锂对体外培养的成年大鼠激活态雪旺细胞的增殖、存活及功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雪旺细胞(SCs)是周围神经系统的主要胶质细胞,能够合成和分泌细胞表面粘附因子、细胞外基质蛋白及多种神经营养因子和相关受体,以促进轴突再生。雪旺细胞移植已被广泛应用于CNS脊髓损伤修复研究中。联合其他手段移植雪旺细胞能够更好得促进轴突再生和功能恢复。激活态SCs是修复脊髓损伤最佳的种子细胞之一,其分泌的大量的神经营养因子能够改善损伤区的微环境,促进损伤脊髓的功能恢复。体外培养SCs是自体移植的唯一途径,因此获得大量的保持其正常功能的SCs是我们关注的焦点。
     近年来,许多研究发现锂能够通过多种途径抑制GSK3b,从而启动促进细胞生长的保护机制。锂可以刺激干细胞、纹状体和前脑细胞等多种细胞的增殖,是一种低诱变和低致癌剂。此外我们还注意到胚胎干细胞培养液中白血病抑制因子能够调节细胞的分化、增殖和分型,而其中的2-巯基乙醇也可以促进细胞的增殖并且提高DNA的合成。因此本研究着眼于研究锂剂和胚胎干细胞条件培养液对SCs增殖、存活和功能的影响,并得到如下结果:
     1.根据不同类型细胞在覆层Lamminin的培养器皿上贴壁速度的差异,我们建立了一种简便、快捷分离纯化成年SCs的有效方法,获得了大量高纯度的自体SCs。纯化培养至3d,5d,大部分双极、三极样细胞胞体发出较长的突起,平行排列成束状。7-10d时基本融合成片。在细胞胞体及突起均有S100表达。培养5-10d,细胞增殖活性逐渐增高。7d时达最高峰,平稳持续至10d缓慢下降,14d后呈明显下滑趋势。流式细胞仪检测到纯化后细胞纯度可高达91%。
     2. 1mM和5mM氯化锂能够增强体外培养SCs的存活,其中5mM锂浓度作用最强,而0.1mM氯化锂则无此作用,高浓度10mM氯化锂甚至会产生毒性抑制作用,胚胎干细胞培养液培养的SCs与1mM锂作用效果接近,细胞生长状态及速度优于对照组SCs,但弱于5mM氯化锂组。
     3.相对于对照组而言,在不同时间点,5mM氯化锂组与干细胞条件培养基均对成年大鼠激活态SCs增殖能力有着显著的改善作用。
     4.通过体外共培养模型,运用免疫荧光标记方法观察锂剂诱导的成年激活态大鼠SCs对胚胎DRGn(dorsal root ganglia neuron背根节神经元)的轴突或突起生长的影响。与对照组相比,接触培养组单个神经元总突起和最长突起的平均长度均显著增长,SCs能够指引神经元突起生长的方向,轴突沿着SCs胞膜及突起伸展的方向迁移并保持密切的接触,提示细胞膜表面粘附分子是支持与引导神经突起生长的重要因素。此外在接触培养组,相较laminin基质层而言,神经元更加偏爱SCs,绝大部分DRGn生长在SCs聚集区内。同样,SCs对中枢海马神经元也有促进突起生长及引导支持的作用。
     5.在SCs/DRG共培养7d时,SCs突起开始粘附并紧贴DRG神经元突起生长,在此阶段,大部分SCs聚集在DRG神经元附近,胞体呈伸长样,围绕轴突延伸其细长突起。共培养10d后,培养物中开始出现MBP阳性表达,但并非在所有SCs突起上都有表达。随着时间的延长,在14d时,MBP阳性表达开始增强增多,可以看到大部分细胞突起都有表达。此时在电镜下观察SCs可以形成许多质膜包卷或纳入大的轴突。可看见围绕在SCs/轴突复合物的基板的形成。许多分化的SCs形成轴突系膜,松散包绕轴突至少2圈以上,形成幼稚型髓鞘。在SCs/DRG共培养35d时,光镜下观察到SCs包绕的轴突增粗增厚,形成明显可见的黑色条带(Fig.17A、B)。透射电镜下观察其超微结构,可看到紧密型髓鞘形成,约有十几层紧密薄层包绕粗大的轴突,轴突内散布有成束的小圆形微管。有许多细胞SCs以质膜包卷轴突全长,与轴突1∶1形成10-30层的紧密髓鞘板层,即为成熟型髓鞘。提示锂剂预处理的SCs在体外培养中经历了不同的髓鞘形成阶段。
     综上所述,经laminin选择纯化、锂剂预处理后的SCs在体外培养模型中仍然保持有正常的功能,没有出现功能丧失或缺无。与正常未处理SCs一样,具有支持、引导轴突或突起生长、延伸以及成髓鞘功能。那么这种经锂剂诱导增殖的SCs是安全有效的,它为我们下一步在体观察及移植治疗奠定了坚实的基础。
Schwann cells are the myelinating glial cells in the PNS and play a key role in Wallerian degeneration and subsequent regeneration due to their ability to dedifferentiate, migrate, proliferate, express growth promoting factors, and myelinate regenerating axons. In animal models of SCI, grafting Schwann cells or peripheral nerve into the lesion site has been shown to promote axonal regeneration and myelination. Combinatorial strategies with schwann cells and other emerging strategies for spinal cord repair to maximize axonal regeneration and functional recovery.
     Activated Schwann cell is one of the optimal cell candidates for the repair after SCI. Numerous NTFs secreted by AASCs can improve the microenvironment in the lesion site and promote functional recovery of spinal cord injured rats. Importantly, the development of in vitro systems to harvest human Schwann cells presents a unique opportunity for autologous transplantation in the clinic. To employ Schwann cells for transplantation into the spinal cord, large numbers of cells will be necessary.
     Recent studies revealed a mechanism that ties together these disparate effects of lithium. Lithium acts through multiple pathways to inhibit glycogen synthetase kinase-3 beta (GSK3b) and turn on cell growth and protection programs. Lithium also stimulates proliferation of stem cells, including bone marrow and neural stem cells in the subventricular zone, striatum, and forebrain. More Importantly, Lithium has low mutagenic and carcinogenic risk. Moreover we also noticed that 2-Mercaptoethanol may induce cell proliferation and enhance DNA synthesis and leukemia inhibitory factor can regulate cell differentiation, proliferation and phenotype. Therefore, we investigate the Effect of lithium and embryonic stem cell culture medium, respectively, on activated Schwann cells proliferation and survival in vitro and got the following results:
     1. Culture, purification and biological characters of adult Schwann cells from rat predegenerated sciatic nerve sciatic nerves from adult male rat were transected at the midthigh。Seven days later,the distal segment of the transected nerves were removed and used for adult SCs cultures。A simple, inexpensive method for purifying SCs, in which various harvested cell types showed different rates of attachment to the coated laminin culture ware in the initial stage of primary culture, was developed.
     2. The purified Schwann cells still exhibited a spindle-like shape with bipolar or tripolar morphology at 3 div, 5div, and align themselves parallel to each other in confluent cultures at 7div and 10div. Immunostaining for S100 antibodies showed that the staining was evident in the cell soma and the processes. The proliferation of purified SCs was monitored by visualizing Brdu incorporation using immunocytochemistry. The flow cytometric results which provided quantitative evidence of SCs purity was about 93% at 7 days in vitro. And within 10 day, SCs purity could reach above 91%.
     3. lower concentrations of lithium 0.1mM did not increase the total number of cells compared to the basal control level. Whereas the total number of cells cultured with both 1mM and 5mM lithium chloride was significantly higher than the control culture. Moreover,Treatment with lithium 10mM sharp decreased the number of cells compared with control,Suggested that high concentrations of lithium may be toxic to SCs. The total number of cells cultured with embryonic stem cell culture medium treatment significantly higher than the control culture.
     4. Five millimole of lithium maximally stimulated SCs proliferation in culture. Treatment with 5mM Lithium significantly increased the number of BrdU-positive Cells compared with control at both 5 day and 9 day. Likewise, the number of BrdU-positive cells cultured induced by 5mMLiCl cultures or condition medium was significantly higher than the control culture at different time points .
     5. The ability of these cells to be amplified still retain normal functionality is crucial. We demonstrated that when SCs were allowed to directly contact neurons, SCs could direct the orientation of regrowing neurits, and that axons grew parallel to the long axis of underlying fusiform SCs. In addition, both neuron bodies and axons preferred SCs over artificial substrates in the direct contact coculture.
     6. To test the ability of the amplified SCs to relate to neuronal surfaces, cells were periodically seeded onto DRG neurite beds and maintained for 7-14 days. To better visualize myelin formed in the cultures, selected cultures were immunostained for the myelin basic protein-MBP. When cells were planted onto neurites, they were seen to line up along the neurites and proliferate. Within the first week, the SCs flattened out on the neurites, extending processes along the axons. Myelin was first observed at 14d. And then, the number of myelin segments increased with time. At the ultrastructural level, some of the differentiated schwann cells formed a mesaxon that spiraled up to 3 turns around an axon at this stage of 14 DIV. Several very thin membranous with no compacted myelin were revealed around an axons. Compact myelin was revealed in co-cultures at 35 DIV. Many cases of segregated large axons were associated 1:1 with SCs and were wrapped with 10-30 layers of compast myelin sheath.
     From above results we can draw the conclusions that Lithium (1mM, 5mM) and embryonic stem cell culture medium, respectively, could improve significantly activated Schwann cells proliferation in vitro. However, higher concentrations of lithium at 10mM did not increase proliferation. Activated Schwann cells stimulated by lithium could support neurite outgrowth and myelinate axons in vitro.
引文
Ansselin AD, Corbeil SD, Davey DF. Culture of Schwann cells from adult animals. In Vitro Cell Dev Biol Anim 1995;31:253–4.
    Ard, M. D., R. P. Bunge, and M. B. Bunge. Comparison of the Schwann cell surface and Schwann cell extracellular matrix as promoters of neurite growth. J. Neurocytol. 16:539–555, 1987.
    Armstrong SJ, Wiberg M, Terenghi G, Kingham PJ (2007) ECM molecules mediate both Schwann cell proliferation and activation to enhance neurite outgrowth. Tissue Eng 13: 2863~2870.
    Armstrong SJ, Wiberg M, Terenghi G, Kingham PJ. Laminin activates NF-kappaB in Schwann cells to enhance neurite outgrowth. Neurosci Lett.2008 Jul 4;439(1):42-6.
    Barakat D.J., S.M. Gaglani, S.R. Neravetla, A.R. Sanchez, C.M. Andrade, Y. Press-man, R. Puzis,M.S. Garg,M.B. Bunge,D.D. Pearse, Survival, integration, and axon growth support of glia transplanted into the chronically contused spinal cord, Cell Transplant. 14 (2005) 225–240.
    Bergsteinsdottir K., Kingston A., Mirsky R., and Jessen K. R. (1991) Rat Schwann cells produce interleukin-1. J. Neuroimmunol. 34,15–23.
    Bermingham JR Jr, Scherer SS, O"Connell S, Arroyo E, Kalla KA, Powell FL, et al. Tst-1/Oct-6/SCIP regulates a unique step in peripheral myelination and is required for normal respiration. Genes Dev 1996;10:1751–62.
    Bhatheja K, Field J. Schwann cells: origins and role in axonal maintenance and regeneration. Int J Biochem Cell Biol 2006;38:1995–9.
    Bhattacharyya A, Frank E, Ratner N, Brackenbury R. P0 is an early marker of theSchwann cell lineage in chickens. Neuron 1991;7:831–44.
    Bixby JL., Lilien J., F.L. Reichardt, Identi?cation of the major proteins that promote neuronal process outgrowth on Schwann cells in vitro, J. Cell Biol. 107(1988) 353–361.
    Blanchard AD, Sinanan A, Parmantier E, Zwart R, Broos L, Meijer D, et al. Oct-6 (SCIP/Tst-1) is expressed in Schwann cell precursors, embryonic Schwann cells, and postnatal myelinating Schwann cells: comparison with Oct-1, Krox-20, and Pax-3. J Neurosci Res 1996;46:630–40.
    Bonni, A. et al. (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and–independent mechanisms. Science 286, 1358-1362.
    Britsch S, Goerich DE, Riethmacher D, Peirano RI, Rossner M, Nave KA, et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 2001;15:66–78.
    Britsch, S . Li Li, Kirchhoff S, et al . The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system[J]. Genes &Dev, 1998,12: 1825 - 1836.
    Brunet, A., Datta, S.R. and Greenberg, M.E. (2001) Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 11, 297-305.
    Bunge M.B., Bridging the transected or contused adult rat spinal cord with Schwann cell and olfactory ensheathing glia transplants, Prog. Brain Res. 137(2002) 275–282.
    Bunge M.B., P.M. Wood, Transplantation of Schwann cells and olfactory ensheathing cells to promote regeneration in the CNS, in: M.E. Selzer, S. Clarke, L.G. Cohen, P.W. Duncan, F.H. Gage (Eds.), Textbook of NeuralRepair and Reha-bilitation, vol. 1, Cambridge University Press, Cambridge, 2006, pp. 513–531
    Bunge, RP. The role of the Schwann cell in trophic support and regeneration. J. Neurol. 242:S19–S21, 1994.
    Bunge, RP. Tissue culture observations relevant to the study ofaxon–Schwann cell interactions during peripheral nerve development and repair. J. Exp. Biol. 132:21–34, 1987.
    Caama?o JN, Ryoo ZY, Thomas JA, Youngs CR. beta-mercaptoethanol enhances blastocyst formation rate of bovine in vitro-matured/in vitro-fertilized embryos.Biol Reprod. 1996 Nov;55(5):1179-84.
    Cade, J.F.J. Lithium salts in the treatment of psychotic excitement. Medical Journal of Australia 1949 36, 349-352
    Calderon-Martinez D, Garavito Z, Spinel C, Hurtado H (2002) Schwann cell-enriched cultures from adult human peripheral nerve: a technique combining short enzymatic dissociation and treatment with cytosine arabinoside (Ara-C). J Neurosci Methods 114:1–8
    Carlson C. D., Bai Y., Ding M., Jonakait G. M., and Hart R. P. (1996a) Interleukin-1 involvement in the induction of leukemia inhibitory factor mRNA expression following axotomy of sympathetic ganglia. J. Neuroimmunol. 70, 181–190.
    Carlson C. D., Bai Y., Jonakait G. M., and Hart R. P. (1996b) Interleukin-1 beta increases leukemia inhibitory factor mRNA levels through transient stimulation of transcription rate. Glia 18, 141–151.
    Casella G.T., R.P. Bunge, P.M. Wood, Improved method for harvesting human Schwann cells from mature peripheral nerve and expansion in vitro, Glia 17(1996) 327–338.
    Chalecka-Franaszek, E., Chuang, D.M., 1999. Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc. Natl. Acad. Sci. U. S. A. 96, 8745–8750.
    Chau C., D. Shum, H. Li, J. Pei, Y. Lui, L. Wirthlin, Y. Chan, X. Xu, Chondroitinase ABC enhances axonal regrowth through Schwann cell-seeded guidance channels after spinal cord injury, FASEB J 18 (2004) 194–196.
    Cheema S. S., Richards L. J., Murphy M., and Bartlett P. F. (1994a) Leukemia inhibitory factor rescues motoneurones from axotomy-induced cell death. Neuroreport 5, 989–992.
    Cheema S. S., Richards L. J., Murphy M., and Bartlett P. F. (1994b)Leukemia inhibitory factor prevents the death of axotomised sensory neurones in the dorsal root ganglia of the neonatal rat. J. Neurosci. Res. 37, 213–218
    Chen G, Rajkowska G, Du F , et al . Enhancement of hippocampal neurogenesis by lithium [J]. J Neurochem , 2000 , 75 ( 4 ) : 1729 -1734.
    Chen S , Velardez M O , Warot X , et al . Neuregulin erbB signaling is necessary for normal myelination and sensory function [J ] .Neuroscience , 2006 ,26 (12) :3079286.
    Cheng HL, Steinway M, Delaney CL, Franke TF, Feldman EL. IGF-I promotes Schwann cell motility and survival via activation of Akt. Mol Cell Endocrinol 2000;170:211–5. [PubMed: 11162904]
    Chin PC, Majdzadeh N, D’Mello SR. Inhibition of GSK3beta is a common event in neuroprotection by different survival factors [J]. Brain Res Mol Brain Res, 2005, 137 (1 - 2):193 - 201.
    Colognato H , Galvin J , Wang Z , et al . Identification of dystroglycan as asecond laminin receptor in oligodendrocytes , wit h arole in myelination [J ] . Development , 2007 ,134 (9) :1723236.
    Corson, T.W. et al. (2004) Cell-type specific regulation of calreticulin and Bcl-2 expression by mood stabilizer drugs. Eur Neuropsychopharmacol 14, 143-150.
    Cui H, Meng Y, Bulleit RF (1998) Inhibition of glycogen synthase kinase 3beta activity regulates proliferation of cultured cerebellar granule cells. Brain Res Dev Brain Res 111:177–188.
    Decker L, Desmarquet-Trin-Dinh C, Taillebourg E, Ghislain J, Vallat JM, Charnay P. Peripheral myelin maintenance is a dynamic process requiring constant Krox20 expression. J Neurosci 2006;26:9771–9.
    Delwel GO, Hogervorst F, Sonnenberg A. Cleavage of the alpha6A sub-unit is essential for activation of the alpha6Abeta1 integrin by phorbol 12-myristate 13-acetate. J Biol Chem 1996;271:7293–6.
    Doetsch F. A niche for adult neural stem cells. Curr Opin Genet Dev 2003b;13:543–50.
    Dong Z, Brennan A, Liu N, Yarden Y, Lefkowitz G,Mirsky Ret al. (1995) NDF is a neuron-glia signal and regulates survival,proliferation, and maturation of rat Schwann cell precursors.Neuron 15, 585–596.
    Eccleston PA, Collarini EJ, Jessen KR, Mirsky R, Richardson WD. Schwann cells secrete a PDGF-like factor: evidence for an autocrine growth mechanism involving PDGF. Eur J Neurosci 1990;2:985–92.
    Eldridge CF, Bunge MB, Bunge RP, Wood PM. Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J Cell Biol. 1987 Aug;105(2):1023-34.
    Escargueil AE, Plisov SY, Filhol O, Cochet C, Larsen AK. Mitoticphosphorylation of DNA topoisomerase II alpha by protein kinase CK2 creates the MPM-2 phosphoepitope on Ser-1469.J Biol Chem. 2000 Nov 3;275(44):34710-8.
    Fawcett JW, Keynes RJ. Peripheral nerve regeneration. Annu Rev Neurosci 1990;13:43–60.
    Frey, B.N., Andreazza, A.C., Cereser, K.M., Martins, M.R., Valvassori, S.S., Reus, G.Z., Quevedo, J., Kapczinski, F., 2006. Effects of mood stabilizers on hippocampus BDNF levels in an animal model of mania. Life Sci. 79, 281–286.
    Garratt AN, Voiculescu O, Topilko P, Charnay P, Birchmeier C. A dual role of erbB2 in myelination and in expansion of the Schwann cell precursor pool. J Cell Biol 2000;148:1035–46.
    Gavrilovic J, BrennanA,Mirsky R, JessenKR (1995) Fibroblast growth factors and insulin growth factors combine to promote survival of rat Schwann cell precursors without induction of DNA synthesis. European Journal of Neuroscience 7, 77–85.
    Golden K.L., D.D. Pearse, B. Blits, M.S. Garg, M. Oudega, P.M.Wood, M.B. Bunge, Transduced Schwann cells promote axon growth and myelination after spinal cord injury, Exp. Neurol. 207 (2007) 203–217.
    Gould, T.D. et al. (2004) Emerging experimental therapeutics for bipolar disorder: insights from the molecular and cellular actions of current mood stabilizers. Mol Psychiatry 9, 734-755.
    Gould, T.D., Manji, H.K., 2005. Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology 30,1223–1237.
    Grimes, C.A. and Jope, R.S. (2001) CREB DNA binding activity is inhibited byglycogen synthase kinase-3 beta and facilitated by lithium. J Neurochem 78, 1219-1232.
    Grimpe B., Y. Pressman, M.D. Lupa, K.P. Horn, M.B. Bunge, J. Silver, The role of proteoglycans in Schwann cell/astrocyte interactions and in regeneration failure at PNS/CNS interfaces, Mol. Cell. Neurosci. 28 (2005) 18–29
    Hagedorn L, Paratore C, Brugnoli G, Baert JL, Mercader N, Suter U, et al. The Ets domain transcription factor Erm distinguishes rat satellite glia from Schwann cells and is regulated in satellite cells by neuregulin signaling. Dev Biol 2000;219:44–58.
    Hagedorn L, Suter U, Sommer L. P0 and PMP22 mark a multipotent neural crest-derived cell type that displays community effects in response to TGF-beta family factors. Development 1999;126:3781–94.
    Hansen, T.O., Rehfeld, J.F. and Nielsen, F.C. (2004) GSK-3beta reduces cAMP-induced cholecystokinin gene expression by inhibiting CREB binding. Neuroreport 15, 841-845.
    Hashimoto, R. et al. (2002) Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology 43, 1173-1179.
    Hashimoto, R. et al. (2003) Lithium-induced inhibition of Src tyrosine kinase in rat cerebral cortical neurons: a role in neuroprotection against N-methyl-D-aspartate receptor-mediated excitotoxicity. FEBS Lett 538, 145-148.
    Hashimoto, R., Senatorov, V., Kanai, H., Leeds, P., Chuang, D.M., 2003. Lithium stimulates progenitor proliferation in cultured brain neurons. Neu-roscience 117, 55–61.
    Hashimoto, R., Takei, N., Shimazu, K., Christ, L., Lu, B., Chuang, D.M., (2002) Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology 43, 1173–1179.
    Hedayatpour A, Sobhani A, Bayati V et al (2007) A method for isolation and cultivation of adult Schwann cells for nerve conduit. Arch Iran Med 10:474–480
    Hennion, J.P. et al. (2002) Evaluation of neuroprotection by lithium and valproic acid against ouabain-induced cell damage. Bipolar Disord 4, 201-206,
    Herbarth B, Pingault V, Bondurand N, Kuhlbrodt K, Hermans-Borgmeyer I, Puliti A, et al. Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci USA 1998;95:5161–5.
    Hirabayashi Y, Itoh Y, Tabata H, et al. The Wnt / beta2catenin pathway directs neuronal differentiation of cortical neural precursorcells [J]. Development, 2004, 131 (12):2791 - 2801.
    Hongisto, V. et al. (2003) Lithium blocks the c-Jun stress response and protects neurons via its action on glycogen synthase kinase 3. Mol Cell Biol 23, 6027-6036.
    Hou, X.Y. et al. (2002) Activation of NMDA receptors and L-type voltage-gated calcium channels mediates enhanced formation of Fyn-PSD95-NR2A complex after transient brain ischemia. Brain Res 955, 123-132.
    Hsu J.-Y.C., X.M. Xu, Early pro?les of axonal growth and astroglial response after spinal cord hemisection and implantation of Schwann cell-seeded guidance channels in adult rats, J. Neurosci. Res. 82 (2005) 472–483.
    Huelsken, J. and Behrens, J. (2002) The Wnt signalling pathway. J Cell Sci 115,3977-3978.
    Ide C (1996) Peripheral nerve regeneration. Neurosci Res25:101–121
    Jenny Fortuna, Caitlin E. Hilla, Mary Bartlett Bunge, Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord, Neuroscience Letters 456 (2009) 124–132
    Jessen KR, Brennan A, Morgan L, Mirsky R, Kent A, Hashimoto Y et al. (1994) The Schwann cell precursor and its fate : a study of cell death and di?erentiation during gliogenesis in rat embryonic nerves. Neuron 12, 509–527.
    Jessen KR, Mirsky R. Origin and early development of Schwann cells. Microsc Res Technol 1998;41:393–402.
    Jessen KR, Mirsky R. Signals that determine Schwann cell identity. J Anat 2002;200:367–76.
    Jessen KR, Mirsky R. The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 2005;6:671–82.
    Jin YQ, Liu W, Hong TH, Cao Y (2008) Ef?cient Schwann cell puri?cation by differential cell detachment using multi-plex collagenase treatment. J Neurosci Methods 170:140–148
    Johnson MH, Nasr-Esfahani MH.Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? Bioessays. 1994 Jan;16(1):31-8. Review.
    Jope, R.S. (2003) Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci 24, 441-443.
    Jope, R.S. and Bijur, G.N. (2002) Mood stabilizers, glycogen synthasekinase-3beta and cell survival. Mol Psychiatry 7 Suppl 1, S35-45.
    Keilhoff G, Fansa H, Smalla KH et al (2000) Neuroma: a donor-age independent source of human Schwann cells for tissue engineered nerve grafts. Neuroreport 11:3805–3809
    Kieseppa, T. et al. (2003) Reduced left hemispheric white matter volume in twins with bipolar I disorder. Biol Psychiatry 54, 896-905.
    Kim EJ, Simpson PJ, Park DJ, Liu BQ, Ronnett GV, Moon C. Leukemia inhibitory factor is a proliferative factor for olfactory sensory neurons. Neuroreport. 2005;16(1):25-8. Erratum in: Neuroreport. 2005 Feb 28;16(3):311
    Kim SM, Lee SK, Lee JH (2007) Peripheral nerve regeneration using a three dimensionally cultured schwann cell conduit. J Craniofac Surg 18: 475-488.
    Kim, J.S., Chang, M.Y., Yu, I.T., Kim, J.H., Lee, S.H., Lee, Y.S., Son, H., 2004 Lithium selectively increases neuronal differentiation of hippocampal neuraprogenitor cells both in vitro and in vivo. J. Neurochem. 89, 324–336.
    Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 93:8455–8459.
    Kleitman, N.,Wood, P.M., Bunge, R.P., (1997). Tissue culture methods for the study of myelination. In: Cowan, W.M., Jessell, T.M., Zipursky, S.L.(Eds.), Molecular and cellular approaches to neural development.Oxford University Press, New York Oxford, pp. 337–377.
    Komiyama T, Nakao Y, Toyama Y et al (2003) A novel technique to isolate adult Schwann cells for an arti?cial nerve conduit. J Neurosci Methods 122:195–200
    Kopnisky, K.L. et al. (2003) Chronic lithium treatment antagonizes glutamate-induced decrease of phosphorylated CREB in neurons viareducing protein phosphatase 1 and increasing MEK activities. Neuroscience 116, 425-435.
    Koski CL. Mechanisms of Schwann cell damage in inflammatory neuropathy. J Infect Dis 1997;176 (Suppl 2):S169–72.
    Krekoski, C.A., Neubauer, D., Zuo, J., Muir, D., 2001. Axonal regeneration into acellular nerve grafts is enhanced by degradation of chondroitin sulfate proteoglycan. J. Neurosci.21, 6206–6213.
    La Fleur M, Underwood JL, Rappolee DA, Werb Z. Basement membrane and repair of injury to peripheral nerve: de?ning a potential role for macrophages, matrix metalloproteinases, and tissue inhibitor of metalloproteinases-1. J Exp Med 1996;184:2311–26.
    Lavdas AA, Papastefanaki F, Thomaidou D, Matsas R (2008) Schwann cell transplantation for CNS repair. Curr Med Chem 15: 151~160.
    Leblanc SE, Srinivasan R, Ferri C, Mager GM, Gillian-Daniel AL, Wrabetz L, et al. Regulation of cholesterol/lipid biosynthetic genes by Egr2/Krox20 during peripheral nerve myelination. J Neurochem 2005;93:737–48.
    Lee M, Brennan A, Blanchard A, Zoidl G, Dong Z, Tabernero A, et al. P0 is constitutively expressed in the rat neural crest and embryonic nerves and is negatively and positively regulated by axons to generate non-myelin-forming and myelin-forming Schwann cells, respectively. Mol Cell Neurosci 1997;8:336–50.
    Lim JM, Liou SS, Hansel W. Intracytoplasmic glutathione concentration and the role of beta-mercaptoethanol in preimplantation development of bovine embryos. Theriogenology. 1996 Aug;46(3):429-39.
    Liu, Y. et al. (2001) NMDA receptor activation results in tyrosine phosphorylation of NMDA receptor subunit 2A(NR2A) and interaction ofPyk2 and Src with NR2A after transient cerebral ischemia and reperfusion. Brain Res 909, 51-58.
    Lyons DA, Pogoda HM, Voas MG, Woods IG, Diamond B, Nix R, et al. erbb3 and erbb2 are essential for schwann cell migration and myelination in zebrafish. Curr Biol 2005;15:513–24.
    Mackinnon SE, Dellon AL (1990) A study of nerve regeneration across synthetic (Maxon) and biologic (collagen) nerve conduits for nerve gaps up to 5 cm in the primate. J Reconstr Microsurg 6:117–121
    Martinou J. C., Martinou I., and Kato A. C. (1992) Cholinergic differentiation factor (CDF/LIF) promotes survival of isolated rat embryonic motoneurons in vitro. Neuron 8, 737–744.
    Mauritz C, Grothe C, Haastert K (2004) Comparative study of cell culture and puri?cation methods to obtain highly enriched cultures of proliferating adult rat Schwann cells. J Neurosci Res 77:453–461
    McKerracher L., H. Higuchi, Targeting Rho to stimulate repair after spinal cord injury, J. Neurotrauma 23 (2006) 309–317
    Meier C, Parmantier E, Brennan A, Mirsky R, Jessen KR. Developing Schwann cells acquire the ability to survive without axons by establishing an autocrine circuit involving insulin-like growth factor, neurotrophin-3, and platelet-derived growth factor-BB. J Neurosci 1999;19:3847–59.
    Meijer, L., Flajolet, M., Greengard, P., 2004. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol. Sci. 25, 471–480.
    Meijs M.F.L., L. Timmers, D.D. Pearse, P.A. Tresco, M.L. Bates, E.A.J. Joosten, M.B. Bunge, M. Oudega, Basic ?broblast growth factor promotes neuronal survival but not behavioral recovery in the transected and Schwann cell implanted rat thoracic spinal cord, J. Neurotrauma 21 (2004) 1415–1430.
    Michael K. Rowe and De-Maw Chuang, Molecular Medicine, 2004,6(22):1~18
    Michailov G V , Eeda W, Brinkmann B G, et al . Axonal neuregulin regulates myelin sheat h t hickness [ J ] . Science , 2004 , 304(5671) :7002703.
    Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B, Birchmeier C, et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science 2004;304:700–3.
    Mirsky R, Jessen KR (1996) Schwann cell development, di?erentiation and myelination. Current Opinion in Neurobiology 689–96.
    Mirsky R, Jessen KR, Brennan A, et al . Schwann cells as regulators on nerve development[ J ]. J Physiol Paris, 2002, 96: 17 - 24.
    Mirsky R, Jessen KR. The neurobiology of Schwann cells. Brain Pathol 1999;9:293–311.
    Mirsky R, Parkinson DB, Dong Z, Meier C, Calle E, Brennan A, et al. Regulation of genes involved in Schwann cell development and differentiation. Prog Brain Res 2001;132:3–11.
    Mirsky R, Stewart HJ, Tabernero A, Bradke F, Brennan A, Dong Z, et al. Development and differentiation of Schwann cells. Rev Neurol (Paris) 1996;152:308–13.
    Mitchell PJ, Timmons PM, Hebert JM, Rigby PW, Tjian R. Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev 1991;5:105–19.
    Morrison SJ, White PM, Zock C, Anderson DJ. Prospective identification, isolation by flow cytometry and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 1999;96:737–49.
    Morrissey TK, Bunge RP, Kleitman N (1995a) Human Schwann cells in vitro. I. Failure to differentiate and support neuronal health under co-cultureconditions that promote full function of rodent cells. J Neurobiol 28:171–189
    Morrissey TK, Kleitman N, Bunge RP (1995b) Human Schwann cells in vitro. II. Myelination of sensory axons following extensive puri?cation and heregulin-induced expansion. J Neurobiol 28:190–201
    Mosahebi, A.,Wiberg,M., Terenghi, G., 2003. Addition of fibronectin to alginatematrix improves peripheral nerve regeneration in tissue-engineered conduits. Tissue Eng. 9, 209–218.
    Mosser, D.D. et al. (2000) The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 20, 7146-7159,
    Murphy M., Reid K., Brown M. A., and Bartlett P. F. (1993) Involvement of leukemia inhibitory factor and nerve growth factor in the development of dorsal root ganglion neurones. Development 117,1173–1182.
    Nave K A , Salzer J L. Axonal regulation of myelination by neu2 regulin 1 [J ] . Curr Opin Neurobiol , 2006 ,16 (5) :4922500.
    Nonaka, S., Hough, C.J. and Chuang, D.M. (1998), Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx. Proc Natl Acad Sci U S A 95, 2642-2647.
    Notterpek L. Neurot rophins in myelination : a new role for a puzzling receptor [J ] . Trends Neurosci , 2003 ,26 (5) :2322234.
    Oda Y, Okada Y, Katsuda S et al (1989) A simple method for the Schwann cell preparation from newborn rat sciatic nerves. J Neurosci Methods 28:163–169
    Ogata T, Yamamoto S, Nakamura K, Tanaka1 S (2006) Signaling axis in schwann cell proliferation and differentiation. Mol Neurobiol 33: 51~61.
    Ohteki T, Parsons M, Zakarian A, Jones RG, Nguyen LT, Woodgett JR, Ohashi PS (2000) Negative regulation of T cell proliferation and interleukin production by the serine threonine kinase GSK-3. J Exp Med 192:99–104.
    Pannunzio ME, Jou IM, Long A et al (2005) A new method of selecting Schwann cells from adult mouse sciatic nerve. J Neurosci Methods 149:74–81
    Paratore C, Goerich DE, Suter U, Wegner M, Sommer L. Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development 2001;128:3949–61.
    Pearse DD, Marcillo AE, Oudega M et al (2004) Transplantation of Schwann cells and olfactory ensheathing glia after spinal cord injury: does pretreatment with methyl-prednisolone and interleukin-10 enhance recovery? J Neurotrauma 21:1223–1239
    Pennica D, Arce V et al (1996) Cardiotrophin-1, a cytokine present in embryonic muscle, supports long-term survival of spinal motoneurons. Neuron 17(1):63–74.
    Porter S, Glaser L, Bunge RP. Release of autocrine growth factor by primary and immortalized Schwann cells. Proc Natl Acad Sci USA 1987;84:7768–72.
    Rantamaki, T., Knuuttila, J.E., Hokkanen, M.E., Castren, E., 2006. The effects of acute and long-term lithium treatments on trkB neurotrophin receptor activation in the mouse hippocampus and anterior cingulate cortex. Neuropharmacology 50, 421–427.
    Ren, M. et al. (2003) Postinsult treatment with lithium reduces brain damage and facilitates neurological recovery in a rat ischemia/reperfusion model. Proc Natl Acad Sci U S A 100,6210-6215.
    Robertson AM, King RH, Muddle JR, Thomas PK. Abnormal Schwann cell/axoninteractions in the Trembler-J mouse. J Anat 1997;190(Part 3):423–32.
    Rodriguez FJ, Verdu E, Ceballos D, Navarro X. Nerve guides seeded with autologous schwann cells improve nerve regeneration. Exp Neurol 2000;161:571–84.
    Rothblum K, Stahl RC, Carey DJ (2004) Constitutive release of alpha4 type V collagen N-terminal domain by Schwann cells and binding to cell surface and extracellular matrix heparan sulfate proteoglycans. J Biol Chem 279:51282–51288
    Russo-Neustadt, A. (2003) Brain-derived neurotrophic factor, behavior, and new directionfor the treatment of mental disorders. Semin Clin Neuropsychiatry 8, 109-118.
    Ryves, W.J. and Harwood, A.J. (2001) Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem Biophys Res Commun 280, 720-725.
    Segal, R.A. and Greenberg, M.E. (1996) Intracellular signaling pathways activated by neurotrophic factors. Annu Rev Neurosci 19, 463-489.
    Shah NM, Anderson DJ. Integration of multiple instructive cues by neural crest stem cells reveals cell-intrinsic biases in relative growth factor responsiveness. Proc Natl Acad Sci USA 1997;94:11369–74.
    Shah NM, Marchionni MA, Isaacs I, Stroobant P, Anderson DJ. Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 1994;77:349–60.
    Sharma H.S., A select combination of neurotrophins enhances neuroprotection and functional recovery following spinal cord injury, Ann. N.Y. Acad. Sci. 1122 (2007) 95–111.
    Shaulian, E. and Karin, M. (2002) AP-1 as aregulator of cell life and death. NatCell Biol 4, E131-136, PubMed: 11988758
    Sheila S , Rosenberg , Benjamin K Ng , et al . The quest for remyelination : a new role for neurot rophine and t heir receptors [ J ] .Brain Pat hol , 2006 ,16 (4) :2882294.
    Stambolic, V., Ruel, L. and Woodgett, J.R. (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 6, 1664-1668.
    Stout, A.K. et al. (1998) Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1, 366-373.
    Su H, Zhang W, Guo J, Guo A, Yuan Q, Wu W. Lithium enhances the neuronal differentiation of neural progenitor cells in vitro and after transplantation into the avulsed ventral horn of adult rats through the secretion of brain-derived neurotrophic factor[J]. J Neurochem. 2009 Jan 22.
    Takami T., M. Oudega,M.L. Bates, P.M.Wood, N. Kleitman,M.B. Bunge, Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord, J. Neurosci. 22 (2002) 6670–6681.
    Takasu, M.A. et al. (2002) Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295, 491-495. Takayama, S., Reed, J.C. and Homma, S. (2003) Heat-shock proteins as regulators of apoptosis. Oncogene 22, 9041-9047.
    Thompson DM, Buettner HM. Neurite outgrowth is directed by schwann cell alignment in the absenceof other guidance cues. Ann Biomed Eng 2006;34:161–8.
    Thompson SW, Majithia AA. Leukemia inhibitory factor induces sympathetic sprouting in intact dorsal root ganglia in the adult rat in vivo. Physiol. 1998Feb 1;506 ( Pt 3):809-16.
    Topilko P, Levi G, Merlo G, Mantero S, Desmarquet C, Mancardi G, et al. Differential regulation of the zinc finger genes Krox-20 and Krox-24 (Egr-1) suggests antagonistic roles in Schwann cells. J Neurosci Res 1997;50:702–12.
    Topilko P, Schneider-Maunoury S, Levi G, Baron-Van Evercooren A, Chennoufi AB, Seitanidou T, et al. Krox-20 controls myelination in the peripheral nervous system. Nature 1994;371:796–9.
    Verdu E, Rodriguez FJ, Gudino-Cabrera G et al (2000) Expansion of adult Schwann cells from mouse prede-generated peripheral nerves. J Neurosci Methods 99:111–117
    Vroemen M, Weidner N (2003) Puri?cation of Schwann cells by selection of p75 low af?nity nerve growth factor receptor expressing cells from adult peripheral nerve. J Neurosci Methods 124:135–143
    Wakamatsu Y, Osumi N, Weston JA. Expression of a novel secreted factor, Seraf indicates an early segregation of Schwann cell precursors from neural crest during avian development. Dev Biol 2004;268:162–73.
    Wang, Q.M. et al. (1994) Glycogen synthase kinase-3 beta is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation. J Biol Chem 269, 14566-14574.
    Wanner IB, Guerra NK, Mahoney J, Kumar A, Wood PM, Mirsky R, et al. Role of N-cadherin in Schwann cell precursors of growing nerves. Glia 2006a;54:439–59.
    Wanner IB, Mahoney J, Jessen KR, Wood PM, Bates M, Bunge MB. Invariant mantling of growth cones by Schwann cell precursors characterize growing peripheral nerve fronts. Glia 2006b;54:424–38.
    Wanner IB, Wood PM. N-cadherin mediates axon-aligned process growth and cell–cell interaction in rat Schwann cells. J Neurosci 2002;22:4066–79.
    Weinstein DE, Wu R (1999) Isolation and puri?cation of primary Schwann cells. In: Crawley JN, Gerfen CR, Rog-awski MA, Sibley DR, Skolnick P, Wray S (eds) Currentprotocols in neuroscience. Wiley, New York, pp 31711–31719
    Williams R, Ryves WJ, Dalton EC, et al. A molecular cell biology of Lit hium [J]. Biochem Soc Trans, 2004, 32 (Pt 5):799 - 802.
    Wright LS, Li J, Caldwell MA, Wallace K, Johnson JA, Svendsen CN. Gene expression in human neural stem cells: effects of leukemia inhibitory factor. J Neurochem. 2003 Jul;86(1):179-95.
    Xu X.M., A. Chen, V. Guenard, N. Kleitman, M.B. Bunge, Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord, J. Neurocytol. 26 (1997) 1–16
    Xu X.M., S.X. Zhang, H.Y. Li, P. Aebischer, M.B. Bunge, Regrowth of axons into the distal spinal cord through a Schwann cell seeded mini-channel implanted into hemisected adult rat spinal cord, Eur. J. Neurosci. 11 (1999) 1723–1740
    Xu, J. et al. (2003) Chronic treatment with a low dose of lithium protects the brain against ischemic injury by reducing apoptotic death. Stroke 34, 1287-1292.
    Yick LW, So KF, Cheung PT, Wu WT. Lithium chloride reinforces the regeneration-promoting effect of chondroitinase ABC on rubrospinal neurons after spinal cord injury[J]. J Neurotrauma. 2004, 21(7):932-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700