压电自适应微细电火花加工工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微细电火花加工技术作为一种重要的微细加工方法,因其具有设备简单、可控性好、无切削力、适用性强等一系列优点,在微小尺度零件的加工中获得大量应用,受到国内外学者的广泛关注。但由于其加工尺度微小引起的排屑困难、加工效率低、加工状态不稳定等问题已成为制约微细电火花加工技术发展的瓶颈。针对微细电火花加工中的上述问题,本文提出了一种新型的微细电火花加工方法——压电自适应微细电火花加工技术。
     该技术主要是利用压电陶瓷的逆压电效应,借鉴了传统RC电路电火花加工没有维持电压从而可以产生微能放电的优点,将压电陶瓷致动器集成到放电电路内部,使致动器本身作为电火花加工电路的一部分,用以驱动电极进给。每次脉冲放电,工具电极都在压电致动器的驱动下作伸缩运动,从而实现微进给。该加工技术可实现放电间隙与放电状态的自适应调整,能够有效减少稳态拉弧和短路现象的出现频率,并能实现短路自消除,从而可以大幅度提高电火花加工过程的稳定性及其加工效率。
     本文从压电自适应微细电火花小孔加工工艺实验出发,系统研究了各电参数对材料去除率、电极相对损耗率和加工表面粗糙度的影响规律,研究结果表明:开路电压和电容容值对材料去除率、电极相对损耗率和加工表面粗糙度均有较大影响,且随开路电压和电容的增加,材料去除率、电极相对损耗率和加工表面粗糙度均有所增大;限流电阻对材料去除率、电极相对损耗率和加工表面粗糙度的影响均不大。
     在分析电参数对各性能指标影响规律的基础上,选取适当的电参数,设计正交试验方案。采用信噪比分析法分析三水平四因素正交试验结果,得出了各电参数对工艺性能指标影响的主次关系。采用基于信噪比的灰关联度分析法,对各单项性能指标进行了工艺参数的优化,得出了针对单项工艺性能指标的最优化参数组合。随后将多项工艺指标的优化问题转化为单项灰关联度的最大化问题,实现了多目标工艺参数的优化。进行了实验验证,结果表明:该优化的参数组合情况下综合加工效果最优。
     采用人工神经网络的BP算法,以压电自适应微细电火花微小孔加工工艺实验的结果作为神经网络的学习样本,基于MATLAB软件平台建立了压电自适应微细电火花微小孔加工多目标工艺参数的预测模型。该模型能够较准确的预测出给定工艺参数条件下的加工时间、电极相对损耗率和表面粗糙度。
     本文的研究成果可用于压电自适应微细电火花加工的参数选择和工艺性能预测,对推动该技术的实际应用具有重要意义。
As an important micro machining method, micro electrical discharge machining (micro-EDM) is widely used in machining micro parts because of its a series of advantages, including simple equipment, easy control, free of machining force and good adaptability. Therefore, micro-EDM has been paid intense attention to by scholars both at home and abroad. However, the machining scale of micro-EDM is very small, causing difficult removal of discharge debris, low working efficiency and unstable machining state. All these problems restrict the development of micro-EDM. In order to overcome these shortcomings of micro-EDM, a new piezoelectric self-adaptive micro electrical discharge machining (PSMEDM) technology was developed in this paper.
     This PSMEDM method based on inverse piezoelectric effect of piezoceramics references the advantage of traditional RC circuit EDM, which hasn't maintaining voltage, having the ability of causing micro discharge energy. Piezoceramics actuator is integrated into discharge circuit, used to driving electrode. Tool electrode driven by piezoelectric actuator makes concertina movement each pulse discharge, achieving micro-feeding. This new technology can achieve the self-tuning regulation of discharge gap depending on discharge conditions, reduce the occurrence of arcing and short circuit, and can realize the self-elimination of short circuits, thus the machining efficiency and stability of the working process can be improved greatly.
     Based on PSMEDM micro-holes machining experiments, this paper systematic studied the effects of each electrical parameter on material removal rate (MRR), electrode wear ratio (EWR) and surface roughness (SR). Experimental results indicate that:open-circuit voltage and capacitance have greater effect on MRR, EWR and SR, and all the three performances increase with the increase of open-circuit voltage and capacitance. The effects of current-limiting resistance on MRR, EWR and SR are light.
     According to the analysis mentioned above, appropriate electrical parameters were determined to design orthogonal experiment project. Signal to noise ratio (SNR) method was used to analyze the three levels and four factors orthogonal experiment results, and the factors affecting the machining performances and their primary and secondary relations were obtained. Single objective optimization was finished adopting grey relational analysis method based on SNR. Then the optimization of multi-objective was transformed into the maximization of single grey relational grade, realizing the optimization of multiple performance objectives. Verification experiments were conducted, and the results indicate that:this optimal parameters combinatory can obtain optimal processing effect based on an overall consideration of various factors.
     Choosing PSMEDM micro-holes machining experiment results as the learning sample, the multiple performance objectives predictive model of PSMEDM micro-holes was proposed, with the BP algorithm of artificial neural network based on MATLAB software platform. The proposed model can relatively accurately predict process time, EWR and SR of setting process parameters.
     The research results of this paper can be used as the selection of optimal parameters and forecast of performances of PSMEDM, and have significance to promoting the practicability of PSMEDM technology.
引文
[1]明平美,胡洋洋,朱健.微细电火花加工MEMS器件技术关键分析[J].微纳电子技术.2005,(4):157-163.
    [2]王振龙.微细加工技术[M].北京:国防工业出版社,2005:1-6.
    [3]于云霞.微细电火花加工技术的最新进展及应用实例[J].电加工于模具.2003,(4):4-6.
    [4]林忠华,胡国清,刘文艳,等.微机电系统的发展及其应用[J].纳米技术与精密工程.2004,2(2):117-123.
    [5]贾正根.微细加工技术现状[J].电子工艺技术.1997,18(3):87-89.
    [6]赵波,程雪利,刘传绍,等.微细加工与装备技术进展[J].现代制造工程.2006,(6):143-146.
    [7]王振龙,赵万生,狄士春,等.微细电火花加工技术的研究进展[J].中国机械工程.2002,13(10):894-898.
    [8]李刚,赵万生.微细电火花加工及其关键技术[J].机械工程师.2004,(2):3-6.
    [9]刘晋春,刘家齐,赵万生.特种加工[M].第四版.北京:机械工业出版社,2004:7-8.
    [10]李明辉.电火花加工理论基础[M].北京:国防工业出版社,1989:1&20-25.
    [11]赵万生.先进电火花加工技术[M].北京:国防工业出版社,2003:115 116-118 27.
    [12]王振龙.微细电火花加工关键技术研究[D].哈尔滨工业大学博士学位论文,2000:21-43.
    [13]高升晖.微细及小孔电火花加工的关键技术研究[D].大连理工大学硕士学位论文,2008:5-7.
    [14]张庆.基丁RC微能电源的微细电火花加工数值模拟和试验研究[D].南京航空航天大学硕十学位论文,2008:6-8.
    [15]Kunieda M, Takaya T, Nakano S. Improvement of Dry EDM Characteristics Using Piezoelectric Actuator [J]. CIRP Annals-Manufacturing Technology.2004,53(1):183-186.
    [16]Hemsel T, Wallaschek J. Survey of the Present State of the Art of Piezoelectric Linear Motor[J]. Ultrasonics.2000,38(1-8):37-40.
    [17]Takasaki M, Kurosawa M, Higuchi T. State-of-the-art Surface Acoustic Linear Motor and its Future Applications[J]. Ultrasonics.2000,38(1-8):15-19.
    [18]Furutani K, Shibatani K, Itoh N, et al. A parallel Link End Effector for Scanning Electrical Discharge Machining Process [J]. Precision Engineering.1998,22(3):131-140.
    [19]颜国正,赵国光,余承业.微小型步距进给驱动装置及其应用研究[J].航空学报.1997,18(2):243-247.
    [20]李勇,王显军,周兆英,等.微细电火花加工关键技术研究[J].清华大学学报.1999,39(8):45-48.
    [21]冯晓光,詹涵菁,赵万生,等.微小型电极蠕动进给在电火花加工中的应用[J].中国机械工程.1998,9(8):15-17.
    [22]刘维东.基于超声马达的电极直接驱动式微型电火花加工装置研究[D].哈尔滨业大学博士 学位论文,1998:53-68.
    [23]赵万生,刘维东,王振龙,等.差动往复式微型电火花加工装置的研究[J].机械工程学报.2000,36(9):65-68.
    [24]王振龙,王玉魁,詹涵菁,等.一种集成式压电驱动微型电火花加工装置[J].压电与声光.2002,24(4):331-335.
    [25]张国春,李文卓.微细电火花加工微驱动机构设计[J].航空精密制造技术.2007,43(1):31-33.
    [26]甘雪松,赵万生,来新民,等.新型蠕动式微细电火花加工装置的设计开发[J].制造技术与机床.2007,(3):38-42.
    [27]刘伟,李勇,徐明刚,等.微细电极进给与激振机构及其微细孔电火花加工实验[J].电加工与模具.2008,(5):29-32.
    [28]张勇,张广玉,王振龙,等.微细电火花加工装置及其控制技术[J].上海交通大学学报,2008,42(1):78-82.
    [29]徐明刚,李勇,佟浩,等.微细孔电火花加工设备及其加工实验研究[J].电加工与模具,2009,(5):5-9.
    [30]易茂斌,房丰洲,王庆祎.微细电火花加工装置及加工工艺的研究[J].现代制造工程.2009,(3):70-74.
    [31]易茂斌.复合型微细电火花加工装置及工艺的研究[D].天津大学硕士学位论文,2008:10-183.
    [32]徐惠宇,朱荻.国外高深宽比微细结构制造技术的发展[J].传感器技术.2004,23(12):4-6.
    [33]于滨,赵万生,狄士春,等.异形孔的微细超声电火花加工技术研究[J].微细加工技术.2003,(1):44-50.
    [34]Klocke F, Raabe R, Wiesner G. Optimization of the EDM Sinking Process Using Neuron-fuzzy Control [C].12th International Symposium for ElectricoMachining (ISEM). Aachen, 1993:163-172.
    [35]井水淼.电火花微小孔加工控制方法及参数优化的研究[D].大连理工大学硕士学位论文,2008:6-7.
    [36]顾丰.电火花微小孔加工工艺参数优化及建模的研究[D].大连理工大学硕士学位论文,2005:433-52.
    [37]Masuzawa T, Tsukamoto J, Fujino M. Drilling of Deep Microholes by EDM [J]. CIRP Annals-Manufacturing Technology.1989,38(1):195-198.
    [38]Masuzawa T, Tonshoff H K. Three-Dimensional Micromachining by Machine Tools [J]. CIRP Annals-Manufacturing Technology.1997,46(2):621-628.
    [39]Yu Z Y, Rajurkar K P, Shen H. High Aspect Ratio and Complex Shaped Blind Micro Holes by Micro EDM [J]. CIRP Annals-Manufacturing Technology.2002,51(1):359-362.
    [40]Jahan M P, Wong Y S, Rahman M. A Study on the Quality Micro-hole Machining of Tungsten Carbide by Micro-EDM Process Using Transistor and RC-type Pulse Generator [J]. Journal of Materials Processing Technology.2009,209(4):1706-1716.
    [41]Bamberg E, Heamawatanachai S. Orbital Electrode Actuation to Improve Efficiency of Drilling Micro-holes by Micro-EDM [J]. Journal of Materials Processing Technology.2009, 209(4):1826-1834.
    [42]Egashira K, Morita Y, Hattori Y. Electrical Discharge Machining of Submicron holes Using Ultrasmall-diameter Electrodes [J]. Precision Engineering.2010,34(1):139-144.
    [43]宋小中,刘正埙,高长水.电火花微细加工技术及其发展[J].航空精密制造技术.1996,32(2):16-20.
    [44]Wang G, Shan Y. Compensation of Electrode Orbiting in Electrical Discharge Machining Based on Non-uniform Offsetting [J]. International Journal of Machine Tools & Manufacture. 2005,45(14):1628-1634.
    [45]伍端阳.提高电火花加工效率的工艺探讨[J].模具制造,2008,(7):74-79.
    [46]李利.喷雾电火花加工的实验研究[D].上海交通大学硕士学位论文,2007:38-57.
    [47]Kremer D, Lebrun J L, Hosari B, et al. Effects of Ultrasonic Vibrations on the Performances in EDM [J]. CIRP Annals-Manufacturing Technology.1989,38(1):199-202.
    [48]Zhao W S, Wang Z L, Di S C, et al. Ultrasonic and Electric Discharge Machining to Deep and Small Hole on Titanium Alloy [J]. Journal of Materials Processing Technology.2002, 120(1-3):101-106.
    [49]Gao C S, Liu Z X. A Study of Ultrasonically Aided Micro-electrical Discharge Machining by the Application of Workpiece Vibration [J]. Journal of Materials Processing Technology. 2003,139(1-3):226-228.
    [50]Zhang Q H, Zhang J H, Deng J X, et al. Ultrasonic Vibration Electrical Discharge Machining in Gas [J]. Journal of Materials Processing Technology.2002,129(1-3):135-138.
    [51]Zhang Q H, Du R, Zhang J H, et al. An Investigation of Ultrasonic-assisted Electrical Discharge Machining in Gas [J]. International Journal of Machine Tools & Manufacture. 2006,46(12-13):1582-1588.
    [52]翟德梅,段维峰.基于正交试验的电火花加工工艺效果试验分析[J].电加工与模具,2004,(S1):73-76.
    [53]崔晶,李勇,熊英,等.基于实验设计的电火花微小孔加工参数优化研究[J].电加工与模具.2006,(6):10-14.
    [54]孔凡国,黄伟.电火花加工工艺参数优化蚁群-模糊C均值算法的研究[J].机械制造.2006,44(502):39-41.
    [55]宋小中,刘正埙,高长水.电火花微细孔加工工艺实验研究[J].航空精密制造技术.1995,31(6):8-11.
    [56]贾振元,顾丰,王福吉,等.基于信噪比与灰关联度的电火花微小孔加工工艺参数的优化[J].机械工程学报.2007,43(7):63-67.
    [57]贾振元,周明,杨连文,等.电火花微小孔加工工艺参数的优化研究[J].机械工程学报.2003,39(2):106-112.
    [58]Lin J L, Lin C L. The Use of the Orthogonal Array with Grey Relational Analysis to Optimize the Electrical Discharge Machining Process with Multiple Performance Characteristics [J]. International Journal of Machine Tools & Manufacture.2002,42(2):237-244.
    [59]Singh P N, Raghukandan K, Pai B C. Optimization by Grey Relational Analysis of EDM Parameters on Machining A1-10%SiCP Composites [J]. Journal of Materials Processing Technology.2004,155-165:1658-1661.
    [60]Huang J T, Liao Y S. Optimization of Machining Parameters of Wire-EDM Based on Grey Relational and Statistical Analysis [J]. International Journal of Production Research.2003, 41(8):1707-1720.
    [61]焦建成,邢济收,杨大勇.电火花加工中最优加工条件的确定[J].北京机械工业学院学报.2004,19(1):66-70.
    [62]Behrens A, Ginzel J. Neuro-Fuzzy Process Control System for Sinking EDM [J]. Journal of Manufacturing Processes.2003,5(1):33-39.
    [63]Cook D F, Ragsdale C T, Major R L. Combining a Neural Network with a Genetic Algorithm for Process Parameter Optimization [J]. Engineering Applications of Artificial Intelligence.2000,13(1):391-396.
    [64]Cao F G, Yang D Y. The Study of High Efficiency and Intelligent Optimization System in EDM Sinking Process [J]. Journal of Materials Processing Technology.2004,149(1-3):83-87.
    [65]Kuriakose S, Shunmugam M S. Multi-Objective Optimization of Wire-Electro Discharge Machining Process by Non-Dominated Sorting Genetic Algorithm [J]. Journal of Materials Processing Technology.2005,170(1-2):133-141.
    [66]Krishna Mohana Rao G, Rangajanardhaa G, Hanumantha Rao D, et al. Development of Hybrid Model and Optimization of Surface Roughness in Electric Discharge Machining Using Artificial Neural Networks and Genetic Algorithm [J]. Journal of Materials Processing Technology.2009,209(3):1512-1520.
    [67]顾丰,贾振元,周明,等.基于信噪比的微小孔加工工艺参数的分析方法[J].工艺与装备.2006,(3):87-89转93.
    [68]Lin Y C, Chen Y F, Wang D A, et al. Optimization of Machining Parameters in Magnetic Force Assisted EDM Based on Taguchi Method [J]. Journal of Materials Processing Technology.2009,209(7):3374-3383.
    [69]Lin J L, Lin C L. The Use of Grey-Fuzzy Logic for the Optimization of the Manufacturing Process [J]. Journal of Materials Processing Technology.2005,160(1):9-14.
    [70]Tsai K M, Wang P J. Comparisons of Neural Network Models on Material Removal Rate in Electrical Discharge Machining [J]. Journal of Materials Processing Technology.2001, 117(1-2):111-124.
    [71]Puertas I, Luis C J. A Study on the Machining Parameters Optimisation of Electrical Discharge Machining [J]. Journal of Materials Processing Technology.2003,143-144:521-526.
    [72]Kunieda M, Takaya T, Nakano S. Improvement of Dry EDM Characteristics Using Piezoelectric Actuator [J]. CIRP Annals-Manufacturing Technology.2004,53(1):183-186.
    [73]李文卓.微细电火花加工系统及其相关技术的研究[D].哈尔滨工业大学博士学位论文,2002:74-7639-42.
    [74]韦红雨.应用线电极磨削法的电火花精微轴孔加工机理与工艺研究[D].哈尔滨工业大学博士学位论文,1999:56-72.
    [75]郑学华.不锈钢钻削加工工艺研究[J].机械制造.1994,(1):17-20.
    [76]索来春,郭永丰,刘维东,等.正交试验法在混粉电火花加工中的应用[J].航空精密制造技术.1998,134(4):16-17.
    [77]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001:35-40.
    [78]李泳鲜,孟庆国,姬振豫.三次设计中望目特性信噪比的讨论与改进[J].机械设计.2001,(1):10-12.
    [79]王万中主编.试验的设计与分析[M].北京:高等教育出版社,2004:200.
    [80]罗佑新,张龙庭,李敏著.灰色系统理论及其在机械工程中的应用[M].长沙:国防科技大学出版社,2001:2&19.
    [81]邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002:6-7.
    [82]吕锋.灰色系统关联度之分辨系数的研究[J].系统工程理论与实践.1997,(6):49-54.
    [83]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005:6988-89.
    [84]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].第二版.合肥:中国科学技术大学出版社,2003:45 46-48.
    [85]楼乐明,李明辉,彭颖红.利用神经网络建立电火花加工工艺模型[J].中国机械工程.2001,12(4):408-410.
    [86]Cao F G, Yang D Y. The Study of High Efficiency and Intelligent Optimization System in EDM Sinking Process [J]. Journal of Materials Processing Technology.2004,149(1-3):83-87.
    [87]邓宗庆.混粉电火花加工工艺及神经网络仿真研究[D].大连理工大学硕士学位论文,2007:43-4445.
    [88]Debabrata Mandal, Pal S K, Saha P. Modeling of Electrical Discharge Machining Process Using Back Propagation Neural Network and Multi-objective Optimization Using Non-dominating Sorting Genetic Algorithm-Ⅱ [J]. Journal of Materials Processing Technology. 2007,186(1-3):154-162.
    [89]S.K.Kenue. Efficient Activation Functions for the Back-propagation Neural Network [C]. International Joint Conference on Neural Networks. Singapore.1991,2:946.
    [90]周明.电火花微孔加工工艺规律的研究[D].大连理工大学硕士学位论文,2002:56-65.
    [91]Hecht-Nielsen R. Theory of the Back Propagation Neural Network [C]. International Joint Conference on Neural Networks. Washington.D.C.1989,1:593-605.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700