新型捣固装置设计及其电液激振器特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对我国疆域辽阔,铁路密集,新线施工与旧线维修工作量巨大,大型养路机械发展成其必然。捣固车作为一种大型养路机械设备高效出色地完成线路维护与施工的任务,其核心设备为捣固装置。捣固装置通过夹持与夯实激振机构产生高频振动作用于道床石碴,促使石碴成其“石流”均匀、密实排布于轨枕之下,保证轨枕铺设质量从而利于高速列车平稳运行。目前捣固车市场基本被奥地利、瑞士和美国三国公司垄断,产品均采用机械式强迫振动技术实现捣固镐与石碴碰撞,结果必然会降低捣固镐寿命,加之国内捣固车核心技术的自主创新仍旧处于起步阶段,因此,实现捣固装置的创新设计有着举足轻重的意义。
     本文基于国际现有的捣固装置技术和存在的问题,提出了一种液压激振与夹持运动独立的新型捣固装置,该装置采用新型电液激振器实现高频振动。论文首先分析了新型捣固装置的工作原理;建立了装置虚拟样机并进行仿真,同时对新装置进行了有限元分析;基于新型捣固装置激振原理设计了一种阀芯旋转式四通高速换向阀和微行程双作用液压缸;利用MATLAB/Simulink对电液激振器系统动态特性进行研究;利用计算流体动力学软件对激振液压缸工作腔内部进行流场可视化分析;最后设计了新型电液激振器试验台并拟定试验方案。
     论文主要研究内容如下:
     第一章论述了捣固装置的研究背景、结构、分类及现有三种主要的捣固装置激振特点,随后讲述了捣固装置的国内外发展现状。同时基于捣固装置采用的电液激振技术,对电液激振技术进行相关文献的跟踪学习,最后提出了本课题的研究内容及研究意义。
     第二章提出了一种新型捣固装置并阐述其工作原理;基于CAX技术创建装置虚拟样机并进行运动学分析,研究装置结构尺寸与性能参数之间的规律,从而确定基于新型捣固装置电液激振器的主要设计参数包括激振力、幅值、频率;同时对新装置从静力学、模态及接触非线性等三个方面进行有限元分析,保证装置应用强度。
     第三章基于新型捣固装置提出了一种新型电液激振器,阐述了其工作原理并对其中的关键元件一阀芯旋转式四通高速换向阀和微行程双作用液压缸进行原理分析与设计。换向阀采用步进电机驱动阀芯旋转,设计转阀峰值流量250L/min,液压缸采用自动限位方式避免液压缸活塞与端盖碰撞,最大幅值8mm,最大输出激振力25kN。
     第四章在MATLAB/Simulink环境下,通过简化建立电液激振器理论模型,分析研究换向阀频率、阀口周向导通宽度及液压缸限位孔数量对电液激振器系统动态特性的影响,为进一步优化元件设计提供依据。
     第五章利用Fluent软件对高频激振液压缸进行内部流场可视化研究。通过选取液压缸不同位置处的不同截面,对压力场、速度场及流场流线进行分析,分析高频振动工况下液压缸工作腔内部流场是否产生气蚀、气穴及漩涡带来的噪声与能量损失,从而为液压缸内部结构优化提供依据。
     第六章基于验证电液激振器性能及元件结构参数对其影响,本文在浙江大学流体传动与机电系统国家重点实验室原有“985”工程元件测试试验平台上,设计并加工电液激振器试验台。论文对试验台的机械结构、液压系统、负载模拟系统、参数测量与数据采集系统进行了设计与选型,并拟定电液激振器性能测试试验方案。
     第七章总结了论文主要研究工作与成果,并对今后进一步研究工作作了论述。
There will be lots of work of maintenance and construction in the railway fields because of wide area and intense railroads. As a result, large machinery has become popular. Tamper, the core equipment of tamping vehicle, is good at completing the work. The stones, which are excited by the squeeze and compaction device, flow in compact sequence under the bed ballast. Finally, fast trains have a good performance. At present, there are three main kinds of tampers on market from USA, Switzerland, Austria. Forced mechanical vibration technology is applied on these products which will reduce the life of tamping ends. So innovative design of tamper has an significance along with the development of tamper in China.
     A new type of tamper is proposed in the paper based on present products in the world. When product works, vibration and squeeze motion are separate. The vibration is realized by exciter used in the tamper. The operation principle of new tamper is studied at first. The three-dimension model and kinetic simulation are finished along with finite element analysis. A new type of rotary valve with high speed and minute-displacement double-rod cylinder are proposed. The dynamic properties are studied with the use of MATLAB/Simulink. The analysis of flow field of cylinder is finished by computation fluid dynamic software. At last, test rig design and plan of experiment are carried out.
     The studies are included as follows,
     In chapter 1, the research background, structure and characteristics of three main kinds of tamping device are formulated, as well as the current development state of tamping device. Then here come researches on the excitation technology applied on tamper. Finally the significance and research content of this subject are discussed.
     In chapter 2, a new type of tamping device is proposed and operation principle is formulated. The three-dimension model and kinetic simulation are finished with the use of CAX, which helps to study the relation between structural and performance parameters. As a result, the design of electrohydraulic exciter is determined. The statics, modal and non-linearity analyses are carried out.
     In chapter 3, a new type of electrohydraulic exciter is proposed based on the tamper. Operation principle is formulated. The designs of rotary valve and cylinder are carried out. The rotation of valve is realized by stepper motor. The compact between piston and wall is removed by the application of the auto-limitation structure of cylinder.
     In Chapter 4, the simulation model of electrohydraulic exciter is established with use of MATLAB/Simulink after the simplification. The relations between frequency of valve, conducting width of valve port, the number of ports of cylinder and dynamic characteristics of exciter are studied respectively, which do help to improve the design of valve and cylinder.
     In chapter 5, the flow field of cylinder with high frequency is studied with the use of Fluent. The pressure and velocity fields of different working positions and cross sections are studied. The study of cavitation erosion, air cavity and spiral vortex in the flow field of cylinder which bring in the noise and energy-loss is finished.
     In chapter 6, in order to verify the performance of electrohydraulic exciter as well as the relation between structural parameter and property, the design and machine of test rig are being carried out. The test rig is laid on the test platform of hydraulic part in SKL of ZJU. The mechanic part, hydraulic system, load model system, measurement and data acquisition system are designed. The product choosing is finished. At last, the experiment plan is determined.
     In Chapter 7, conclusions are given and new views are put forward in the future.
引文
[1]寇长青,周海浪.铁道工程施工机械[M].第一版.北京:机械工业出版社,2001.
    [2]吴和山,高春雷,王作汉.09-32型连续式捣固车国产化的必要性和可行性[J].铁道建筑1999,10:5-7.
    [3]程文明.回眸中国铁路养路机械设备的发展[J].现代管理,2006,4:181-182.
    [4]李毅松,翁敏红.D09-32型捣固装置的结构、功能及运动分析[J].机车车辆艺,2003(2).
    [5]应立军,李云召.新型捣稳一体化捣固装置的研究[J].工程机械,2008,39:20-23.
    [6]韩志青.捣固装置的振动分析[J].工程机械,1997(9).
    [7]E-马克兰德.振动对道床的效应.英国地质力学杂志,1981.No.9.
    [8]高兵,王有虹.CD08-475型捣固装置的结构原理分析[J].工装设备,2005(4):27-29.
    [9]王红.08-475型道岔捣固车[J].铁道建筑,2003,4:27-29.
    [10]赵明华,曾广冼,刘江波.填石料的振动压实变形特性及压实机理试验研究[J].铁道科学与工程学报,2006,3(4):41-45.
    [11]李夕兵,古德生,陈寿如.应力波作用下散体岩料的密实与能量耗损[J].中南矿冶学院学报,1994,25(5):570-574.
    [12]PLASSER BAHNBAUMASCH FRANZ (AT).Tamping machine for tamping ballast under the sleepers of a railway track[P]. EP1070787,2001.01.24.
    [13]FRANZ PLASSER BR BAHNBAUMASCHI (AT). Railway track tamping device and method[P]. EP1162309,2001.12.12.
    [14]FRANZ PLASSERBAHNBAUMASCHINEN (AT).Ballast Tamping Machine and Method for Tamping a Railway Track[P]. EP1403433,2004.03.31.
    [15]FRANZ PLASSERBAHNBAUMASCHINEN (AT).Ballast tamping machine with a machine frame and a tool carrier frame[P]. EP1378606,2004.01.07.
    [16]FRANZPLASSERBAHNBAUMASCHINEN(AT).Tamping machine[P] EP1387003,2004.02.04.
    [17]FRANZ PLASSERBAHNBAU MASCHINEN(AT). Ballast Tamping Machine and Method for Tamping a Railway Track. EP1403433[P].2004.03.31.
    [18]翁敏红.D08-32型捣固装置结构改进[J].机车车辆工艺,2005,9:11-14.
    [19]杜荣长.08-32型正线捣固车和08-475型道岔捣固车拨道系统几何原理分析[J].机车传动,2008,6:28-30.
    [20]翁敏红,聂志镇.08-32型捣固车液压作业系统压力不稳定的原因分析及对策措施[J].上海铁道科技,2005,1:40-42.
    [21]HARSCO CORP.Split tool mechanical vibrator[P].US5584248,1996.12.17.
    [22]HARSCO TECHNOLOGIES CORP (US). Split tool tamper[P].EP1172480 2002.01.16.
    [23]HARSCO TECHNOLOGIES CORP (US). Single shaft tamper with reciprocating rotational output[P].US6386114,2002.05.14.
    [24]HARSCO CORP (US). Split tool tamper[P].DE60125871D,2007.02.22.
    [25]HARSCO CORP (US). Split tool mechanical vibrator [P].W09629470,1996.09.26.
    [26]HARSCO CORP (US). Single shaft tamper with reciprocating rotational output[P].US6386114.2002.05.14.
    [27]MATISA MATERIEL IND SA(CH). Rail way track ballast tamping device [P]. DE3165697D,1984.09.27.
    [28]MATISA MATERIEL IND SA (CH). Railway track tamping device[P]. EP0050889, 1982.05.05.
    [29]MATISA MATERIEL IND SA. Railway ballast tamping machine[P]. EP0424322A1, 1991.04.24.
    [30]MATISA MATERIEL IND SA.Railway ballast tamping machine[P]. CH681027, 1992.12.31.
    [31]MATISA MATERIEL IND SA.Railway ballast tamping machine[P]. DE69002580T, 1994.03.31.
    [32]陈立旦.新型2D高频阀设计与性能分析[D].杭州:浙江工业大学,2006.
    [33]刘国斌.捣固装置作业特性分析及新型捣固装置研制[D].杭州:浙江大学2010.
    [34]屈维德.机械振动手册.机械工业出版社,1992,124-167.
    [35]Lang, Geore Fox, Electrodynamic shaker fundamentals. S V Sound and Vibration, 1997,31(4),14-23.
    [36]陈海明,胡新华,杨继隆.共振式电磁激振器振动系统的仿真分析[J].机床与液压2004,7:13-15.
    [37]于宝成,许步勤,寇子明.液压激振器振动参数的设计[J].煤矿机械2000,1:7-9.
    [38]寇子明,王文,廉红珍.旋转阀控差动缸式液压激振器仿真与实验研究[J].机床与液压,2009,37(12):85-87.
    [39]Alireza Riasi, Ahmad Nourbakhsh2, Mehrdad Raisee3. Numerical Modeling for Hydraulic Resonance in Hydropower Systems Using Impulse Response [J]. JOURNAL OF HYDRAULIC ENGINEERING,2010,136(11):929-934.
    [40]Y. Altintas, A. J. Lane. Design of an electro-hydraulic CNC press brake [J]. International Journal of Machine Tools and Manufacture,1997,37(1):45-59.
    [41]吴昌聚,沈润杰,何闻等.大尺寸高频振动台的设计.机电工程,2002(4),62-64
    [42]李蓉,刘混举.交流液压冲击系统测试方案设计.机械工程与自动化,2007(2),103-105.
    [43]阮健李胜.2D阀控电液激振器[J].机械工程学报,2009,45(11):125-131.
    [44]龚国芳,杨林勇,刘毅等.采用液压直接激振的捣固装置:中国,201010104678.6[P].2010-01-29.
    [45]龚国芳,杨林勇,刘毅等.一种液压激振与夹持运动独立的捣固装置:中国,201010104672.9[P].2010-01-29.
    [46]闵超庆,龚国芳,刘毅.新型捣固装置及运动学仿真[J].工程机械,2011,42(5)33-37
    [47]He Lei, Luo Jiaguang, HuangXueying, et al. The Researches of the Virtual Prototype Modeling and Simulation of Some Special Mechanical System[C]. New Jersey: Science Press USA Inc,2009:464-467.
    [48]闫开印,张卫华,李晓兵等.面向虚拟样机的车辆转向架设计自动化及属性获取[J].中国铁道科学,2005,26(6):13-17.
    [49]W Koc, A Wilk. Investigations of Methods to Measure Longitudinal Forces in Continuous Welded Rail Tracks Using the Tamping Machine [J]. Proceedings of the Institution of Mechanical Engineers Part F:Journal of Rail and Rapid Transit,2009, 223 (6):61-73.
    [50]A Barylski, W Koc, A Wilk. Longitudinal Forces in Railway Track and Tamping Machine Shifting Sets [J]. NDT&E International,1999,32 (8):445-455.
    [51]泮健,刘剑,施光林.基于Pro/Mechanism虚拟仿真的六自由度平台实时运动控 制[J].上海交通大学报2009,43(6):940-943.
    [52]龚曙光.ANSYS基础应用及范例解析[M].机械工业出版社,2003.
    [53]周昌玉,贺小华.有限元分析的基本方法及工程应用[M].化学工业出版社,2006.
    [54]宋向荣,李建康,郑立辉,冯锐.基于模态相关分析的发动机曲轴箱模型修正[J].机械设计与制造2010,3:213-215.
    [55]穆国宝,张丰利,陈剑,张金姐.基于有限元法的白车身模态和刚度研究[J].机械设计与制造2010,4:31-33.
    [56]齿轮箱箱体的有限元模态与试验模态分析[J].煤矿机械2010,31(5):92-93.
    [57]陈桂平,文桂林,崔中,于洪伟.高速磨床主轴模态测试与分析研究[J].湖南大学学报2010,37(4):22-26.
    [58]姚廷强,迟毅林,黄亚宇等.刚柔耦合齿轮三维接触动力学建模与振动分析[J].振动与冲击2009,28(2):167-171.
    [59]陈萌.基于虚拟样机的接触碰撞动力学仿真研究[D].武汉:华中科技大学,2003.
    [60]姚廷强,迟毅林,黄亚宇等.角接触球轴承的3D接触动态特性分析[J].机械设计与制造2007,10:1-4.
    [61]姚廷强,迟毅林,黄亚宇等.球轴承柔性多体动力学分析与接触振动研究[J].振动与冲击2009,28(10):158-162.
    [62]朱焜,洪嘉振,董富祥,余征跃.柔性圆柱杆接触碰撞实验研究[J].动力学与控制学报2009,7(2):125-128.
    [63]刘占生,叶建槐.刷式密封接触动态特性研究[J].航空动力学报2002,17(5):635-639.
    [64]姚廷强,迟毅林,黄亚宇等.主轴系统的刚柔耦合接触动力学仿真分析[J].机械科学与技术2007,26(11):1507-1510.
    [65]Alireza Riasi, Ahmad Nourbakhsh2, Mehrdad Raisee3. Numerical Modeling for Hydraulic Resonance in Hydropower Systems Using Impulse Response [J]. JOURNAL OF HYDRAULIC ENGINEERING,2010,136(11):929-934.
    [66]高满旭,崔文好,王律躬.新型液压激振器[J].重型机械,1994,1:52-55.
    [67]于宝成,许步勤,寇子明.液压激振器振动参数的设计[J].煤矿机械2000,1:7-9.
    [68]龚国芳,刘毅,闵超庆等.一种捣固装置的液压激振系统:中国,201010520147.5[P].2010-10-26.
    [69]Y. Altintas, A. J. Lane. Design of an electro-hydraulic CNC press brake [J]. International Journal of Machine Tools and Manufacture1997,37(1):45-59.
    [70]J Ruan, R T Burton. An electrohydraulic vibration exciter using a two dimensional valve. IMechE 2008, Vol.222 Part I:J. Systems and Control Engineering,1-13.
    [71]龚国芳,刘毅,闵超庆等.用于液压激振器的阀芯旋转式四通高速换向旋阀:中国,201010100305.1[P].2010-01-19.
    [72]张利平.液压传动设计指南[M].北京:化学工业出版社,2009.
    [73]李壮云.液压元件与系统[M].北京:机械工业出版社,2006.
    [74]陈福泉.往复式液压缸摩擦力的测定研究[J].研究·开发,2001,39(2)
    [75]王积伟,章宏甲,黄谊.液压与气压传动[M].北京:机械工业出版社,2006.
    [76]刘毅,龚国芳,闵超庆等.新型捣固装置的结构建模与仿真研究[J].浙大学报2011,45(11):1941-1947.
    [77]王春行.液压控制系统[M].北京:机械工业出版社,2006.
    [78]王传礼,丁凡,李其朋.对称四通阀控非对称液压缸伺服系统动态特性研究[J].中国机械工程2004,15(6):471-474.
    [79]肖晟,强宝民.基于对称四通阀控非对称液压缸的电液比例位置控制系统建模与仿真[J].机床与液压2009,6:49-53.
    [80]张静.MATLAB在控制系统中的应用[M].北京:电子工业出版社,2007:68-70.
    [81]王福军.计算流体动力学分析[M].北京:清华大学出版社,2005.
    [82]许慧.内流工况液压锥阀内部流场的三维可视化模拟与仿真[D].太原:太原理工大学,2007.
    [83]韩占忠王敬等.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [84]杜发荣,岳育元.柱塞油泵的流场数值研究[J].科学技术与工程2011,11(3)595-598.
    [85]孙丽,黄少青,仲峻峰.基于FLUENT的多回路泵流场数值模拟[J].设计与研究2010,1:72-75.
    [86]张京平.液压缸内动边界流场的数值分析[D].杭州:浙江大学,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700