核磁共振手性识别试剂的合成与拆分
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性化合物及其绝对构型的研究已经成为立体化学研究中最主要、最活跃的部分之一,所以确定分子中手性碳原子的绝对构型显得十分重要。自从上世纪70年代以来,国外即已开始在这一方面进行积极地探讨,并提出了诸如单晶X-射线衍射法、手性光学法和核磁共振法等经典方法,但这些方法都存在较大的局限性。近年来,国外提出了应用2-(9-蒽基)-2-甲氧基乙酸(9AMAA)及2-(9-蒽基)-2-羟基乙酸乙酯(9AHA)为手性识别试剂,通过核磁共振法确定手性碳原子绝对构型的方法,并取得了一些显著的成果。但是,在国内这一领域的研究未有文献报道。我们从此类化合物的合成、外消旋体的拆分、产物光学纯度的测定等方面进行研究,并取得了一些进展。本论文的主要内容包括:
     1.对应用核磁共振(NMR)确定绝对构型的方法进行了综述,主要介绍了应用9AMAA、9AHA为手性识别试剂,通过NMR确定绝对构型的原理和方法。近年来,随着新的手性试剂的不断涌现和高场核磁共振技术的发展,核磁共振法在识别手性化合物绝对构型中成为最受关注的方法,其中9AMAA、9AHA试剂因被应用于NMR对手性碳原子绝对构型的测定而受到重视。因此,如何进行9AMAA、9AHA的合成、手性拆分并获得光学纯手性识别试剂的研究已成为我们实验的一个关键。本文也综述了外消旋体的拆分方法,并详述了毛细管电泳在手性分离方面的研究及应用进展。
     2.对9AMAA、9AHA等四种化合物的合成研究进行了详细的论述,该实验中,基于Riguera等人的研究思路,由蒽经傅-克酰化、还原、水解反应可得到(±)-9AHA;外消旋体9AHA继续发生甲基化、水解、拆分反应后即可获得(R)-和(S)-9AMAA。我们的合成实验取得了较为理想的进展,已经能够得到9AHA和9AMAA等四种手性物质。我们优化了反应条件,得到了合成目标产物的较好方法。
     3.我们对四种手性物质进行了手性分离。薄层色谱(TLC)是最简便的色谱技术之一,本文以键合有β-环糊精(β-CD)的硅胶为手性固定相,利用TLC法对四种手性物质进行了的拆分研究,通过对流动相的选择与优化达到了良好的拆分效果。化学拆分法是广泛使用的一种拆分方法,而且也是制备旋光纯化合物最重要和最
Absolute configurations of chiral compounds have been one of the most important contents in stereochemistry. It is very significant to determine and illustrate spatial configurations of chiral compounds. Since 1970s, some foreign scientists have begun to study this problem and reported a great deal of progress in this field. Now there are some classic methods such as X-ray crystallography analysis, Chiroptical method and NMR method. However, all of these methods have their own limitations, respectively. One of the most important methods is to use 9AMAA and 9AHA as novel chiral auxiliary reagents, with NMR to elucidate absolute configurations. This innovation acts remarkably. However, most of Chinese scientists paid little attention to this field. We have been studying this problem for several years. And some research has been done in the field of synthesis and resolution of these novel chiral auxiliary reagents. Our researches and results are reported in the paper.1 .This paper reviews the NMR methods to determine the absolute stereochemistry of chiral compounds. Especially, it is addressed to recognize absolute configurations of chiral compounds by applying 9AMAA and 9AHA which are modified Mosher's reagents. With the appearance of new chiral auxiliary reagents and development of upfield NMR technique, NMR method can be taken more advantages of. There are many advantages, which can make NMR method more useful. Finally 9AMAA and 9AHA were found to be novel in NMR method. Racemic resolution is the main route for preparation of optical pure chiral compounds. This article also reviews resolution methods of enantiomers. The application and development in the field of chiral separation by CE are reviewed particularly.2.In this chapter, the syntheses of 9AMAA and 9AHA were discussed in detail. Based on Riguera's idea, we also chose anthrance as a reactant. (±)-9AHA could be obtained from anthrance by Friedel-Crafts acylation, reduction, hydrolysis, and (R)- and (S)-9AMAA could be obtained from 9AHA by methylation, hydrolysis, resolution. As a result, some important intermediates and racemes of 9AMAA and 9AHA were obtained in our experiments. Various reaction conditions were investigated and the optimum
引文
[1] 林国强,陈耀全,陈新滋等,手性合成-不对称反应及其应用,科学出版社,2000,21.
    [2] 叶秀林,立体化学,北大出版社,199 19,10.
    [3] 尤田耙,手性化合物的现代研究方法,中国科技大学出版社,1993,3.
    [4] 陈业高,秦国伟,谢毓元,圆二色谱激子手性法进展及其在天然产物绝对构型确定中的应用,天然产物研究与开发,2001,3(1),64-69.
    [5] 王明雷,杜江,王嗣,等,核磁共振法在天然有机化合物绝对构型测定中的应用,有机化学,2001,21(5),341-349.
    [6] 潘锡平,秦永平,陈若云,光叶紫玉盘多氧取代环己烯类成分研究,药学学报,1998,33(4),275-281.
    [7] Evidente A., Sparapano L., Fierro O., et al., Sapinofuranones A and B, two new 2(3H)-dihydrofuranones produced by sphaeropsis sapinea, a common pathogen of conifers, J. Nat. Prod., 1999, 62, 253-256.
    [8] Dale J. A., Mosher H.S., Nuclear magnetic resonance enantiomer regents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmandelate, and alpha.-methoxy-.alpha.-trifluoromethylphenylacetate (MTPA) esters, J. Am. Chem. Soc., 1973, 95(2), 512-519.
    [9] Sullivan G.R., Dale J.A. Mosher H. S., Correlation of configuration and fluorine-19 chemical shifts of alpha.-methoxy-.alpha.-trifluoromethylphenyl acetate derivatives, J. Org. Chem.,1973, 38(12), 2143-2147.
    [10] Latypov Sh.K., Seco J.M., Quinoa E.,, et al., Conformational structure and dynamics of arylmethoxyacetates: D NMR spectroscopy and aromatic shielding effect, J. Org. Chem., 1995, 60, 504-515.
    [11] Takano S., Takahashi M., Yanase M., et al., Chem. Lett., 1988, 1827-1828.
    [12] Takahashi T., Fukushima A., Tanaka Y., et al., CFTA, a new ffficient agent for determination of absolute configurations of chiral secondary alcohols, Chem. Commun., 2000, (9), 787-788.
    [13] Trost B. M, Belletire J. L., Godleski S. McDougal P. G., Balkovec J. M., Baldwin J. J. Christy, M. E. Ponticello G. S., Varga S. L. and Springer J. P., J.
    ??Org. Chem., 1986, 51(12), 2370-2374.
    [14] Latypov S.K., Seco J.M., Quinoa E., et al., Are both the (R)- and the (5)-MPA esters really needed for the assignment of the absolute configuration of secondary alcohols by NMR? the use of a single derivative, J. Am. Chem. Soc, 1998,120,877-882.
    [15] Seco J. M., Latypov S., Quinoa E. et al., New chirality recognizing reagents for the determination of absolute stereochemistry and enantiometric purity by NMR, Tetr. Lett., 1994, 35, 2921-2926.
    [16] Takahashi H.,Iwashima M., Iguchi K., Determination of absolute configurations of (3- or y-methyl substituted secondary alcohols by NMR spectroscopy, Tetr. Lett. 1999, 40(2), 333-336.
    [17] Kusumi T., Takahashi H., Xu P., et al., New chiral anisotropic reagents, NMR tools to elucidate the absolute configuration of long-chain organic compounds, Tetr. Lett, 1994, 35, 4397-4401.
    [18] Seco J. M., Quinoa E., Riguera R., 9-Anthrylmethoxyacetic acid esterification shifts-correlation with absolute stereochemistry of secondary alcohols, Tetrahedron, 1999, 55, 569-584.
    [19] Kouda K., Kusumi.T, Xu P., et al., 2-Anthrylmethoxyacetic acid, a new chiral anisotropic reagent for elucidating the absolute configuration of acyclic alcohols Tetr. Lett., 1996, 37(26), 4541-4544.
    [20] Abad J.L., Fabria's G., Camps F., Synthesis of dideuterated and enantiomers of monodeuterated tridecanoic acids at C-9 and C-10 positions, J.Org.Chem., 2000, 65, 8582-8588.
    [21] Sureshan K.M., Miyasou T., Miyamori S., et al., O-Acetylmandelic acid as a reliable chiral anisotropy reagent for the determination of absolute configuration of alcohols. Tetrahedron: Asymmetry, 2004, 15, (21), 3357-3364.
    [22] Nagai Y., Kusumi T., New chiral anisotropic regents for determining the absolute configuration of carboxylic acids, Tetr. Lett., 1995, 36, 1853-1859.
    [23] Yabuuchi T., Kusumi T., Phenylglycine methyl ester, a useful tool for absolute configuration, J. Org. Chem., 2000, 65, 397-404.
    [24] Ichikawa A., Ono H., Hiradate S., et al., Absolute configurations of 2- methoxy -2-(1-naphthyl)-propionic acid and 2-methoxy-2-(l-naphthyl) propionic acid as determined by the phenylglycine methyl ester (PGME) method, Tetrahedron: Asymmetry, 2002, 13, 1167-1172.
    [25] Ichikawa A., Hiradate S., Sugio A., et al., Absolute configurations of 2-methoxy-2-(1-naphthyl) propionic acid as determined by the ~1H NMR anisotropy method, Tetrahedron: Asymmetry, 2000, 112, 669-2675.
    [26] Ferreiro M. J., Latypov Sh. K, Quinoa E., et al., The use of ethyl-2-(9-anthryl)-2-hydroxyacetate for assignment of the absolute configuration of carboxylic acids by ~1H NMR, Tetrahedron: Asymmetry, 1997, 8(7), 1015-1018.
    [27] Dieter E., Christian R.T., Jan R., 5-Amino-4-aryl-2,2-dimethyl-1,3-dioxans: application as chiral NMR shift reagents and derivatizing agents for acidic compounds, Tetrahedron: Asymmetry, 1999, 10(2), 323-326.
    [28] Chataigner I., Lebreton J., Durand D., et al., A new approach for the determination of the absolute configuration of secondary alcohols by ~1H NMR with O-substituted mandelate derivatives, Tetr. Lett., 1998, 39, 1759-1762.
    [29] Yuriko N., Takenori K., New chiral anisotropic reagents for determining the absolute configuration of carboxylic acids, Tetra. Lett., 1995, 36(11), 1853-1856.
    [30] 肖畴叶,宋光泉,《有机化学》,中山大学出版社,1996,196.
    [31] 尹国,刘振华,曾姗姗,等性异构体拆分方法的研究进展,中国药物化学杂志,2001,11(1),57-62.
    [32] 陈光旭,《有机化学》,北京师范大学出版社,1999,12-13.
    [33] 邓金根,迟永祥,朱槿,化学拆分的新方法研究,合成化学,1999,7(4),340-345.
    [34] 冯小明,曾德超,蒋耀忠,一种新的手性拆分方法.包结拆分,有机化学,2000,20(2),131-137.
    [35] Reetz M.T., Directed evolution of selective enzymes and hybrid catalysts, Tetrahedron, 2002, 58(32), 6595-6602,
    [36] 杨艺虹,张珩,杨建设,等,对羟基苯甘氨酸拆分技术进展,化工进展,2003,22(7),709-712.
    [37] 李俊,蔡水洪,朱中南,等,手性化合物的萃取拆分研究,化学世界,2001,1(5),233-236.
    [38] Juang R.S., Huang R.H., Wu R. L., Separation of citric and lactic acids in aqueous solutions by solvent extraction liquid membrane processes, J. Membr. Sci., 1997, 136, 89-99.
    [39] 尹国,刘振华,曾姗姗,等,手性异构体拆分方法的研究进展,中国药物 化学杂志,2001,11(1),57-62.
    [40] 朱全红,邓芹英,曾陇梅,手性药物的薄层色谱拆分,药物分析杂志,2002,22(2),155-158.
    [41] 朱全红,熊波,邓芹英,等,氨基酸对映体的手性薄层色谱,分析测试学报,2000,9(4),8-11.
    [42] 朱全红,马果东,邓芹英,等,薄层色谱用苯基异氰酸酯衍生化的β-环糊精健合固定相的制备及应用,分析化学,2000,28(3),349-352.
    [43] 朱晓峰,林炳承,毛细管电泳的手性拆分,色谱,1999,17(2),153-157.
    [44] Aiken J.H., Huie C.W., Use of a micromulsion system to incoporate a lipophilic chiral selector in electrokinetic capillary chromatography, J. Chromatogr., 1993. 35(7/8), 448-450.
    [45] 徐修容,高效液相色谱分离光学异构体(下),色谱,1992,10(1),22-24.
    [46] Koppenhocfer B., Allmendinger H., Peichang L., et al., Resolution of stereoisomers of diepetides by gas chromatography on chirasil-val, J. Chromatogr. A, 1988, 441, 89.
    [47] Fillet M., Fotsing L., Bonnard J., et al., Stereoselective determination of S-naproxen in tablets by capillary electrophoresis, J. Pharm. Biomed. Anal., 1998, 18(4-5), 799-805.
    [48] Perrin C., Vargas M. G., Vander H. Y., et al., Fast development of separation methods for the chiral analysis of amino acid derivatives using capillary electrophoresis and experimental designs, J. Chromatogr. A, 2000, 883(1-2), 249-265.
    [49] Vescina M. C., Fermier A. M., Guo Y., Comparing cyclodextrin derivatives as chiral selectors for enantiomeric separation in capillary electrophoresis, J. Chromatogr. A, 2002, 973(1-2), 187-196.
    [50] Valko I. E., Billiet H.A.H., Frank J., Luyben K.C.A.M., J. Chromatogr. A, 1994, 678, 139.
    [51] Weseloh G.., Bartsch H., Konig W. A., J. Microcolumn Sep., 1995, 7:355-363.
    [52] Anthony A., Andras C., Ultra-fast chiral, separation of basic drugs by capillary electrophoresis, J. Chromatogr., 1995,717, 229-234.
    [53] 姜廷福,梁冰,李菊白,等氨氯地平对映体的高效毛细管电泳手性拆分,分析科学学报,2003,19(1),33-35.
    [54] Terabe S., Electrokinetic chromatography: an interface between electrophoresis and chromatography, Trends Anal. Chern., 1989, 8, 129-134.
    [55] Lelievre F., Gareil P., Jardy A., Selectivity in capillary electrophoresis: application to chiral separations with cyclodextrins, Anal. Chem. 1997, 69(3), 385-392.
    [56] Lin X. L., Zhu C. F., Hao A. Y., Enantiomeric separations of some acidic compounds with cationic cyclodextrin by capillary electrophoresis, Anal. Chim. Acta., 2004, (517), 95-101.
    [57] Schmitt Th., Engelhardt H., Derivatized cyclodextrins for the separation of enantiomers in capillary electrophoresis,, J. High Resol. Chromatogr., 1993, 16, 525-529.
    [58] Stalcup A.M., Gahm K.H., Applications of Sulfated cyclodextrins to chiral separations by capillary zone electrophoresis, Anal. Chem.,1996, 68, 1360-1368.
    [59] Tait R. J., Thompson D.O., Stella V.J., et al., sulfobutyl-ether-beta-cyclodextrin as a chiral discriminator for use with capillary electrophoresis, Anal. Chem., 1994, 66, 4013-4018.
    [60] Wu W., Stalcup A. M., Capillary electrophoretic chiral separations using a sulfated-β-cyclodextrin-containing electrolyte, J. Liq. Chromatogr., 1995, 18, 1289-1315.
    [61] Stalcup A., Gahm K., Application of Sulfated cyclodextrins to chiral separations by capillary zone electrophoresis, Anal. Chem., 1996, 68, 1360-1368.
    [62] Guo L., Lin S.J., Yang Y. F., et al., Fast enantioseparation of arylglycine amides by capillary electrophoresis with highly sulfated-β-cyclodextrin as a chiral selector, J. Chromatogr. A, 2003, 998, 221-228.
    [63] Culha M., Schell F. M., Fox Sh.,et al., Evaluation of newly synthesized and commercially available charged cyclomaltooligosaccharides (cyclodextrins) for capillary electrokinetic chromatography, Carbohydrate Research, 2004, 339(2), 241-249.
    [64] Lurie I.S., Klein R. F. X., Cason T. A., Chiral resolution of cationic drugs of forensic interest by capillary electrophoresis with mixtures of neutral and anionic cyclodextrins, Anal. Chem., 1994, 66, 4019-4026.
    [65] 范瑞芳,史雪岩,顾峻岭,等应用二元环糊精体系的毛细管区带电泳手性拆分,分析化学,2003,31(5),559-561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700