. Growth 2005, 283(1-2) :257-262
    [16]Lee.S.H., Jung.D.S., Han.J.M., et al. Fine-sized Y3Al5O12 :Ce phosphor powders prepared by spray pyrolysis from the spray solution with barium fluoride flux [J]. J. Alloys Compd.2009,477(1-2) :776-779
    [17]Mancic.L., Marinkovic.K., Marinkovic.B.A. et al. YAG :Ce nanostructured particles obtained via spray pyrolysis of polymeric precursor solution [J]. J. Eur. Ceram. Soc. 2010,30(2) :577-582
    [18]Fadlalla.H.M., Tang.C.C YAG :Ce~(3+) nano-sized particles prepared by precipitation technique [J]. Mater. Chem. Phys. 2009,114(1) :99-102
    [19]Lee.J.W., Lee.J.H. Woo.E.J. et al. Synthesis of nanosized Ce~(3+), Eu~(3+) codoped YAG phosphor in a continuous supercritical water system [J]. Ind. Eng. Chem. Res. 2008,47 :5994-6000
    [20]Zych.E., Brecher. C., Wojtowicz.A.J., et al. Luminescence properties of Ce-activated YAG optical ceramic scintillator materials [J]. J. Lumin. 1997, 75(3) :193-203
    [21]Zych.E., Brecher. C. Temperature dependence of Ce-emission kinetics in YAG :Ce optical ceramic [J]. J. Alloys Compd. 2000, 300 :495-499
    [22]Kaowphong.S., Nakashima.K., Petrykin.V., et al. Methanol-water system for solvothermal systhesis of YVO4 :Eu with high photoluminescent intensity [J]. J. Am. Ceram. Soc. 2009, 92(1) :S16-S20
    [23]Hu.C.G., Zhang.Z.W., Wang.Z.L., et al. Direct synthesis and structure characterization of ultrafine CeO2 nanoparticles [J]. Nanotech. 2006,17 :5983-5987
    [24]Jacobs.R.R., Krupke.W.F., Weber.M.J. Measurement of excited-state-absorption loss for Ce~(3+) in Y3Al5O12 and implications for tunable 5d→4f rare-earth lasers [J]. Appl. Phys. Lett. 1978, 33(5) :410-412
    [25]Hu.Y., Zhuang.W., Ye. X, et al. A novel red phosphor for white light emitting diodes [J]. J. Alloys Compd. 2005, 390(1-2) :226-229
    [26]Yang.H.K., Jeong.J.H. Synthesis, crystal growth and photoluminescence properties of YAG :Eu~(3+) phosphors by high-energy ball milling and solid-state reaction [J]. J. Phys. Chem. C 2010,114(1) :226-230
    [27]Liu.Z., Liu.S., Wang.k., et al. Measurement and numerical studies of optical properties of YAG :Ce phosphor for white light-emitting diode packaging [J]. Appl. Opt. 2010, 49(2) :247-257
    [28]Jang.H.S., Yang.H., Kim.S.W., et al. White light-emitting diodes with excellent color rendering based on organically capped CdSe quantum dots and Sr3SiO5 :Ce~(3+), Li+ phosphors [J]. Adv. Mater. 2008, 20(14) :2696-2702
    [29]Wu.H., Zhang.X., Guo.C., et al. Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors [J]. IEEE Photon Technol. Lett. 2005,17(6) :1160-1162
    [1]Hu.Y., Zhuang.W., Ye. X, et al. A novel red phosphor for white light emitting diodes [J]. J. Alloys Compd. 2005, 390(1-2) :226-229
    [2]Jin.Y., Qin.W., Wang.J. et al. La3PO7 :Eu~(3+) nanoparticles– A novel red phosphor [J]. Mater. Lett. 2008, 62(17-18) :3146-3148
    [3]Li.Y.Q., With.G., Hintzen.H.T., The effect of replacement of Sr by Ca on the structural and luminescence properties of the red-emitting Sr2Si5N8 :Eu~(2+) LED conversion phosphor [J]. J.Solid State Chem. 2008,181 :515-524
    [4]Li.H.L., Xie.R.J., Hirosaki.N., et al. Synthesis and photoluminescence properties of Sr2Si5N8 :Eu~(2+) red phosphor by a gas-reduction and nitridation method [J]. J.Electrochem.Soc. 2008,155(12) :J378-J381
    [5]Ziegler.J., Xu.S., Nann.T., et al. Silica-coated InP/ZnS nanocrystals as converter materila in white LEDs [J]. Adv. Mater. 2008,20 :1-6
    [6]Jang.H.S., Yang.H., Kim.S.W., et al. White light-emitting diodes with excellent color rendering based on organically capped CdSe quantum dots and Sr3SiO5 :Ce~(3+),Li+ phosphors [J]. Adv. Mater. 2008,9999 :1-7
    [7]Xie.R.G., Peng.X.G. Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color tunable NIR emitters [J]. J. Am. Chem. Soc. 2009, 131 :10645-10651
    [8]Pradhan.N., Goorskey.D., Peng.X.G., et al. An alternative of CdSe nanocrystal emitters : pure and tunable impurity emissions in ZnSe nanocrystals [J]. J. Am. Chem. Soc. 2005, 127 :17586-17587
    [9]Stouwdam.J.W., Janssen.R.A. Electroluminescent Cu-doped CdS quantum dots [J]. Adv. Mater. 2009, 21 :1-5
    [10]Reiss.P., Protiere.M., Li.L. Core/shell semiconductor nanocrystals [J]. Small 2009, 5(2) :154-168
    [11]Xing.B., Li.W., Sun.K., et al. Systematic study of the properties of CdSe quantum dots syntheisized in paraffin liquid with potential application in multiplexed bioassays [J]. J. Phys. Chem. C 2008, 112(37) :14318-14323
    [12]Deng, Z. T., Cao, L., Tang, F. Q., et al. A new route to zinc-blende CdSe nanocrystals [J]J. Phys. Chem. B, 2005, 109(35) : 16671–16675.
    [13]Chen.D., Zhao.F., Peng.X.G., et al. Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor [J]. Chem. Mater. 2010, 22(4) :1437-1444
    [14]Germer.R.K.F, Schoenbach.K.H., Pronko.S.G.E. A bulk optically controlled semiconductor switch [J]. J. Appl. Phys. 1988, 64(2) :913-917
    [15]Norris.D.J., Bawendi.M.G. Measurement and assignment of the size-dependent opitical spectrum in CdSe quantum dots [J]. Phys. Rev. B 1996, 53(24) :16338-16346
    [16] Shen.H.B., Wang.H.Z., Li.L.S. et al. Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS and Cu- Mn-doped ZnSe nanocrystals [J]. Dalton Trans. 2009 :10534-10540
    [17]Shim.M., Guyot.S.P. n-type colloidal semiconductor nanocrystals [J]. Nature 2000, 407(6807) :981-983
    [18]Xing.B., Li.W., Sun.K., et al. Highly-fluorescent alloyed quantum dots of CdSe1-xTex synthesized in paraffin liquid : Gradient structure and promising bio-application [J]. 2010, 20(27) :5665-5675
    [19]M.R.Krames, O.B.Shchekin, R.Mueller-Mach, G.O. Mueller, L.Zhou, G.Harbers, M.G.Craford, J. Disp. Technol. 2007,3, 160
    [20]T.Taguchi, M.Kono, J. Light Vis. Env. 2007, 31, 149
    [1]Uchida.Y., Taguchi.T. Lighting theory and lumious charateristics of white light-emitting diodes [J]. Opt. Eng. 2005, 44(12) :124003
    [2]Narukawa.Y., Narita.J. Sakamoto.T., et al. Recent progress of high efficiency white LEDs [J]. Phys Status Solidi A 2007, 204(6) :2087-2093
    [3]Krames.M.R., Shchekin.O.B, Craford.M.G, et al. Status and future of high-power light-emitting diodes for solid-state lighting [J]. J. Disp. Technol. 2007, 3(2) :160-175
    [4]Kobashi.K., Taguchi.T. Warm white LEDs lighting over Ra=95 and its applications [J]. Proc. of SPIE 2007, 6484 :648410
    [5]Wu.Z.S., Dong.Y., Jiang.J.Q. Synthesis of BaMgAl10O17:Eu~(2+) particles with small grain size and regular morphology [J]. J. Alloys Compd. 2009, 467(1-2): 605-610
    [6]Kao.C.C., Liu.Y.C. Intense green emission of ZnS:Cu, Al phosphor obtained by using diode structure of carbon nano-tubes field emission display [J]. Mater. Chem. Phys. 2009, 115(1):463-466.
    [7]Delgado.D.V., Stucchi.E.B., Davolos.M.R., Preparation and characterization of uniform, spherical particles of Y2O2S and Y2O2S:Eu [J]. J. Mater. Chem. 1997, 7(10):2113-2116
    [8]Dhanaraj.J., Jagannathan.R. , Trivedi.D.C., Y2O2S:Eu~(3+) nanocrystals - synthesis and luminescent properties [J]. J. Mater. Chem. 2003, 13(7):1778-1782.
    [9]Hu.Y.S., Zhuang.W.D., Ye.H.Q., et al. A novel red phosphor for white light emitting diodes[J]. J.Alloys Compd. 2005,390 :226-229
    [10]Chiu.C.H., Liu.C.H., Huang.S.B., et al. Synthesis and luminescence properties of intensely red-emitting M5Eu(WO4)4-x(MoO4)x (M=Li,Na,K) phosphors [J]. J.Electrochem.Soc. 2008,155(3) :J71-J78
    [11]Rodriguez.C.E., Lopez.N.P., Hirata.G.A., et al. Red-emitting SrIn2O4 :Eu~(3+) phosphor powders for applications in solid state white lamps [J]. J.Phys.D :Appl.Phys. 2008,41 :092005
    [12]Baszczuk.A., Jasiorski.M., Nyk.M. et al. Luminescence properties of europium activated SrIn2O4 [J]. J. Alloys Compd. 2005, 394(1-2):88-92
    [13]Liu.J., Lian.H.Z., Shi.C.S. Improved optical photoluminescence by charge compensation in the phosphor system CaMoO4 :Eu~(3+) [J]. Opt. Mater. 2007,29 :1591-1594
    [14]Wang.X.X., Xian.Y.L., Wang.G., et al. Luminescence investigation of Eu~(3+)-Sm~(3+) co-doped Gd2-x-yEuxSmy(MoO4)3 phosphors as red phosphors for UV InGaN-based light-emitting diode [J]. Opt.Mater. 2007,30:521-526
    [15]Lin.Y.S., Liu.R.S., Cheng.B.M., Investigation of the luminescent properties of Tb~(3+)-substituted YAG:Ce, Gd phosphors [J]. J. Elechem. Soc. 2005,152: J41-J45
    [16]Liu.X., Li.C., Quan.Z., et al. Tunable luminescence properties of CaIn2O4:Eu~(3+) phosphors [J]. J. Phys. Chem. C 2007, 111(44):16601-16607
    [17]G.Blasse, B.Grabmaier, B. C. Luminescence. Materials; Springer-Verlag: Berlin, 1994; Chapter 4-5
    [18]Reddy.K.R., Annapurna.K., Buddhudu.S. Photoluminescence spectra of Eu~(3+): Ln2O2S (Ln=Y, La, Gd) powder phosphors [J]. Mater. Res. Bull. 1996, 31(11):1355-1359
    [19]Wang.X.X., Xian.Y.I., Wang.G., et al. Luminescence investigation of Eu~(3+)-Sm~(3+) co-doped Gd2-x-yEuxSmy(MoO4)3 phosphors as red phosphors for UV InGaN-based light-emitting diode [J]. Opt. Mater. 2007, 30(4):521-526
    [20]Wang.Z., Liang.H., Gong.M., et al. A potential red-emitting phosphor for LED solid-state lighting [J]. Electrochem. Solid State Lett. 2005, 8(4): H33-H35
    [21]Jin.Y., Zhang.J., Wang.X.J., et al. Fabrication of Eu~(3+) and Sm~(3+) codoped micro/nanozised MMoO4 (M=Ca, Ba and Sr) via facile hydrothermal method and their photoluminescence properties through energy transfer [J]. J. Phys. Chem. C 2008, 112(15):5860-5864
    [22]Wei.Q., Chen.D. Luminescence properties of Eu~(3+) and Sm~(3+) coatctivated Gd(III) tungstate phosphor for light-emitting diodes [J]. Opt. Laser Tech. 2009, 41(6)783-787
    [23]Lin.H., Pun.E.Y., Wang.X., et al. Intense visible fluorescence and energy transfer in Dy~(3+),Tb~(3+), Sm~(3+) and Eu~(3+) doped rare-earth borate glasses [J]. J. Alloys Compd. 2005, 139(1-2):197-201
    [24]Park.K., Kim.J., Kung.P, et al. Thermally stable deep-blue Ba1.2Ca0.8SiO4: Ce~(3+) phosphor for white-light-emitting diode [J]. J. Lumin. 2010, 130(7):1292-1294
    [25]Chartier.C., Barthou.C., Benalloul.P, et al. Photoluminescence of Eu~(2+) in SrGa2S4 [J]. J. Lumin. 2005, 111(3):147-158
    [26]Gundiah.G., Shimomura.Y., Kijima.N., et al. Novel red phosphors based on vanadate garnets for solid state lighting application [J]. Chem. Phys. Lett. 2008, 455(4-6):279-283
    [27]Li.H.L., Xie.R.J., Hirosaki.N., et al. Synthesis and photoluminescence properties of Sr2Si5N8:Eu~(2+) red phosphor by a gas-reduction and nitridation method [J]. J. Electrochem. Soc. 2008, 155(12):J378-J38
    [1]Sato.Y., Takahashi.N., Sato.S. Full-color fluorescent display devices using a near-UV ligh-emitting diode [J]. J. Apply. Phys. 1996, 35:L838-L841
    [2]Kim.J.S., Jeon.P.E., Choi.J.C., et al. Warm-white-light emitting diode utilizing asingle-phase full-color Ba3MgSi2O8:Eu~(2+), Mn~(2+) phosphor [J]. Appl. Phys. Lett. 2004, 84:2931-2933
    [3]Park.J.K., Lim.M.A., Kim.C.H., et al. White light-emitting diodes of GaN-based Sr2SiO4: Eu and the luminescent properties [J]. Jpn. Appl. Phys. Lett. 2003, 82(5):683-685
    [4]Huh.Y.D., Shim.J.H., Kim.Y. et al. Optical properties of three-band white light emitting diodes [J]. J. Electrochem. Soc. 2003, 150(2): H57-H60
    [5]Bayer.G. Vanadates A3B2V3O12 with Garnet Structure [J]. J. Am. Ceram. Soc. 1965, 48(11):600-601
    [6]Blasse.G., Bril.A. Hypersensitivity of the 5D0-7F2 transition of trivalent europium in the garnet structure [J]. J. Chem. Phys. 1967, 47:5442-5443
    [7]Lee.S.H., Park.J.H., Kim.J.S. White-light-emitting phosphor : CaMgSi2O6 :Eu~(2+),Mn~(2+) phosphor and its related properties with blending [J]. Appl.Phys.Lett. 2006,89 :2219161-3
    [8]Yang.W.J., Luo.L.Y., Chen.T.M., et al. Luminescence and energy transfer of Eu and Mn coactivated CaAl2Si2O8 as a potential phosphor for white light UVLED [J]. Chem.Mater. 2005,17 :3883-3888
    [9]Yang.W.J., Chen.T.M. White-light generation and energy transfer in SrZn2(PO4)2 :Eu, Mn phosphor for ultraviolet light-emitting diodes [J]. Appl. Phys. Lett. 2006,88 :101903
    [10]Shen.C.Y., Yang.Y., Jin.S.Z. Synthesis and luminous characteristics of Ba2SiO3Cl2 :Eu~(2+), Mn~(2+) phosphor for white LED [J]. Proc. of SPIE. 2007,6828 :682815-1
    [11]Lakshminarasimhan.N., Varadaraju.U.V. White-light generation in Sr2SiO4 :Eu~(2+),Ce~(3+) under near-UV excitation [J]. J.Electrochem.Soc. 2005,152(9) :H152-H156
    [12]Zhang.X.L., He.H., Li.Z.S., et al. Photoluminescence studies on Eu~(2+) and Ce~(3+) doped Li2SrSiO4 [J]. J.Lumin. 2008,128 :1876-1879
    [13]Chang.C.K., Chen.T.M. Sr3B2O6 :Ce~(3+),Eu~(2+) : A potential single-phased white-emitting borate phosphor for ultraviolet light-emitting diodes [J]. Appl.Phys.Lett. 2007,91 :081902
    [14]G. Blasse. A. Bril, Study of energy transfer from Sb~(3+), Bi~(3+), Ce~(3+) to Sm~(3+), Eu~(3+), Tb~(3+), Dy~(3+) [J]. J. Chem. Phys. 1967, 47: 1920-1926.
    [15]Judd.B.R. Atomic shell theory recast [J]. Phys. Rev. 1967, 162(1):28-37
    [16]Setltur.A.A. Comanzo.H.A., Srivastava.A.M., et al. Spectroscopic evaluation of a white light phosphor for UV-LEDs - Ca2NaMg2V3O12:Eu~(3+) [J]. J. Electrochem. Soc. 2005, 152: H205-H208
    [17]Srivastava.A.M., Duggal.A.R., Comanzo.H.A. et al. Single Phosphor for creating whitelight with high luminosity and high CRI in a UV LED device [P]. U.S.Pat. 2003, 6522065
    [18]Hemon.A., Courbion.G. The crystal structure ofα-SrZn2(PO4)2: A hurlbutite type [J]. J. Solid State Chem. 1990, 85(1):164-168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700