光子系统的量子操纵与物理模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子信息的核心旨在巧妙地利用量子相干性(对多粒子系统表现为量子纠缠)对信息的新型载体-量子比特进行操纵控制,以非常规的方式进行信息的编码、存储和传递。量子信息处理技术本质上就是对量子态的操控技术。量子相干操纵的目标是在适当的物理系统中实现对其相干动力学的控制和操作。要实现相干操纵,最关键的问题是找到一个相干性好的物理系统。由于具有最快的传播速度,很强的稳定性及良好的抗环境干扰能力,光子系统早已成为实现量子信息处理的最理想和最热门的物理系统之一。为了利用光子系统来进行量子计算和量子信息的传输,对光子态的相干操作是必须的。本文的工作首先是利用原子来控制量子光在空间中的传输,这里的研究主要是从在大N和低激发条件下原子系综的激发可以简化为一个玻色子模式出发的。具体来说包括基于相干原子介质传播空间的相干操纵、单光子水平的量子操纵方案.随后讨论利用光学系统模拟量子信息处理。主要是利用光学被动光学元件,如分束器,极化分束器,波片等线性光学元件区分相互独立但却不正交的量子态,以及模拟二人囚徒困境量子博弈。本论文的结构分为五部分:
     论文的第一章是绪论,作为整篇论文的铺垫,在这部分中我们介绍量子信息和量子计算的发展历史以及研究现状,并分别从理论和实验的角度重点阐述了光子系统量子性质研究的几个热点问题的研究现状。
     第二部分为论文的第二章。基于慢光实验的进展,在这一章中,我们研究非均匀介质中光子态传播与空间控制问题。产生慢光有两种方法,一种基于原子相干振荡,它使用二能级原子系综与探测光和控制光相互作用,另一种方法是利用电磁诱导透明技术,它通常使用∧型三能级与探测光和控制光相互作用。我们首先对由相干布局数振荡所产生的慢光的空间传播问题进行讨论,我们使用了半经典处理,利用绝热近似分别得到了描述探测光的薛定谔方程和描述控制光空间运动的非线性薛定谔方程,并发现控制光在传播过程中形状、幅度和速度都可维持不变.然而控制光的空间分布将使得入射到介质中的探测光束在经过介质后发生偏转现象。随后我们对由电磁诱导透明所产生的慢光的空间传播问题进行讨论。现今实验发现:当探测光束通过处于非均匀磁场中的人型三能级原子介质时,由于磁场依赖于空间位置的变化,探测光束将发生偏转。针对这一现象,并考虑到电磁诱导透明现象在微观上是由于光子和原子集体激发形成了一种激子极化子——暗态极化子,我们使用平均场理论得到了描述暗态空间运动的有效薛定谔方程。随后我们采用特定的波包描述了这种准粒子,从波动的角度考虑了横向分布为二次型或线性的磁场中暗态极化子的运动。我们的处理方法反映了准粒子的波粒二象性。研究也表明,暗态极化子具有有效磁矩。
     第三章中,我们将利用原子系综与光的相互作用来操作光子以及将光子限制在高品质因子的共振腔阵列中这两种操纵光子的方法相结合,并使用一维的离散坐标量子散射理论进行计算。我们发现由于原子系综的嵌入破坏了耦合腔阵列的平移不变性,使得入射到腔阵列中的光子会被囚禁在嵌入原子系综的腔附近,而不会在阵列中游走。另一方面,对于在阵列中游走的光子,原子与腔场的强耦合改变了阵列中特定腔场的能级分布,从而使得光子共振遂穿几率发生了改变,因此我们可以通过调节原子的跃迁频率来控制光子的传输。从而在理论上提出了一种实现量子网络中不同网络之间连接的方法。
     在论文的第四章主要是利用光学系统模拟量子信息处理,这里我们利用了光子的两个自由度,光子空间路径是一个自由度,另一个自由度是光子的极化。首先,对于相互独立但却不正交的量子态,我们提出在直积空间利用偏振分束器、波片、偏振片和单光子探测器来实现它们的最佳无错鉴别。在模拟二人囚徒困境量子博弈方面,量子博弈中所需的两个量子比特分别由光子的两条路径和光子的两个极化方向提供。我们利用分束器和相移器实现其中一个参与人的量子对策,另一参与人的量子对策通过1/4波片和半波片的组合实现,使参与人拥有了实施操纵的物理仪器。
     最后一部分为论文的第五章,是对本文工作的总结和展望。
The use of quantum physics has revolutionized the way we communicate and process information.Quantum coherence and decoherence are at the heart of both foundations and applications of quantum physics.When there is no decoherence,any physical system should offer the possibility to implement a large number of quantum gates and transfer information.A photon is an element particle of electromagnetic radiation with a well-defined energy,due to its high speed,strong stability and low dissipation,photon has been an ideal carrier of quantum information as well as the experimental implementation of quantum information processing.The current explosion in information technology has been derived from our ability to control the flow of photons in the most intricate ways,specially,the experiment on slow light.This dissertation theoretical study on the following two problems:one is on how to control the flow of photons by means of the atomic ensemble system,which includes the propagation of slow light in a rectangle atomic medium and the scattering process of photons confined in a one dimensional optical waveguide.The other is on simulation the quantum information processing in optical system,which includes realizing error-free discriminations of quantum states and the quantum game of the two-player quantum prisoner's dilemma by using linear optical elements.This dissertation includes five part.It is organized as follows:
     The first part is introduction,which paves the way for the dissertation. In this part,we introduce the history of the development of the quantum information and quantum computation,as well as its status of current research.
     The second part is the second chapter of this dissertation.Here we mainly concerns on how to coherently control the propagation of slow light by a rectangle atomic medium.Currently there are two ways to get the slow light:coher- ent population oscillation and electromagnetical induced transparency.First, we theoretically predicted a phenomenon of the enhanced light deflection by an atomic ensemble through coherent population oscillation mechanism,which is realized by a two-level atomic ensemble interacting with a control field and a much weaker probe field.Here both optical fields are treated classical.Then, for the light deflection by a A-type atomic ensemble,we systematically develop a quantum theory describing the spatial motion of polaritons in inhomogeneous magnetic fields.Our treatment is based on the mean field theory.
     The third part is the third chapter of this dissertation.Here,we study the coherent transport of photons,which propagate in a one-dimensional coupled-resonator waveguide(CRW) and are scattered by an atomic ensemble localized in one of the CRW.The coherent control can be realized by adjusting the detuning between the single photon frequency and the energylevel-spacings of the atoms.There also exist bound states which trap the single photon in the CRW.
     The forth part is the forth chapter of this dissertation.We propose a linear optical scheme for optimal unambiguous discrimination among nonorthogonal quantum states,and also simulation the quantum game of the two-player quantum prisoner's dilemma.Here,both spatial anb polarization degree of freedom of single photon are used.
     A summary of the work and an outlook of this thesis are given in the last part.
引文
[1]A.Zeilinger.The Quantum Centennial[J].Nature,2000,408(12):639.
    [2]S.E.Harris,J.E.Field,and A.Kasapi.Dispersive properties of electromagnetically induced transparency[J].Phys.Rev.A,1992,46(1):29.
    [3]M.Xiao,Y.Q.Li,S.Z Jin,and J.B.Banacloche.Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms[J].Phys.Rev.Lett.,1995,74(5):666.
    [4]A.Kasapi,M.Jain,G.Y.Yin,and S.E.Harris.Electromagnetically induced transparency:propagation dynamics[J].Phys.Rev.Lett.,1995,74(13):2447.
    [5]O.Schmidt,R.Wynands,Z.Hussein,and D.Meschede.Steep dispersion and group velocity below c/3000 in coherent population trapping[J].Phys.Rev.A,1996,53(1):27.
    [6]L.V.Hau,S.E.Harris,Z.Dutton,and C.H.Behroozi.Light speed reduction to 17 metres per second in an ultracold atomic gas[J].Nature,1999,397(6720):594.
    [7]M.M.Kash,V.A.Sautenkov,A.S.Zibrov,L.Hollberg,G.R.Welch,M.D.Lukin,Y.Rostovtsev,E.S.Fry and M.O.Scully.Ultraslow group velocity and enhanced nonlinear optical effects in coherently driven hot atomic gas[J].Phys.Rev.Lett.,1999,82(26):5229.
    [8]D.Budker,D.F.Kiimball,S.M.Rochester,and V.V.Yashchuk,Monlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation[J].Phys.Rev.Lett.,1999,83(9):1767.
    [9]A.V.Turukkhin,V.S.Sudarshanam,M.S.Shahriar,J.A.Musser,B.S.Ham,and P.R.Hemmer.Observation of ultraslow and stored light pulses in a solid[J].Phys.Rev.Lett.,2002,88(2):023602.
    [10]M.S.Bigelow,N.N.Lepeshkin,and R.W.Boyd.Observation of ultraslow light propagation in a ruby crystal at room temperature[J].Phys.Rev.Lett.,2003,90(11):113903.
    [11]J.M.Taylor,C.M.Marcus,and M.D.Lukin.Long-lived memory for mesoscopic quantum bits[J].Phys.Rev.Lett.,2003,90(20):206803.
    [12]M.Fleischhauer and M.D.Lukin.Dark-state polaritons in electromagnetically induced transparency[J].Phys.Rev.Lett.,2000,84(22):5094.
    [13]M.Fleischhauer and M.D.Lukin.Quantum memory for photons:Dark-state polaritons[J].Phys.Rev.A,2002,65(2):022314.
    [14]M.D.Lukin.Colloquium:Trapping and manipulating photon states in atomic ensembles[J].Rev.Mod.Phys.,2003,75(2):457.
    [15]C.P.Sun,Y.Li,and X.F.Liu.Quasi-spin-wave quantum memories with a dynamical symmetry[J].Phys.Rev.Lett.,2003,91(14):147903.
    [16]Y.Li,P.Zhang,P.Zanardi,and C.P.Sun.Non-Abelian geometric quantum memory with an atomic ensemble[J].Phys.Rev.A,2004,70(3):032330.
    [17]Y.Li and C.P.Sun.Group velocity of a probe light in an ensemble of A atoms under two-photon resonance[J].Phys.Rev.A,2004,69(5):051802.
    [18]李勇.Interaction between Photons and Atomic Ensemble and Photonic Quantum Storage[D].北京:中国科学院理论物理研究所,2004.
    [19]Y.Li,L.Zheng,Y.X.Liu,and C.P.Sun.Correlated photons and collective excitations of a cyclic atomic ensemble[J].Phys.Rev.A,2006,73(4):043805.
    [20]L.He,Y.X.Liu,S.Yi,C.P.Sun,and F.Nori.Control of photon propagation via electromagnetically induced transparency in lossless media[J].Phys.Rev.A,2007,75(6):063815.
    [21]L.Zhou,J.Lu,and C.P.Sun.Coherent control of photon transmission:Slowing light in a coupled resonator waveguide doped with A atoms[J].Phys.Rev.A,2007,76(1):012313.
    [22]C.Liu,Z.Dutton,C.H.Behroozi,and L.V.Hau.Observation of coherent optical information storage in an atomic medium using halted light pulses[J].Nature,2001,409(6819):490.
    [23]D.F.Phillips,A.Fleischhauer,A.Mair,R.L.Walsworth,and M.D.Lukin.Storage of light in atomic vapor[J].Phys.Rev.Lett.,2001,86(5):783.
    [24]M.Bajcsy,A.S.Zibrov,and M.D.Lukin.Stationary pulses of light in an atomic medium[J].Nature,2003,426(6967):638.
    [25]T.Chanelierc,D.N.Matsukevich,S.D.Jenkins,S.Y.Lan,T.A.B.Kennedy,and A.Kuzmich.Storage and retrieval of single photons transmitted between remote quantum memories[J].Nature,2005,438(7069):833.
    [26]T.Chancli(?)re,D.N.Matsukevich,S.D.Jenkins,S.Y.Lan,R.Zhao,T.A.B.Kennedy,and A.Kuzmich.Quantum interference of electromagnetic fields from remote quantum memories[J].Phys.Rev.Lett.,2007,98(11):113602.
    [27]K.Honda,D.Akamatsu,M.Arikawa,Y.Yokoi,K.Akiba,S.Nagatsuka,T.Tanimura,A.Furusawa,and M.Kozuma.Storage and retrieval of a squeezed vacuum[J].Phys.Rev.Lett.,2008,100(9):093601.
    [28]J.Appel,E.Figueroa,D.Korystov,M.Lobino,and A.I.Lvovsky.Quantum memory for squeezed light[J].Phys.Rev.Lett.,2008,100(9):093602.
    [29]R.Schlesser and A.Weis.Light-beam deflection by cesium vapor in a transverse-magnetic field[J].Opt.Lett.,1992,17(14):1015.
    [30]R.R.Moseley,S.Shepherd,D.J.Fulton,B.D.Sinclair,and M.H.Dunn.Spatial consequences of electromagnetically induced transpatency:observation of electromagnetically induced Focusing[J].Phys.Rev.Lett.,1995,74(5):670.
    [31]R.Holzner,P.Eschle,S.Dangel,R.Richard,H.Schmid,U.Rusch,and B.Rohricht.Observation of magnetic-field-induced laser beam deflection in sodium vapor[J].Phys.Rev.Lett.,1997,78(18):3451.
    [32]L.Karpa and M.Weit.,A Stern-Gerlach experiment for slow light[J].Nature Physics,2006,2(5):332.
    [33]V.A.Sautenkov,H.Li,Y.V.Rostovtsev,and M.0.Scully.Ultra-dispersive adaptive prism[J].arXiv:quant-ph/0701229.
    [34]D.L.Zhou,L.Zhou,R.Q.Wang,S.Yi,and C.P.Sun.Deflection of slow light by magneto-optically controlled atomic media[J].Phys.Rev.A,2007,76(2):055801.
    [35]L.Zhou,J.Lu,D.L.Zhou,and C.P.Sun.Quantum theory for spatial motion of polaritons in inhomogeneous fields[J].Phys.Rev.A,2008,77(2):023816.
    [36]Jing Lu,Lan Zhou,and Le-Man Kuang.Enhanced Deflection of Light Ray by Atomic Ensemble on Coherent Population Oscillation[J].Commun.Theor.Phys.,2009,51(1):139.
    [37]K.M.Blrnbaum,A.Bocal,R.Miller,A.D.Boozer,T.E.Northup,and H.J.Kimble.Photon blockade in an optical cavity with one trapped atom[J].Nature,2005,436(7):87.
    [38]J.T.Shen and S.Fan.Coherent Single Photon Transport in a One-Dimensional Waveguide Coupled with Superconducting Quantum Bits[J].Phys.Rev.Lett,2005,95(11):213001.
    [39]D.E.Chang,A.S.Sorensen,E.A.Demler,and M.D.Lukin.A single-photon transistor using nanoscale surface plasmons[J].Nature Physics,2007,3(11):807.
    [40]Lan Zhou,Z.R.Gong,Yu-xi Liu,C.R Sun,and F.Nori.Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide[J].Phys.Rev.Lett.,2008,101(9):100501.
    [41]Z.R.Gong,H.Ian,Lan Zhou,and C.P.Sun.Controlling quasibound states in a one-dimensional continuum through an electromagnetically-inducedtransparency mechanism[J].Phys.Rev.A,2008,78(11):053806.
    [42]Jing Lu,H.Dong,Le-Man Kuang.Transferring and bounding single photon in waveguide controlled by quantum node based on atomic ensemble[J].arXiv:0809.1540,accepted by Commun.Theor.Phys..
    [43]K.J.Vahala.Optical microcavities[J].Nature,2003,424(8):839.
    [44]J D Joannopoulos,S.G.Johnson,J N Winn and R D Meade.Photonic Crystals:Molding the Flow of Light[M].New Jersey:Princeton University Press,2008.
    [45]J.Q.You and Franco Nori.Quantum information processing with superconducting qubits in a microwave field[J].Phys.Rev.B,2003,68(6):064509.
    [46]A.Wallraff,D.I.Schuster,A.Blais,L.Frunzio,R.-S.Huang,J.Majer,S.Kumar,S.M.Girvin and R.J.Schoelkopf.Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics[J].Nature,2004,431(9):162.
    [47]Q.Xu,S.Sandhu,M.L.Povinelli,J.Shakya,S.Fan,and M.Lipson.Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency[J].Phys.Rev.Lett.,2006,96(12):123901.
    [48]L.N.Hau,S.E.Harris,Z.Dutton,and C.H.Behroozi.Light speed reduction to 17 metres per second in an ultracold atomic gas[J].Nature,1999,397(2):594.
    [49]C.Liu,Z.Dutton,C.H.Behroozi,and L.V.Hau.Observation of coherent optical information storage in an atomic medium using halted light pulses[J].Nature,2001,409(1):490.
    [50]D.F.Phillips,A.Fleischhauer,A.Mair,R.L.Walsworth,and M.D.Lukin.Storage of Light in Atomic Vapor[J].Phys.Rev.Lett.,2001,86(5):783.
    [51]M.Bajcsy,A.S.Zibrov,and M.D.Lukin.Stationary pulses of light in an atomic medium[J].Nature,2003,426(11):638.
    [52]D.A.Braje,V.Balic,G.Y.Yin,and S.E.Harris.Low-light-level nonlinear optics with slow light[J].Phys.Rev.A,2003,68(4):041801(R).
    [53]A.Kasapi,M.Jain,G.Y.Yin,and S.E.Harris.Electromagnetically Induced Transparency:Propagation Dynamics[J].Phys.Rev.Lett.,1995,74(13):2447.
    [54]A.V.Turukhin,V.S.Sudarshanam,M.S.Shahriar,J.A.Musser,B.S.Ham,and P.R.Hemmer.Observation of Ultraslow and Stored Light Pulses in a Solid[J].Phys.Rev.Lett.,2002,88(2):023602.
    [55]M.S.Bigelow,N.N.Lepeshkin,and R.W.Boyd.Superluminal and Slow Light Propagation in a Room-Temperature Solid[J].Science,2003,301(7):200.
    [56]M.S.Bigelow,N.N.Lepeshkin,and R.W.Boyd.Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature[J].Phys.Rev.Lett,2003,90(11):113903.
    [57]S.E.Harris.Electromagnetically induced transparency[J].Phys.Today,1997,50(7):36.
    [58]S.E.Harris and L.V.Hau.Nonlinear Optics at Low Light Levels[J].Phys.Rev.Lett..1999,82(23):4611.
    [59]R.W.Boyd,D.J.Gauthier,A.L.Gaeta,and A.E.Willner.Maximum time delay achievable on propagation through a slow-light medium[J].Phys.Rev.A,2005,71(2):023801.
    [60]E.Baldit,K.Bencheikh,P.Monnier,J.A.Levenson,and V.Rouget.Ultraslow Light Propagation in an Inhomogeneously Broadened Rare-Earth Ion-Doped Crystal[J].Phys.Rev.Lett.,2005,95(14):143601.
    [61]G.S.Agarwal and T.N.Dey.Ultraslow light in inhomogeneously broadened media[J].Phys.Rev.A,2006,73(4):043809.
    [62]L.Karpa,M.Weitz.A Stern+Gerlach experiment for slow light[J].Nature Physics,2006,2(5):332.
    [63]V.A.Sautenkov,H.Li,Y.V.Rostovtsev,M.O.Scully.Ultra-dispersive adaptive prism[J].e-print arXiv:quant-ph/0701229
    [64]K.Drese and M.Holthaus.Floquet theory for short laser pulses[J].Eur.Phys.J.D,1999,5(1):119.
    [65]J.Wei and E.Norman.Lie Algebraic Solution of Linear Differential Equations [J].J.Math.Phys.,1963,4(4):575.
    [66]R.D.Mattuck.A Guide to Feynman Diagrams in the Many-body Problem[M].Dover Books on Physics and Chemistry:NY,1967.
    [67]M.Fleischhauer,A.Imamoglu,J.P.Marangos.Electromagnetically induced transparency:Optics in coherent media[J].Rev.Mod.Phys.,2005,77(2):633.
    [68]M.D.Lukin.Colloquium:Trapping and manipulating photon states in atomic ensembles[J].Rev.Mod.Phys.,2003,75(2):457.
    [69]M.O.Scully,M.Zubairy.Quantum optics[M].Cambridge University Press,1997.
    [70]C.P.Sun,L.F.Wei,Y.X.Liu,and F.Nori.Quantum information processing with superconducting qubits in a microwave field[J].Phys.Rev.A,2006,73(2):022318.
    [71]J.Q.You and Franco Nori.Quantum information processing with superconducting qubits in a microwave field[J].Phys.Rev.D,2003,68(6):064509.
    [72]A.Wallraff,D.I.Schuster,A.Blais,L.Frunzio,R.-S.Huang,J.Majer,S.Kumar,S.M.Girvin and R.J.Schoelkopf.Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics[J].Nature,2004,431(7005):162.
    [73]F.M.Hu,L.Zhou,T.Shi,and C.P.Sun.Coupled cavity QED for coherent control of photon transmission:Green-function approach for hybrid systems with two-level doping[J].Phys.Rev.A,2007,76(1):013819.
    [74]L.Zhou,Y.B.Gao,Z.Song,and C.P.Sun.Coherent output of photons from coupled superconducting transmission line resonators controlled by charge qubits[J].Phys.Rev.A.2008,77(1):013831.
    [75]G.R.Jin,P.Zhang,Yu-xi Liu,and C.P.Sun.Superradiance of low-density Frenkel excitons in a crystal slab of three-level atoms:The quantum interference effect[J].Phys.Rev.D,2003,68(13):134301.
    [76]Z.Song,P.Zhang,T.Shi,and C.P.Sun.Effective boson-spin model for nuclei-ensemble-based universal quantum memory[J].Phys.Rev.D,2005,71(20):205314.
    [77]L.He,Y.X.Liu,S.Yi,C.P.Sun,and F.Nori.Control of photon propagation via electromagnetically induced transparency in lossless media[J],Phys.Rev.A,2007,75(6):063818.
    [78]S.M.Dutra and K.Furuya.Macroscopic averages in QED in material media[J].Phys.Rev.A,1997,55(5):3832.
    [79]J.J.Hopfield.Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals[J].Phys.Rev.,1958 112(5):1555.
    [80]U.Fano.Effects of Configuration Interaction on Intensities and Phase Shifts [J].Phys.Rev.,1961 124(6):1866.
    [81]J.yon Neumann and E.Wigner.Uber merkw(u|¨)rdige diskrete Eigenwerte.Uber das Verhalten yon Eigenwerten bei adiabatischen Prozessen[J].Phys.Z.,1929,30:465.
    [82]F.H.Stillinger and D.R.Herrick.Bound states in the continuum[J].Phys.Rev.A,1975,11(2):446.
    [83]B.Gazdy.On the bound states in the continuum[J].Phys.Lett.A,1977,61(2):89.
    [84]F.Capasso,C.Sirtori,J.Faist,D.L.Sivco,S.-N.G.Chu,and A.Y.Cho.Observation of an electronic bound state above a potential well[J].Nature,1992,358(6387):565.
    [85]G.Ordonez,K.Na,and S.Kim.Bound states in the continuum in quantumdot pairs[J].Phys.Rev.A,2006,73(2):022113.
    [86]H.Nakamura,N.Hatano,S.Garmon,and T.Petrosky.Quasibound States in the Continuum in a Two Channel Quantum Wire with an Adatom[J].Phys.Rev.Lett.,2007,99(21):210404.
    [87]E.N.Bulgakov and A.F.Sadreev.Bound states in the continuum in photonic waveguides inspired by defects[J].Phys.Rev.B,2008,78(7):075105.
    [88]C.W.Helstrom.Quantum Detection and Estimation Theory[M].New York:Academic Press,1976.
    [89]I.D.Ivanovic.How to differentiate between non-orthogonal states[J].Phys.Lett.A,1987,123:257.
    [90]D.Dieks.Overlap and distinguishability of quantum states[J].Phys.Lett.A,1988,126:303.
    [91]A.Peres.How to differentiate between non-orthogonal states[J].Phys.Lett.A,1988,128:19.
    [92]G.Jaeger and A.Shimony.Optimal distinction between two non-orthogonal quantum states[J].Phys.Lett.A,1995,197:83.
    [93]A.Chcfles.Unambiguous discrimination between linearly independent quantum states[J].Phys.Lett.A,1998,239:339.
    [94]A.Chefles and S.M.Barnett.Optimum unambiguous discrimination between linearly independent symmetric states[J].Phys.Lett.A,1998,250:223.
    [95]B.Huttner,A.Muller et.al.Unambiguous quantum measurement of nonorthogonal states[J].Phys.Rev.A,1996,54:3783.
    [96]R.B.M.Clarke,A.Chefles,et.al.Experimental demonstration of optimal unambiguous state discrimination[J].Phys.Rev.A,2001,63(4):040305(R).
    [97]Y.Sun,M.Hillery,and J.A.Bergou.Optimum unambiguous discrimination between linearly independent nonorthogonal quantum states and its optical realization[J].Phys.Rev.A,2001,64(2):022311.
    [98]M.Mohseni,A.M.Steinberg,and J.A.Bergou.Optical Realization of Optimal Unambiguous Discrimination for Pure and Mixed Quantum States[J].Phys.Rev.Lett,2004,93(20):200403.
    [99]Jing Lu,Lan zhou and Le-Man Kuang.Optical implementation for optimum unambiguous discrimination among quantum states[J].Chin.Phys.,2006,15:1941.
    [100]Michael Reck,Anton Zeilinger.Experimental Realization of Any Discrete Unitary Operator[J].Phys.Rev.Lett,1994,73(1):58.
    [101]D.Bouwmeester,J.W.Pan,K.Mattle,et al.Experimental quantum teleportation[J].Nature,1997,390(6660):575.
    [102]J.W.Pan,S.Gasparoni,et al.Experimental realization of freely propagating teleported qubits[J].Nature,2003,421(6924):721.
    [103]Z.Zhao,Y.-A.o Chen,et al.Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation[J].Nature,2004,430(6995):54-58.
    [104]Jian-Wei Pan,Dik Bouwmeester,et al.Experimental Entanglement Swapping:Entangling Photons That Never Interacted[J].Phys.Rev.Lett.,1998,80(18):3891.
    [105]J.W.Pan,C.Simon,et al.Entanglement purification for quantum communication[J].Nature,2001,410(6832):1067.
    [106]Christoph Simon,Jian-Wei Pan.Polarization Entanglement Purification using Spatial Entanglement[J].Phys.Rev.Lett,2002,89(25):257901.
    [107]Z.Zhao,T.Yang,et al.Experimental Realization of Entanglement Concentration and A Quantum Repeater[J].Phys.Rev.Lett.,2003,90(20):207901.
    [108]C.H.Bennett,F.Bessette,et al.Experiment quantum cryptography[J].J.Cryptology,1992,5(1):3.
    [109]D.Bethune,E.Risk.An autocompensating fiberoptic quantum cryptography system based on polarization splitting of light[J].IEEE J.Quantum Electron,2000,36(3):340.
    [110]M.Bourenane,M.D.Ljunggren,et al.Experimental long wavelength quantum cryptography:from single photon trasmission to key extraction protocols[J].J.Mod.Opt.,2000,47(3):563.
    [111]F.Grosshans,G.Assche,et al.quantum key distribution using gaussianmodulated coherent states[J].Nature,2003,421(6920):238.
    [112]A.Beveratos,R.Brouri,et al.Single photon quantum cryptography[J].Phys.Rev.Lett.,2002,89(18):187901.
    [113]Li Xiao,Gui Lu Long,et al.Efficient multiparty quantum-secret-sharing schemes[J],Phys.Rev.A,2004,69(5):052307.
    [114]Y.Z.Gui,Z.F.Han,X.F.Mo,et al.Experimental quantum key distribution over 14.8 km in a special optical fibre[J].Chin.Phys.Lett.,2003,20(5):608.
    [115]J.Zhang,K.C.Peng.Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state[J].Phys.Rev.A,2000,62(6):064302.
    [116]X.-Y Li,Q.Pan,et al.Quantum Dense Coding Exploiting a Bright Einstein-Podolsky-Rosen Beam[J].Phys.Rev.Lett,2002,88(4):047904.
    [117]J.Zhang,C.-D.Xie,K.C.Peng.Controlled dense coding for continuous variables using three-particle entangled states[J].Phys.Rev.A,2002,66(3):032318.
    [118]J.-T.Jing,J.Zhang,et al.Experimental Demonstration of Tripartite Entanglement and Controlled Dense Coding for Continuous Variables[J].Phys.Rev.Lett,2003,90(16):167903.
    [119]X.-J.Jia,X.-L.Su,et al.Experimental Demonstration of Unconditional Entanglement Swapping for Continuous Variables[J].Phys.Rev.Lett.,2004,93(25):250503.
    [120]E.Knill,R.Laflamme,G.J.Milburn.A scheme for effient quantum computation with linear optics[J].Nature,2001,409(6816):46.
    [121]Kaoru Sanaka,Thomas Jennewein,et al.Experimental Nonlinear Sign Shift for Linear Optics Quantum Computation[J].Phys.Rev.Lett.,2004,92(1):17902.
    [122]T.B.Pittman,B.C.Jacobs,and J.D.Franson.Probabilistic quantum logic operations using polarizing beam splitters[J].Phys.Rev.A,2001,64(6):062311.
    [123]Z.Zhao,A.-N.Zhang,et al.Experimental Demonstration of a Nondestructive Controlled-NOT Quantum Gate for Two Independent Photon Qubits[J].Phys.Rev.Lett.,2005,94(3):30501.
    [124]M.Mohseni,J.S.Lundeen,et al.Experimental Application of Decoherence-Free Subspaces in an Optical Quantum-Computing Algorithm[J].Phys.Rev.Lett.,2003,91(18):187903.
    [125]S.C.Benjamin,P.M.Hayden.Multiplayer Quantum Game[J].Phys.Rev.A.,2001,64(3):030301.
    [126]S.Wiesner.Conjugate coding[J].SIGACT News,1983,15(1):78.
    [127]C.H.Bennett and G.Brassard.Qauntum cryptography:public key distribution and coin tossing[M].IEEE New York:Proc.IEEE Int.Conf.Comp.,1984:1.
    [128]S.Massar and S.Popescu.Optima extractionn of information from finite quantum ensembles[J].Phys.Rev.Lett.,1995,74(8):1259.
    [129]D.A.Meyer.Quantum Strategies[J].Phys.Rev.Lett.,1999,82(5):1052.
    [130]Y.J.Han,Y.S.Zhang,G.C.Guo.W state and Greenberger-Horne-Zeilinger state in quantum three-person prisoner's dilemma[J].Phys.Lett.A,2002,295(2):61.
    [131]A.Iqbal,A.H.Toor.Quantum cooperative games[J].Phys.Lett.A,2002,293(3):103.
    [132]Y.M.Ma,G.L.Long,et al.Cooperative three-and four-player quantum games [J].Phys.Lett.A,2002,301(2):117.
    [133]Jiangfeng Du et al.Experimental Realization of Quantum Games on a Quantum Computer[J].Phys.Rev.Lett.,2002,88(13):137902.
    [134]A.Iqbal,A.H.Toot.Evolutionarily stable strategies in quantum games[J].Phys.Lett.A,2001,280(5):249.
    [135]E.W.Piotrowski,J.Sladkowski.Quantum market games[J].Playsica A,2002,312(1-2):208.
    [136]E.W.Piotrowski,J.Sladkowski.Quantum English Auctions[J].Physica A,2003,318(3-4):505.
    [137]Jens Eisert,Matin Wilkens,Maciej Lewenstein.Quantum Game and Quantum Strategies[J].Phys.Rev.Lett.,1999,85:3077.
    [138]L.Zhou,Leman Kuang.Proposal for optically realizing a quantum game[J].Phys.Lett.A,2003,315:246.
    [139]J.Lu,L.Zhou,Leman Kuang.Linear optics implementation for quantum game with two players[J].Phys.Lett.A,2004,330:48.
    [140]张维迎.博弈论与信息经济学[M].上海人民出版社,1996.
    [141]J.Du,X.Xu,et.al..Entanglement playing a dominating role in quantum games[J].Phys.Lett.A,2001,289:9.
    [142]J.Du,H.Li,X.Xu,X.Zhou,R.Han.Entanglement enhanced multiplayer quantum games[J].Phys.Lett.A,2002,302:229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700