量子点光学性质及其在量子信息中的应用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子计算与量子通信,作为一门应用类的学科,是对当今普遍运用的冯·诺依曼式经典信息架构的延伸。这种延伸的必要性在于,随着人们不断改进技术,向速度和集成度的极限发起挑战,使得冯氏架构所依赖的物理载体已经逼近了继续进步的天花板。量子信息的出现正是为了打破这种物理载体上的限制,同时由于Shor算法的提出,让人们看到了量子并行算法的强大力量,使得人们更加对量子信息寄予厚望。量子信息是一个逻辑上的概念,要实现它同样需要物理载体,具有类原子性质的自组织量子点以及被认为是纯净系统的光子都是很好的选择。我们这里就主要研究自组织量子点的光学性质以及用它来构造单光子源。由于载流子在空间上三维受限,使得自组织量子点具有分立的能级和尖锐的谱线。分立能级又使得它具有有限能级寿命,从而产生单光子。利用单光子我们可以进行一些光子比特的量子信息实验。本文主要得到以下结论:
     1,InAs/GaAs自组织量子点中存在着天然的激子极化子
     这是一种激子与纵向光学声子之间的电声强耦合现象。我们通过改变温度,使得量子点能级发生移动,当量子点能级与纵向光学声子能量发生共振时,就会产生类似dressed态的能级劈裂,这就是极化子能级,一个显著的标志是在温度-能级曲线上出现一个anticrossing。
     2,利用饱和法测量了量子点系综的能级寿命。
     饱和法是一种利用量子点的饱和性质来测量量子点能级寿命的方法。它相比于常用的参量上转换法具有操作简便的优点,相比于时间关联仪器(如皮秒时间分析仪)又具有精度高的优点。并且我们还验证了即使探测光不完全饱和也可以测得寿命,只不过测量误差会有所提高。
     3,利用稀点法和掩膜法隔离出单个量子点,并获得单光子源。
     从量子点系综中隔离出单个量子点是构造单光子源的必备条件之一。我们在各种条件下比较了单量子点的信噪比,这些条件包括:不同的激发功率、光路中小孔的不同大小、样品上不同的量子点密度以及不同的温度。最后在特定的参数下获得了信噪比比较高的单量子点谱线。此外,我们还对样品进行了微纳米加工,镀100 nm厚的金膜,然后打微米量级的通光孔,同样得到单量子点谱线,并进行了验证单光子的Hanbury-Brown-Twiss测试。
     4,进行了多次测量的时间域Bell不等式测试。
     经典的物理实在论与量子力学之间的争论一直都是一个热门话题。Leggett-Garg不等式作为其中的一个焦点问题,与Bell不等式有着诸多相似,它反映了量子力学在时间域上非局域性,也被称作时间域的Bell不等式。本文中主要描述了当测量时间点数目多于三个时,它的拓展方法以及对这些方法的评价标准,并利用光子进行了实验验证。
     5,对一个纯消相位演化的非马尔科夫性进行了量化测量。
     非马尔科夫过程最近成了量子开放系统研究中的中心话题。我们实验测量了一个纯消相位演化的非马尔科夫量。在这个演化中一个单量子点发出的光子被送入了一根100米长的保偏光纤中。这种测量方法是用从环境回流入系统的总信息量来描述的。信息被携带在光子的偏振态中。我们的结果对非马尔科夫过程的理解以及对量子存储和量子通讯的进步都是有意义的。
     6,实验上制备了包含系统-环境关联的初态,并在一个用于模拟演化的延迟装置中见证了这些关联。
     多体关联,它不仅仅包含量子纠缠,在量子计算和量子通讯中扮演了相当重要的角色。特别的,决定了一个演化过程(非)马尔科夫性质的系统-环境关联,在量子开放系统的研究中引起了很大兴趣。我们将量子点样品发出的光子送入15米的保偏光纤来产生各种不同的系统-环境关联态,然后用观察迹距离增加的方法来见证了这些关联。在我们的实验中,系统与环境之间的信息流动已经被很清晰地描述了。这种关联见证的方案是基于系统-环境之间的信息流的,也可以被用于其它的类似系统。
Quantum computation and quantum communication science, as a subject of appli-cations, is the extension of Von Neumann architecture of classical information which isvery popular today. This extension is necessary, because as the improvement of tech-nology people keep trying to challenge the limitation of speed and integration densityof the electronic chips, which makes the physical carrier of Von Neumann architecturehave almost reached the ceiling of progress. Quantum information shows to break thisrestriction of the physical carrier, and meanwhile, because of the proposal Shor algo-rithm, people see the power of quantum parallel algorithm. This makes people placehigh hopes for quantum information. Quantum information is a logical conception.If we want to realize it, we also need physical carriers. Self-assembled quantum dot(SAQD) with atomic character and photon are both good choices. Here we studiedthe spectra of SAQD and use it to make single photon source (SPS). Because of thethree-dimension spatial con?nement, SAQD has discrete energy levels and sharp spec-tral lines. The discreteness makes the energy states have limit lifetimes, then they canemit single photons. Using this single photons, we can perform some experiments ofquantum information on photon bit. Our primary works are as follow:
     1, We observed natural excitonic polaron in InAs/GaAs SAQD.
     This phenomenon shows the strong coupling between the exciton and longitudinaloptical phonon (LOP). We changed the temperature of the sample to make the shift ofenergy levels. When the level spacing is resonant with the energy of LOP, the energysplitting which is similar to the dressed states appears. These energy levels are levels ofpolaron. A distinctive sign is an anticrossing shown in the temperature-energy curve.
     2, We measured the energy lifetime of SAQD ensemble using a new methodof saturation.
     The saturation-method uses the character of saturation of SAQD to measure itsenergy lifetime. Comparing to the method of spontaneous parametric up conversion(SPUC), this method has the advantage of easy fabrication; and comparing to themethod of time correlation analyser (like picosecond time analyser, PTA), this methodhave more precision. Moreover, we also demonstrated that this method still works whenthe probe pulse is not fully saturated. Merely the error will get a little larger.
     3, We separated a single QD with both method of sparse QD sample and apertured mask, and obtained SPS.
     It is a necessary condition to isolate a single QD from the ensemble for manu-facturing a SPS. We compared the signal-noise ratio (SNR) under various conditions:exciting power intensity, size of pinhole in the beam path, dot density on the sampleand temperature. Finally we obtained the single-dot spectra with quite high SNR forsome certain parameters. We also made lithography for the samples, coated them with100 nm gold ?lm and etch holes of micrometers. We also obtained single-dot spectraand took Hanbury-Brown-Twiss test on the signal light.
     4, We tested the multiple-measurement time-domain Bell inequalities.
     The debate between classical physical reality and quantum mechanics (QM) isalways a hot topic. As one of the focal issues, Leggett-Garg inequality have manysimilarities with Bell inequality. It corresponds to the non-locality of QM in time,so it is also called time-domain Bell inequality. We explained in this thesis how toextend the equality and how to evaluate the extension methods when more than threemeasurements were taken, and experimentally tested them.
     5, We experimentally measured the non-Markovianity of a pure dephasingdynamical evolution.
     Non-Markovian processes have become the central interest in the study of openquantum systems. We experimentally measure the non-Markovianity of a pure dephas-ing dynamical process in which a photon emitted from a single quantum dot is sent toa 100 m polarization-maintaining optical ?ber. This measure is described by the totalinformation ?owing back to the system from the environment. The information is car-ried by the photon polarization states. Our results may be helpful to the understandingof non-Markovian processes and to the development of quantum memory and quantumcommunication.
     6, We prepared some initial states containing the system-environment corre-lations, and witness the correlations by using a delay setup.
     Multiple-system correlations, which include not only quantum entanglement, playan important role in quantum computation and quantum communication. In particular,system-environment correlations, which determine the (non-) Markovian character ofa dynamical process, attract much interest in the study of open quantum systems. Wesend photons emitted from a quantum dot sample into a 15 m polarization-maintainingoptical ?ber to generate different system-environment correlated states, and then wit-ness the correlations by observing the growth of trace distances. The ?owing of in-formation between the system and environment in our experiment is clearly described. This scheme of correlation witness based on the system-environment information ?ow-ing can also be used in other similar systems.
引文
[1]曾谨言.量子力学(第四版)(科学出版社, 2007).
    [2] Fafard, S., Wasilewski, Z. R., Allen, C. N., et al. Phys. Rev. B 59, 15368 (1999).
    [3] Bayer, M., Stern, O., Hawrylak, P., et al. Nature 405, 923 (2000).
    [4] Lounis, B. and Orrit, M. Rep. Prog. Phys. 68, 1129 (2005).
    [5] Kimble, H. J., Dagenais, M. and Mandel, L. Phys. Rev. Lett. 39, 691 (1977).
    [6] Vuckovic, J., Fattal, D., Santori, C., et al. Appl. Phys. Lett. 82, 3596 (2003).
    [7] Dou, X.-M., Sun, B.-Q., Huang, S.-S., et al. Chin. Phys. Lett. 25, 501 (2008).
    [8] Kuno, M., Fromm, D. P., Hamann, H. F., et al. J. Chem. Phys. 112, 3117 (2000).
    [9] Li, X.-Q., Nakayama, H. and Arakawa, Y. Phys. Rev. B 59, 5069 (1999).
    [10] Mason, N., Biercuk, M. J. and Marcus, C. M. Science 303, 655 (2004).
    [11] Brus, L. E. J. Chem. Phys. 80, 4403 (1984).
    [12] Jeong, H., Chang, A. M. and Melloch, M. R. Science 293, 2221 (2001).
    [13] Gammon, D., Snow, E. S., Shanabrook, B. V., et al. Phys. Rev. Lett. 76, 3005 (1996).
    [14] Tang, J.-S., Li, C.-F., Gong, M., et al. Physica E 41, 797 (2009).
    [15] Rohwer, L. E. S., Abrams, B. L., Wilcoxon, J. P., et al. Proc. SPIE 5366, 66 (2004).
    [16] Shockley, W. and Queisser, H. J. J. Appl. Phys. 32, 510 (1961).
    [17] Christensen, O. J. Appl. Phys. 47, 690 (1976).
    [18] Schaller, R. D. and Klimov, V. I. Phys. Rev. Lett. 92, 186601 (2004).
    [19] Ellingson, R. J. and et al. Nano Lett. 5, 865 (2005).
    [20] Schaller, R. D., Sykora, M., Pietryga, J. M., et al. Nano Lett. 6, 424 (2006).
    [21] Brokmann, X., Messin, G., Desbiolles, P., et al. New J. Phys. 6, 99 (2004).
    [22] Pallab and Bhattacharya. Semiconductor Optoelectronic Devices (Prentice Hall, ISBN0134956567, 1997).
    [23] Wu, Y. doctoral thesis (2007).
    [24] Goldstein, L., Glas, F., Marzin, J. Y., et al. Appl. Phys. Lett. 47, 1099 (1985).
    [25] Ge′rard, J. M. Appl. Phys. Lett. 61, 2096 (1992).
    [26] Garc′ia, J. M., Medeiros-Ribeiro, G., Schmidt, K., et al. Appl. Phys. Lett. 71, 2014 (1997).
    [27] Le′ger, Y., Besombes, L., Maingault, L., et al. Phys. Rev. B 76, 045331 (2007).
    [28]黄昆,韩汝琦. (高等教育出版社, 1988).
    [29] Fermi, E. Nuclear Physics (University of Chicago Press, 1950).
    [30] Koudinov, A. V., Akimov, I. A., Kusrayev, Y. G., et al. Phys. Rev. B 70, 241305(R) (2004).
    [31] Xu, X. doctoral thesis (2008).
    [32] Luttinger, J. M. Phys. Rev. 102, 1030 (1956).
    [33] Snelling, M. J., Blackwood, E., McDonagh, C. J., et al. Phys. Rev. B 45, 3922 (1992).
    [34] van Kesteren, H. W., Cosman, E. C., van der Poel, W. A. J. A., et al. Phys. Rev. B 41, 5283(1990).
    [35]楼立人.固体中的光跃迁讲义.
    [36] Minnaert, A. W. E., Silov, A. Y., van der Vleuten, W., et al. Phys. Rev. B 63, 075303 (2001).
    [37] Li, X.-Q. and Arakawa, Y. Phys. Rev. B 57, 12285 (1998).
    [38] Hameau, S., Isaia, J. N., Guldner, Y., et al. Phys. Rev. B 65, 085316 (2002).
    [39] Fro¨hlich, H., Pelzer, H. and Zienau, S. Phil. Mag. 41, 221 (1950).
    [40] Fro¨hlich, H. Adv. Phys. 3, 325 (1954).
    [41] Preisler, V., Ferreira, R., Hameau, S., et al. Phys. Rev. B 72, 115309 (2005).
    [42] Verzelen, O., Ferreira, R. and Bastard, G. Phys. Rev. Lett. 88, 146803 (2002).
    [43] Preisler, V., Grange, T., Ferreira, R., et al. Phys. Rev. B 73, 075320 (2006).
    [44] Gong, M., Chen, G., He, L.-X., et al. Europhys. Lett. 90, 37004 (2010).
    [45] Aslan, B., Liu, H. C., Korkusinski, M., et al. Phys. Rev. B 73, 233311 (2006).
    [46] Li, X., Wu, Y., Steel, D., et al. Science 301, 809 (2003).
    [47] Bianucci, P., Muller, A., Shih, C. K., et al. Phys. Rev. B 69, 161303(R) (2004).
    [48] Sauvage, S., Boucaud, P., Lobo, R., et al. Phys. Rev. Lett. 88, 177402 (2002).
    [49] Mataloni, P., Jedrkiewicz, O. and Martini, F. Phys. Lett. A 243, 270 (1998).
    [50] Othonos, A. J. Appl. Phys. 83, 1830 (1998).
    [51] Messin, G., Hermier, J., Giacobino, E., et al. Opt. Lett. 26, 1891 (2001).
    [52] PTA说明书.
    [53] Chen, G., Tang, J.-S., Li, C.-F., et al. Physica E 42, 196 (2009).
    [54] Grosse, S., Sandmann, J., von Plessen, G., et al. Phys. Lett. B 55, 4473 (1997).
    [55] Boxberg, F. and Tulkki, J. Rep. Prog. Phys. 70, 1425 (2007).
    [56] Gebhard, T., Alvarenga, D., Souza, P. L., et al. J. Phys.: Conf. Ser. 167, 012001 (2009).
    [57] Bichler, S., Ester, P., Zrenner, A., et al. Appl. Phys. Lett. 85, 4202 (2004).
    [58] Beham, E., Zrenner, A., Findeis, F., et al. Appl. Phys. Lett. 79, 2808 (2001).
    [59] Yin, Z., Tang, X., Sentosa, D., et al. Nanotechnology 17, 1646 (2006).
    [60] Mialichi, J. R. and Frateschi, N. C. JOURNAL OF MATERIALS SCIENCE 43, 568 (2008).
    [61] Greilich, A., Oulton, R., Zhukov, E. A., et al. Phys. Rev. Lett. 96, 227401 (2006).
    [62] Gurudev Dutt, M. V., Cheng, J., Wu, Y., et al. Phys. Rev. B 74, 125306 (2006).
    [63] Loss, D. and DiVincenzo, D. P. Phys. Rev. A 57, 120 (1998).
    [64] Yuan, Z., Kardynal, B. E., Stevenson, R. M., et al. Science 295, 102 (2002).
    [65] Bennett, C. H. and Brassard, G. in Proceedings of the IEEE International Conference onComputers, Systems, and Signal Processing, Bangalore p. 175 (1984).
    [66] Waks, E., Inoue, K., Santori, C., et al. Nature 420, 762 (2002).
    [67] Marzin, J.-Y., Ge′rard, J.-M., Izrae¨l, A., et al. Phys. Rev. Lett. 73, 716 (1994).
    [68] Santori, C., Pelton, M., Solomon, G., et al. Phys. Rev. Lett. 86, 1502 (2001).
    [69] Yamauchi, S., Komori, K., Morohashi, I., et al. Appl. Phys. Lett. 87, 182103 (2005).
    [70] Fiore, A., Chen, J. X. and Ilegems, M. Appl. Phys. Lett. 81, 1756 (2002).
    [71] Monat, C., Alloing, B., Zinoni, C., et al. Nano Lett. 6, 1464 (2006).
    [72] Steier, W. H. APPLIED OPTICS 5, 1229 (1966).
    [73]亚里夫著,刘颂豪等译. (上海科学技术出版社, 1983).
    [74] Lobo, C., Leon, R., Marcinkevicˇius, S., et al. Phys. Rev. B 60, 16647 (1999).
    [75] Fiore, A., Rossetti, M., Alloing, B., et al. Phys. Rev. B 70, 205311 (2004).
    [76] Hegarty, J., Goldner, L. and Sturge, M. D. Phys. Rev. B 30, 7346 (1984).
    [77] Wang, G., Fafard, S., Leonard, D., et al. Appl. Phys. Lett. 64, 2815 (1994).
    [78] Yu, H., Lycett, S., Roberts, C., et al. Appl. Phys. Lett. 69, 4087 (1996).
    [79] Fiore, A., Borri, P., Langbein, W., et al. Appl. Phys. Lett. 76, 3430 (2000).
    [80] Lew, A. Y., Zuo, S. L., Yu, E. T., et al. Phys. Rev. B 57, 6534 (1998).
    [81] Sadofyev, Y. G., Ramamoorthy, A., Naser, B., et al. Appl. Phys. Lett. 81, 1833 (2002).
    [82] Bouwmeester, D., Ekert, A. and Zeilinger, A. The Physics of Quantum Information (Berlin:Springer, 2000).
    [83] Gullberg. Mathematics from the birth of numbers (New York: W. W. Norton. pp. 963–965.ISBN 039304002X, 1997).
    [84] Hanbury Brown, R. and Twiss, R. Q. Nature 177, 27 (1956).
    [85] Loudon, R. The Quantum Theory of Light (New York: Oxford University Press, 1983).
    [86] Walls, D. F. and Milburn, G. J. Quantum Optics (Berlin: Springer, 1994).
    [87] Mandel, L. and Wolf, E. Optical Coherence and Quantum Optics (Cambridge: CambridgeUniversity Press, 1995).
    [88] Scully, M. O. and Zubairy, M. S. Quantum Optics (Cambridge University Press, Cambridge,1997).
    [89] Bachor, H. A. A Guide to Experiments in Quantum Optics (Weinheim: Wiley, 1998).
    [90] Kimble, H. J. and Walls, D. F. J. Opt. Soc. Am. B 4, 1450 (1987).
    [91] Drummond, P. D. Quantum Squeezing (Berlin: Springer, 1999).
    [92] Xiao, M., Wu, L. A. and Kimble, H. J. Phys. Rev. Lett. 59, 278 (1987).
    [93] Polzik, E. S., Carri, J. and Kimble, H. J. Phys. Rev. Lett. 68, 3020 (1992).
    [94] Alspector, J., Gupta, B. and Allen, R. B. Adv. Neutral Inform. Process. Syst. 1, 741 (1989).
    [95] Rarity, J. G., Owens, P. C. M. and Tapster, P. R. J. Mod. Opt. 41, 2435 (1994).
    [96] Jennewein, T., Achleitner, U., Weihs, G., et al. Rev. Sci. Instrum. 71, 1675 (2000).
    [97] Stefanov, A., Guinnard, O., Guinnard, L., et al. J. Mod. Opt. 47, 595 (2000).
    [98] Brassard, G., Lu¨tkenhaus, N., Mor, T., et al. Phys. Rev. Lett. 85, 1330 (2000).
    [99] Lu¨tkenhaus, N. Phys. Rev. A 61, 052304 (2000).
    [100] Diedrich, F. and Walther, H. Phys. Rev. Lett. 58, 203 (1987).
    [101] Brunel, C., Lounis, B., Tamarat, P., et al. Phys. Rev. Lett. 83, 2722 (1999).
    [102] Gruber, A., Dra¨benstedt, A., Tietz, C., et al. Science 276, 2012 (1997).
    [103] Faye, J. Copenhagen interpretation of quantum mechanics. In Zalta, E. N. (ed.) The StanfordEncyclopedia of Philosophy (2008), fall 2008 edn.
    [104] Heisenberg, W. Zeitschrift fu¨r Physik 43, 172 (1927).
    [105] Einstein, A., Podolsky, B. and Rosen, N. Phys. Rev. 47, 777 (1935).
    [106] Bohr, N. Phys. Rev. 48, 696 (1935).
    [107] Kumar, M. Quantum (Icon Books, 2009).
    [108] Bohm, D. and Hiley, B. J. The Undivided Universe (Routledge, ISBN 0-415-06588-7, 1933).
    [109] Bell, J. S. Physics 1, 195 (1964).
    [110] Kochen, S. and Specker, E. P. Journal of Mathematics and Mechanics 17, 59 (1967).
    [111] Leggett, A. J. and Garg, A. Phys. Rev. Lett. 54, 857 (1985).
    [112] Clauser, J. F., Horne, M. A., Shimony, A., et al. Phys. Rev. Lett. 23, 880 (1969).
    [113] Freedman, S. J. and Clauser, J. F. Phys. Rev. Lett. 28, 938 (1972).
    [114] Bouwmeester, D., Pan, J. W., Daniell, M., et al. Phys. Rev. Lett. 82, 1345 (1999).
    [115] Mermin, N. D. Physics Today 43, 9 (1990).
    [116] Peres, A. J. Phys. A: Math. Gen. 24, L175 (1991).
    [117] Kernaghan, M. J. Phys. A 27, L829 (1994).
    [118] Huang, Y. F., Li, C. F., Zhang, Y. S., et al. Phys. Rev. Lett. 90, 250401 (2003).
    [119] Cabello, A. Phys. Rev. Lett. 101, 210401 (2008).
    [120] Kirchmair, G., Za¨hringer, F., Gerritsma, R., et al. Nature 460, 494 (2009).
    [121] Leggett, A. J. J. Phys. Condens. Matter 14, R415 (2002).
    [122] Jordan, A. N., Korotkov, A. N. and Bu¨ttiker, M. Phys. Rev. Lett. 97, 026805 (2006).
    [123] Ko?er, J. and Brukner, b. Phys. Rev. Lett. 99, 180403 (2007).
    [124] Williams, N. S. and Jordan, A. N. Phys. Rev. Lett. 100, 026804 (2008).
    [125] Huelga, S. F., Marshall, T. W. and Santos, E. Phys. Rev. A 52, R2497 (1995).
    [126] Avis, D., Hayden, P. and Wilde, M. M. Phys. Rev. A 82, 030102(R) (2010).
    [127] Xu, J. S., Li, C. F., Zou, X. B., et al. http://arxiv.org/abs/0907.0176v1 .
    [128] Goggin, M. E., Almeida, M. P., Barbieri, M., et al. Proceedings of the National Academy ofSciences of USA 108, 1256 (2011).
    [129] Palacios-Laloy, A., Mallet, F., Nguyen, F., et al. Nature Physics 6, 442 (2010).
    [130] Waldherr, G., Neumann, P., Huelga, S. F., et al. arXiv:1103.4949v1 [quant-ph],http://arxiv.org/abs/1103.4949 .
    [131] Barbieri, M. Phys. Rev. A 80, 034102 (2009).
    [132] Dou, X. M., Chang, X. Y., Sun, B. Q., et al. Appl. Phys. Lett. 93, 101107 (2008).
    [133] Xu, J. S., Li, C. F., Gong, M., et al. Phys. Rev. Lett. 104, 100502 (2010).
    [134] Parzen, E. Stochastic Processes (Holden-Day. ISBN 0-8162-6664-6, 1962).
    [135] Fischer, J. and Breuer, H. P. Phys. Rev. A 76, 052119 (2007).
    [136] Gorini, V., Kossakowski, A. and Sudarshan, E. C. G. J. Math. Phys. 17, 821 (1976).
    [137] Lindblad, G. Commun. Math. Phys. 48, 119 (1976).
    [138] Wolf, M. M., Eisert, J., Cubitt, T. S., et al. Phys. Rev. Lett. 101, 150402 (2008).
    [139] Laine, E. M., Piilo, J. and Breuer, H. P. Phys. Rev. A 81, 062115 (2010).
    [140] Breuer, H. P. and Petruccione, F. The Theory of Open Quantum Systems (Oxford UniversityPress, Oxford, 2007).
    [141] Breuer, H. P. Phys. Rev. A 75, 022103 (2007).
    [142] Jack, M. W. and Collett, M. J. Phys. Rev. A 61, 062106 (2000).
    [143] Stockburger, J. T. and Grabert, H. Phys. Rev. Lett. 88, 170407 (2002).
    [144] Piilo, J., Maniscalco, S., Ha¨rko¨nen, K., et al. Phys. Rev. Lett. 100, 180402 (2008).
    [145] Breuer, H. P. and Vacchini, B. Phys. Rev. Lett. 101, 140402 (2009).
    [146] Haake, F. and Reibold, R. Phys. Rev. A 32, 2462 (1985).
    [147] Hu, B. L., Paz, J. P. and Zhang, Y. Phys. Rev. D 45, 2843 (1992).
    [148] Grabert, H., Schramm, P. and Ingold, G. L. Phys. Rep. 168, 115 (1988).
    [149] S?telmachovic?, P. and Buz?ek, V. Phys. Rev. A 64, 062106 (2001).
    [150] Gemmer, J. and Michel, M. Europhys. Lett. 73, 1 (2006).
    [151] Schliemann, J., Khaetskii, A. and Loss, D. J. Phys.: Condens. Matter 15, R1809 (2003).
    [152] Coish, W. A. and Loss, D. Phys. Rev. B 70, 195340 (2004).
    [153] Bortz, M. and Stolze, J. Phys. Rev. B 76, 014304 (2007).
    [154] Michel, M., Mahler, G. and Gemmer, J. Phys. Rev. Lett. 95, 180602 (2005).
    [155] Xu, J. S., Li, C. F., Xu, X. Y., et al. Phys. Rev. Lett. 103, 240502 (2009).
    [156] Lai, C. W., Maletinsky, P., Badolato, A., et al. Phys. Rev. Lett. 96, 167403 (2006).
    [157] Shao, J. J. Chem. Phys. 120, 5053 (2004).
    [158] Pomyalov, A. and Tannor, D. J. J. Chem. Phys. 123, 204111 (2005).
    [159] Breuer, H. P., Laine, E. M. and Piilo, J. Phys. Rev. Lett. 103, 210401 (2009).
    [160] Xu, Z. Y., Yang, W. L. and Feng, M. Phys. Rev. A 81, 044105 (2010).
    [161] Rivas, a., Huelga, S. F. and Plenio, M. B. Phys. Rev. Lett. 105, 050403 (2010).
    [162] Nielsen, M. A. and Chuang, I. L. Quantum Computation and Quantum Information (Cam-bridge University Press, Cambridge, 2000).
    [163] Berglund, A. J. arXiv:quant-ph/0010001v2, http://arxiv.org/abs/quant-ph/0010001 .
    [164] Scala, M., Militello, B., Messina, A., et al. Phys. Rev. A 75, 013811 (2007).
    [165] James, D. F. V., Kwiat, P. G., Munro, W. J., et al. Phys. Rev. A 64, 052312 (2001).
    [166] Laine, E. M., Piilo, J. and Breuer, H. P. Europhys. Lett. 92, 60010 (2010).
    [167] Arshed, N., Toor, A. H. and Lidar, D. A. Phys. Rev. A 81, 062353 (2010).
    [168] Kwiat, P. G., Berglund, A. J., Altepeter, J. B., et al. Science 290, 498 (2000).
    [169] Ollivier, H. and Zurek, W. H. Phys. Rev. Lett. 88, 017901 (2001).
    [170] Henderson, L. and Vedral, V. J. Phys. A 34, 6899 (2001).
    [171] Bouwmeester, D., Pan, J. W., Mattle, K., et al. Nature 390, 575 (1997).
    [172] Pechukas, P. Phys. Rev. Lett. 73, 1060 (1994).
    [173] Alicki, R. Phys. Rev. Lett. 75, 3020 (1995).
    [174] Pechukas, P. Phys. Rev. Lett. 75, 3021 (1995).
    [175] Lindblad, G. J. Phys. A: Math. Gen. 29, 4197 (1996).
    [176] S?telmachovic?, P. and Buz?ek, V. Phys. Rev. A 67, 029902(E) (2003).
    [177] Jordan, T. F., Shaji, A. and Sudarshan, E. C. G. Phys. Rev. A 70, 052110 (2004).
    [178] Carteret, H. A., Terno, D. R. and Z˙yczkowski, K. Phys. Rev. A 77, 042113 (2008).
    [179] Rodr′iguez-Rosario, C. A., Modi, K., Kuah, A., et al. J. Phys. A: Math. Theor. 41, 205301(2008).
    [180] Shabani, A. and Lidar, D. A. Phys. Rev. Lett. 102, 100402 (2009).
    [181] Ban, M., Kitajima, S. and Shibata, F. J. Phys. A: Math. Gen. 38, 7161 (2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700