用户名: 密码: 验证码:
TAT介导的磁性纳米脂质体对脊髓损伤区域靶向分布的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]
     探讨一种FITC标记TAT介导的磁性纳米脂质体的制备和表征,在体外与雪旺细胞共培养的透膜能力;同时观察其在大鼠脊髓损伤后在脊髓组织局部聚集的情况,研究其对损伤大鼠脊髓分布的靶向性,为将来该脂质体介导药物治疗脊髓损伤确定提供实验依据。
     [材料与方法]
     本实验采用反相蒸发法制备兼具跨膜、长循环功能及包覆疏水性超顺磁性Fe304颗粒的TAT磁性纳米脂质体,透射电镜,粒径仪和Zeta电位仪测定脂质体粒径和基本表征。
     通过结扎Wistar成年大鼠单侧隐神经激活雪旺细胞,采用双酶消化组织块法结合机械分离法分离培养雪旺细胞;应用低浓度胶原酶、胰酶快速消化法和差速贴壁法纯化雪旺细胞。用S-100抗体、DAPI染色来鉴定雪旺细胞的纯度。将雪旺细胞分别与外接TAT磁性纳米脂质体及未接TAT磁性纳米脂质体共孵育,对照组加入未接TAT的磁性纳米脂质体(59μg/ml) 0.5ml:实验组加入外接TAT的磁性纳米脂质体(59μg/ml) 0.5ml,5%CO2,37℃共孵育1小时,在荧光显微镜下观察雪旺细胞对脂质体的摄取情况。
     本实验采用雌性Wistar大鼠16只,用IMPACTOR MODEL-Ⅱ打击器建立T10脊髓损伤(spinal cord injury, SCI))模型(10g×25mm)。造模成功后随机分为2组,分别于24小时通过尾静脉注射FITC标记的磁性纳米脂质体(1mg/kg),对照组注射未接TAT的磁性纳米脂质体,实验组加入外接TAT的磁性纳米脂质体注射后1小时处死大鼠,取出脊髓组织作5μm快速冰冻切片,在荧光显微镜下观察脂质体在脊髓组织中的聚集情况,同时取大鼠肝脏、脾脏、肾脏作冰冻切片并在荧光显微镜下观察脂质体被其它器官摄取情况。
     成年雌性Wistar大鼠16只,随机分为两组,对照组未作脊髓损伤处理,仅采取相同剂量进行麻醉,实验组建立脊髓损伤模型,两组动物均在尾静脉途径注射外接TAT的磁性纳米脂质体(1mg/kg),实验组时间点选取为伤后24小时,对照组为麻醉后24小时加制作模型所需时间。注射后1小时处死大鼠,取出脊髓组织作5μm快速冰冻切片,在荧光显微镜下观察脂质体在脊髓组织中的聚集情况。
     [结果]
     1.磁性脂质体呈球形,分散性较好,粒径较小,Zeta电位较高,外接TAT组与未接TAT组粒径及Zeta电位无明显差别。
     2.激活态雪旺细胞经分离、培养、纯化后,细胞生长旺盛。传至第4代时,低倍镜下几乎不见成纤维样细胞。雪旺细胞纯度达到95%以上。
     3.细胞摄取实验外接TAT的脂质体更多的聚集在雪旺细胞内部,并大多聚集在细胞核周围,而未接TAT的脂质体较少进入雪旺细胞,比较二者的镜下FITC荧光的平均光密度(average optical density, AOD),二者具有统计学差异。
     4.在荧光显微镜蓝色荧光激发下,FITC使磁性纳米脂质体呈现绿色荧光。在大鼠损伤脊髓组织中,外接TAT的脂质体更多的聚集在损伤脊髓周围,神经元细胞的胞浆中存在大量的荧光颗粒,聚集成片状显现出对核的趋向性,而未接TAT的脂质体则较少分布于受损脊髓。计算二者AOD值,结果具有统计学意义。
     5.在荧光显微镜蓝色荧光激发下,未接TAT组的肝、脾、肾脏中均可见明亮的绿色荧光,外接TAT组绿色荧光相对较弱。
     6.在荧光显微镜蓝色荧光激发下,正常大鼠脊髓组织中绿色荧光较少,而脊髓损伤大鼠的脊髓中聚集了大量的绿色荧光,计算二者AOD值,结果具有统计学意义。
     [结论]
     本研究证明了TAT介导的脂质体可大量进入受损脊髓,进入神经元细胞,并且具有靶向聚集受损脊髓组织的特性,为其成为装载治疗脊髓损伤药物的载体提供了可行性依据。
[Objective] Explore the FITC-TAT-mediated magnetic liposomes and character-ization biocompatibility of FITC labeled TAT-PEG magnetic cationic liposomes with Schwann cells in vitro, and analyze its ability to through the membrane by co-culture of Schwann cells in vitro, observe the local gathering in the rat spinal cord tissue after spinal cord injury, research The targeting abilityin the injured spinal, to provide experimental evidence with theliposomes mediating drugs for the treatment of spinal cord injury in the future.
     [Method] In the study, long cycle and superparamagnetic TAT-magnetic nano liposomes were prepared by reverse phase evaporation. Transmission electron--microscopy, particlesize and Zeta potential analyzer measured particle size and basic characterization of liposomes. By unilateral ligating saphenous nerve of Wistar rats to activate Schwann cells, and then isolation, culture and purification of Schwann cells were performed in vitro. At last the purity of Schwann cells were identified by S-100 antibody and DAPI staining.
     The Schwann cells and two types of liposomes (TAT-type, noTAT-type) were incubated together. The Schwann cells were divided into two groups:the control group (co-culture with TAT-liposome for 1 hour) (59μg/ml) 0.5ml, the experimental group (co-culture with noTAT-liposome for 1 hours) (59μg/ml) 0.5ml. Observing the uptake of liposomes by Schwann cells under fluorescence microscope was undertaken.
     Sixteen of female Wistar rats were subjected to IMPACTOR MODEL-Ⅱto establish a T10 spinal cord injured model. The animals were randomly divided into two groups:24 hours after injury, respectively, by tail vein injection of FITC-magnetic nano-liposomes (1mg/kg), the control group received nano-liposomes without TAT, experimental group to join the TAT-magnetic nano-liposomes.By injecting FITC labeled new liposome (1mg/kg) into tail vein, rats were killed 1 hour later. Harvested the spinal cord was subjected to quick 5μm frozen sections.The sections of spinal cord, liver, spleen and kidney were also observed under fluorescence microscope.
     Sixteen of female Wistar rats were randomly divided into two groups:control group without treatment for spinal cord injury, only to take the same dose of anesthesia, the experimental group to establish spinal cord injury model.Two groups of animals were injected in the tail vein of the TAT-magnetic nanoliposomes (1mg/kg), the time point selected as the experimental group was 24 hours after injury, control group was 24 hours after anesthesia adding the time required for production models. rats were killed 1 hour later. Harvested the spinal cord was subjected to quick 5μm frozen sections.
     [Results]
     1. Magnetic liposomes were spherical lipid lanes, better dispersion, smaller particle size, higher external Zeta potential. There were no significant difference between TAT-nanoliposomes group and noTAT group in the particle size and Zeta potential.
     2. Activated Schwann cells were isolated, cultured. The purity was more than 95%.
     3. Cellular uptake experiment show that:TAT-liposomes gathered inside Schwann cells,and most gathered around the nucleus.The noTAT-liposomes can not be observed in Schwann cells.By comparing the FITC fluorescence microscope in two groups,the average optical density(average optical density, AOD) showed a significant difference.
     4. In the blue fluorescence under fluorescence microscope, FITC made the magnetic nano-liposomes showeing green fluorescence. In the rat spinal cord tissue,TAT-liposomes gathered more around the injured spinal cord side, neuronal cells present in the cytoplasm of a large number of fluorescent particles, gathered into a sheet showing the trend of the nuclear.noTAT-liposomes were then distributed less in damage side of the spinal cord. Both AOD values calculated, the result was statistically significant.
     5. By excitation with blue in fluorescence microscope, in the no TAT group,in the liver, spleen, kidney, bright green fluorescence are visible.The TAT group is relatively weaker with green fluorescence.
     6. By the blue fluorescence excitation, Spinal cord tissue had less green fluorescence in normal rats.Spinal cord gathered a large number of green fluorescencein injured spinal cord rats.Calculating values of the two AOD, the results have statistical significance.
     [Conclusion] This study proved that TAT-mediated nanoliposomes can be poured into the damaged spinal cord, get into neurons, and have the targeting characteristics of gethering to damaged spinal cord,provided a feasible basis for becoming a load carrier of drugs for curing spinal cord injury.
引文
[1]Raisman G. What hope for repair of the brain? [J]. Ann Neurol.1978 F; 3(2):101-6.
    [2]Aguayo AJ, David S, Bray GM. Influences of the glial environment on the elongation of axons after injury: transplantation studies in adult rodents. [J] Exp Biol.1981 Dec;95:231-40.
    [3]Richardson PM, McGuinness UM, Aguayo AJ. Axons from CNS neurons regenerate into PNS grafts. [J]. Nature.1980 Mar 20;284(5753):264-5.
    [4]Cajal Y. Clausell A. Rabanal F. Membrane association and contact formation by a synthetic analogue of polymyxin B and its fluorescent derivatives[J].J Phys Chem B Condens Matter Mater Surf interfaces Biophys,2006,110(9):44654471.
    [5]Rabchevsky AG,Smith GM. Therapeutic interventions following mammalian spinal cord injury[J]. Arch Neurol,2001,58(5):721-726.
    [6]Xu P, Gong WM, Li Y, et al. Destructive pathological changes in the rat spinal cord due to chronic mechanical compression. Laboratory investigation[J]. J Neurosurg Spine,2008,8(3):279-285.
    [7]Walmsley AR,Mir AK. Targeting the Nogo-A signalling pathway to promote recovery following acute CNS injury[J]. Curr Pharm Des,2007,13(24): 2470-2484.
    [8]Li S, Liu BP, Budel S,et al. Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury[J]. J Neurosci,2004,17;24(46): 10511-10520.
    [9]Borisoff JF, Chan CCM, Hiebert GW et al. Suppression of Rho-kinase activity promotes axonal growth on inhibitory CNS substrates [J]. Mol Cell Neurosci, 2003,22(3):405-416.
    [10]Ito T, Ohtori S, Hata K, et al. Rho kinase inhibitor improves motor dysfunction and hypoalgesia in a rat model of lumbar spinal canal stenosis[J]. Spine,2007,32 (19):2070-2075.
    [11]Liu Y,Figley S,Spratt SK,et al.An engineered transcription factor which activates VEGF-A enhances recovery after spinal cord injury [J].Neurobiol Dis, 2010,37(2):384-93.
    [12]Jin K,Mao XO,Greenberg DA.Vascular endothelial growth factor stimulates neurite outgrowth from cerebral cortical neurons via Rho kinase signaling[J].Neurobiol,2006,66:236-242.
    [13]Choi UH,Ha Y,Huang X,et al.Hypoxia-inducible expression of vascular endothelial growth factor for the treatment of spinal cord injury in a rat model[J].Neurosurg Spine,2007,7:54-60.
    [14]Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In vivo protein transduction:delivery of a biologically active protein into the mouse. Science 1999;285:1569e72
    [15]M. Green, P.M. Loewenstein, Autonomous functional domainsof chemically synthesized human immunodeficiency virus tattrans-activator protein, Cell 55 (1988) 1179-1188.
    [16]A.D. Frankel, C.O. Pabo, Cellular uptake of the tat protein fromhuman immunodeficiency virus, Cell 55 (1988) 1189-1193.
    [17]Jeffery ND, McBain SC, Dobson J, et al.Uptake of systemicallyadministered magnetic nanoparticles in areas of experimentalspinal cord injury I Jl_IJ Tissue Eng Regen Med,2009,3(2):153-157.
    [18]Liu Y, Wang CY, Kong XH, et al. Novel multifunctional polyethylene glycol-transactivating-transduction protein-modified liposomes cross the blood-spinal cord barrier after spinal cord injury[J]. J Drug Target,2009.
    [19]Mehta RV,Upadhyay RV,Charles SW.Direct binding of protein to magnetic particles[J].Biotechnol Techn,1997,11:493-6.
    [20]Kullberg M,Mann K,Owens JL.Improved drug delivery to cancer cells:a method using magnetoliposomes that target epidermal growth factor receptors [J].Medical Hypotheses,2005,64(3):468-470.
    [21]Jain S,Mishra V,Singh P,et al.RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting [J].International Journal of Pharmaceutics,2003,261:43-55.
    [22]Elmi MM,Sarbolouki MN.A simple method for preparation of immuno-magetic liposomes[J].Int J Pharm,2001,215(1-2):45-50.
    [23]Arias JL,Ruiz MA,Gallardo V,et al.Tegafur loading and release properties of magnetite/poly(alkylcyanoacrylate)(core/shell)nanoparticles[J].Control Release.2008,125(1):50-8.
    [24]Torchilin VP. Passive and active drug targeting:drug delivery toto tumors as an exmnplel J].Handb Exp Pharmacol,2010, (197):3-53
    [25]Guest JD, Hiester ED,Bunge RP. Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury[J]. Exp Neurol,2005,192(2):384-393.
    [26]Misgeld T. Death of an axon:studying axon loss in development and disease[J]. Histochem Cell Biol,2005,124(3-4):189-196.
    [27]Salzer JL,Bunge RP. Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury[J]. J Cell Biol,1980,84(3):739-752.
    [28]Casella GT, Bunge RP,Wood PM. Improved method for harvesting human Schwann cells from mature peripheral nerve and expansion in vitro[J]. Glia,1996, 17(4):327-338.
    [29]Verdu E, Rodriguez FJ, Gudino-Cabrera G, et al. Expansion of adult Schwann cells from mouse predegenerated peripheral nerves [J]. J Neurosci Methods,2000, 99(1-2):111-117.
    [30]Mason PW, Attema BL,DeVries GH. Isolation and characterization of neonatal Schwann cells from cryopreserved rat sciatic nerves[J]. J Neurosci Res,1992, 31(4):731-744.
    [31]Pincus DW, Keyoung HM, Harrison-Restelli C, et al. Fibroblast growth factor-2/brain-derived neurotrophic factor-associated maturation of new neurons generated from adult human subependymal cells[J]. Ann Neurol,1998,43(5): 576-585.
    [32]Salzer JL. Polarized domains of myelinated axons[J]. Neuron,2003,40(2): 297-318.
    [33]Mauritz C, Grothe C,Haastert K. Comparative study of cell culture and purification methods to obtain highly enriched cultures of proliferating adult rat Schwann cells[J]. J Neurosci Res,2004,77(3):453-461.
    [34]Tinsley RB, Zhang SH, Feng SQ, et al. Use of engineered peripheral nerve autografts for spinal cord repair[J]. Neuroreport,2006,17(3):261-265.
    [35]Shenhua X, Lijuan Q, Hanzhou N, et al. Establishment of a highly metastatic human ovarian cancer cell line (HO-8910PM) and its characterization [J]. J Exp Clin Cancer Res,1999,18(2):233-239.
    [36]Obremski VJ, Wood PM,Bunge MB. Fibroblasts promote Schwann cell basal lamina deposition and elongation in the absence of neurons in culture[J]. Dev Biol,1993,160(1):119-134.
    [37]Brockes JP, Fields KL,Raff MC. Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve[J]. Brain Res,1979,165(1):105-118.
    [38]Chi GF, Kim MR, Kim DW, et al. Schwann cells differentiated from spheroid-forming cells of rat subcutaneous fat tissue myelinate axons in the spinal cord injury [J]. Exp Neurol,2010,222(2):304-317.
    [39]Mann DA,Frankel AD. Endocytosis and targeting of exogenous HIV-1 Tat protein[J]. EMBO J,1991,10(7):1733-1739.
    [40]Vives E, Brodin P,Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus[J]. J Biol Chem,1997,272(25):16010-16017.
    [41]Nitin N, LaConte L, Rhee WJ, et al. Tat peptide is capable of importing large nanoparticles across nuclear membrane in digitonin permeabilized celIs[J]. Ann Biomed Eng,2009,37(10):2018-2027.
    [42]Torchilin VP. Fluorescence microscopy to follow the targeting of liposomes and micelles to cells and their intracellular fate[J]. Adv Drug Deliv Rev,2005,57(1): 95-109.
    [43]Futaki S. Arginine-rich peptides:potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms [J]. Int J Pharm, 2002,245(1-2):1-7.
    [44]Wadia JS, Stan RV,Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis[J]. Nat Med,2004, 10(3):310-315.
    [45]Sandgren S, Cheng F,Belting M. Nuclear targeting of macromolecular polyanions by an HIV-Tat derived peptide. Role for cell-surface proteoglycans[J]. J Biol Chem,2002,277(41):38877-38883.
    [46]Kaplan IM, Wadia JS,Dowdy SF. Cationic TAT peptide transduction domain enters cells by macropinocytosis (vol 102, pg 247,2005)[J]. Journal of Controlled Release,2005,107(3):571-572.
    [47]Snyder EL,Dowdy SF. Cell penetrating peptides in drug delivery [J]. Pharm Res, 2004,21(3):389-393.
    [48]Shen H, Mai JC, Qiu L, et al. Evaluation of peptide-mediated transduction in human CD34+ cells[J]. Hum Gene Ther,2004,15(4):415-419.
    [49]Mitchell DJ, Kim DT, Steinman L, et al. Polyarginine enters cells more efficiently than other polycationic homopolymers[J]. Journal of Peptide Research, 2000,56(5):318-325.
    [50]Rothbard JB, Jessop TC,Wender PA. Adaptive translocation:the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells[J]. Advanced Drug Delivery Reviews,2005,57(4): 495-504.
    [51]Tseng YL, Liu JJ,Hong RL. Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and tat: a kinetic and efficacy study[J]. Mol Pharmacol,2002,62(4):864-872.
    [52]Marty C, Meylan C, Schott H, et al. Enhanced heparan sulfate proteoglycan-mediated uptake of cell-penetrating peptide-modified liposomes[J]. Cell Mol Life Sci,2004,61(14):1785-1794.
    [53]纪江峰,冯世庆.脊髓损伤动物模型研究进展[J].中华实验外科杂志,2006,23(9):1151-1152.
    [54]Sheng H, Wang H, Homi HM,et al. A no-laminectomy spinal cord compression injury model in mice[J]. J Neurotrauma,2004,21(5):595-603.
    [55]Xu P, Gong WM, Li Y, Zhang T, et al. Destructive pathological changes in the rat spinal cord due to chronic mechanical compression[J]. J Neurosurg Spine, 2008,8(3):279-285.
    [56]Lee JH, Choi CB, Chung DJ, et al. Development of an improved canine model of percutaneous spinal cord compression injury by balloon catheter[J]. J Neurosci Methods,2008,167(2):310-316.
    [57]Sufianova GZ, Usov LA, Sufianov AA, et al. New minimally invasive model of spinal cord ischemia in rats[J]. Bull Exp Biol Med,2002,133(1):98-101.
    [58]Bockler D, Kotelis D, Kohlhof P,et al. Spinal cord ischemia after endovascular repair of the descending thoracic aorta in a sheep model [J]. Eur J Vasc Endovasc Surg,2007,34(4):461-469.
    [59]Iannotti C, Zhang YP, Shields LB,et al. Dural repair reduces connective tissue scar invasion and cystic cavity formation after acute spinal cord laceration injury in adult rats[J]. J Neurotrauma,2006,23(6):853-865.
    [60]Vitellaro-Zuccarello L, Mazzetti S, Madaschi L,et al. Chronic erythropoietin-mediated effects on the expression of astrocyte markers in a rat model of contusive spinal cord injury[J]. Neuroscience,2008,151(2):452-466.
    [61]Van Toan N, Ng CH, Aye KN, et al. Production of high-quality chitin and chitosan from preconditioned shrimp shells[J]. Journal of Chemical Technology and Biotechnology,2006,81(7):1113-1118.
    [62]Prabaharan M,Mano JF. Chitosan derivatives bearing cyclodextrin cavities as novel adsorbent matrices[J]. Carbohydrate Polymers,2006,63(2):153-166.
    [63]Prabaharan M, Rodriguez-Perez MA, de Saja JA, et al. Preparation and characterization of poly(L-lactic acid)-chitosan hybrid scaffolds with drug release capability[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials,2007,81B(2):427-434.
    [64]Prabaharan M,Mano JF. Chitosan-based particles as controlled drug delivery systems[J]. Drug Delivery,2005,12(1):41-57.
    [65]Jayakumar R, Prabaharan M, Reis RL, et al. Graft copolymerized chitosan present status and applications[J]. Carbohydrate Polymers,2005,62(2):142-158.
    [66]Prabaharan M,Mano JF. Synthesis and characterization of chitosan-graft--poly(3-(trimethoxysilyl)propyl methacrylate) initiated by ceric (IV) ion[J]. Journal of Macromolecular Science Part a-Pure and Applied Chemistry,2007, 44(4-6):489-494.
    [67]Prabaharan M, Reis RL,Mano JF. Carboxymethyl chitosan-graft-phosphatidy-lethanolamine:Amphiphilic matrices for controlled drug delivery[J]. Reactive & Functional Polymers,2007,67(1):43-52.
    [68]Bhattarai N, Ramay HR, Gunn J, et al. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release[J]. Journal of Controlled Release,2005,103(3):609-624.
    [69]Liang XF, Tian H, Luo H, et al. Novel Quatemized Chitosan and Polymeric Micelles With Cross-Linked Ionic Cores for Prolonged Release of Minocycline[J]. Journal of Biomaterials Science-Polymer Edition,2009,20(1): 115-131.
    [70]Mehta RV,Upadhyay RV,Charles SW.Direct binding of protein to magnetic particles[J].Biotechnol Techn,1997,11:493-6.
    [71]Kullberg M,Mann K,Owens JL.Improved drug delivery to cancer cells:a method using magnetoliposomes that target epidermal growth factor receptors [J].Medical Hypotheses,2005,64(3):468-470.
    [72]Jain S,Mishra V,Singh P,et al.RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting [J].International Journal of Pharmaceutics,2003,261:43-55.
    [73]Elmi MM,Sarbolouki MN.A simple method for preparation of immuno-magetic liposomes[J].Int J Pharm,2001,215(1-2):45-50.
    [74]Arias JL,Ruiz MA,Gallardo V,et al.Tegafur loading and release properties of magnetite/poly(alkylcyanoacrylate)(core/shell)nanoparticles[J].Control Release.2008,125(1):50-8.
    [75]Rahman A.Pharmacological,toxicological and theraputic valuation in mice of doxorubin.Cancer Res,1985,45:796-803.
    [76]Maikos JT,Shreiber DI.Immediate damage to the blood-spinal cord barrier due to mechanical trauma[J].Neurotrauma,2007,24:492-507.
    [77]Ducker TB,Assenmacher DR. Microvascular response to experimental spinal cord trauma[J]. Surg Forum,1969,20:428-430.
    [78]Noble LJ,Wrathall JR. Correlative analyses of lesion development and functional status after graded spinal cord contusive injuries in the rat[J]. Exp Neurol,1989, 103(1):34-40.
    [79]Yang GY, Betz AL, Chenevert TL, et al. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats[J]. J Neurosurg,1994,81(1):93-102.
    [80]Mendelow AD, Bullock R, Teasdale GM, et al. Intracranial haemorrhage induced at arterial pressure in the rat. Part 2:Short term changes in local cerebral blood flow measured by autoradiography[J]. Neurol Res,1984,6(4):189-193.
    [81]Popovich PG, Homer PJ, Mullin BB, et al. A quantitative spatial analysis of the blood-spinal cord barrier. I. Permeability changes after experimental spinal contusion injury [J]. Exp Neurol,1996,142(2):258-275.
    [82]. Cho Y, R Shi, RB Borgens, Chitosan produces potent neuroprotection and physiological recovery following traumatic spinal cord injury [J]. J Exp Biol, 2010,213(9):1513-20.
    [83]. Fang N,Chan V,Mao H Q, et al., Interactions of phospholipid bilayer with chitosan:effect of molecular weight and pH[J]. Biomacromolecules,2001,2(4): 1161-8.
    [84]Hakansson, S. et al. (2001) Heparin binding by the HIV-1 tat proteintransduction domain. Protein Sci.10,2138-2139
    [85]Rusnati, M. et al. (1997) Interaction of HIV-1 Tat protein with heparin.Role of the backbone structure, sulfation, and size. J. Biol. Chem.272,11313-11320
    [1]Richardson PM, McGuinness UM, Aguayo AJ. Axons from CNS neurons regenerate into PNS grafts[J]. Nature,1980,284(5753):264-265.
    [2]Schwab ME, Kapfhammer JP, Bandtlow CE. Inhibitors of neurite growth[J]. Annu Rev Neurosci,1993,16:565-595.
    [3]Lehmann M, Fournier A, Selles-Navarro I, et al. Inactivation of Rho signaling pathway promotes CNS axon regeneration[J]. J Neurosci,1999,19(17):7537-7547.
    [4]W almsley A R, Mir A K, Targeting the Nogo-A signalling pathway to promote recovery following acute CNS injury [J]. Current Pharmaceutical Design,2007, 13:2470-2484.
    [5]Cai D, Qiu J, Cao Z, et al.Neuronal cyclic AMP controls the developmental loss in ability ofaxons to regenerate [J]. J Neurosci,2001,21:4731-4739.
    [6]Yamashita T, Hignchi H, Tohyama M. The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho[J]. J Cell Biol,2002.157:565-570.
    [7]GrandPre T, Nakamura F, Vartanian T, et al. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein[J]. Nature,2000,403:439-444.
    [8]Schwab M E. Nogo and axon regeneration[J]. Curr Opin Neurobiol,2004,14: 118-124.
    [9]Asher R A, Morgenstem D A, Fidler P S, et al. Neurocan is up regulated in injured brain and in cytokine-treated astrocytes[J]. J Neurosci,2000,20:2427-2438.
    [10]Bradbury EJ, Moon LD, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury.[J]Nature.2002 Apr 11;416(6881):63640.
    [11]Hall E M, Rho GTPases in cell biology[J]. Nature,2002,420:629-635.
    [12]Bertrand J, Winton M J, Rodriguez-Hernandez N, et al. Application of Rho antagonist to neuronal cell bodies promotes neurite growth in compartmented cultures and regeneration of retinal ganglion cell axons in the optic nerve of adult rats[J]. JNeurosci,2005,25(5):1113-1121.
    [13]BerryM, Ahmed Z, LorberB, et al. Regeneration ofaxonsinthevisual system[J]. Restor Neurol Neuros,2008,26:147-174.
    [14]Sehweigreiter R, Walmsley A R, Niederost B, et al. Versican V2 and the central inhibitory domain of Nogo-A inhibit neurite growth via p75NTR/Ng Rindependent pathways that converge at RhoA[J].Mol Cell Neurosci,2004, 27:163-174.
    [15]Monnier P P, Sierra A, Schwab J M, et al. The Rho/ROCK pathway mediates neufite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar [J]. Mol Cell Neurosci,2003,22:319-330.
    [16]Sung J K, Miao L, C-vert JW, et al.A possible role ofRhoA/Rho-kinase in experimental spinal cord injury in rat[J]. BrainResearch.2003.959:29-38.
    [17]Katoh H, Aoki J, Ichikawa A, et al. p160 RhoA -binding ki-nase ROKa induces neurite retraction[J]. J Biol Chem,1997,273,2489-2492.
    [18]Bito H, Furuyashiki T, Ishihara H, et al. A critical role for a Rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons [J].Neuron,2000,26,431-441.
    [19]Tanaka H, Yamashita T, Yachi K, el al. Cytoplasmic p21(Cipl/WAF1) enhances axonal regeneration and functional recovery after spinal cord injury in rats[J]. Neuroscience,2004,127,155-164.
    [20]Kuhn T B, Meberg P J, Brown M D, et al. Regulating actin dynamics in neuronal growth cones by ADF/cofilin and Rho-family GTPases[J]. J Neurobiol, 2000,44:126-144.
    [21]Edwards D C, Sanders L C, Bokoch G M, et al. Activation of LIM-kinase by PAK1 couples Rac/Cdc42 GTPase signaling to actin cytoskeletal dynamics [J].Nat Cell Biol,1999,1:253-259.
    [22]Schmidt J T, Morgan P, Dowell N, et al. Myosin light chain phosphorylation and growth cone motility[J]. J Neurobiol,2002,52(3):175-188.
    [23]Fujita A, Hattori Y, Takeuehi T, et al. NGF induces neurite outgrowth via a decrease in phosphorylation of myosin light chain in PCI2 cells[J]. Neuroreport, 2001,12(16):3599-3602.
    [24]Amano M, Chihara K, Nakamura N, et al. Myosin II activation promotes neufite retraction during the action of Rho and Rho- ki-nase[J]. Genes Cells,1998,3(3): 177-188.
    [25]Profyris C, Cheema S S, Zang D W, et al. Degenerative and re-generative mechanisms governing spinal cord injury [J].Neurobiol Dis,2004,15:415-436.
    [26]Kubo T, Hata K, Yamaguchi A, et al.Rho-ROCK inhibitors as emerging strategies to promote nerve regeneration[J]. Curr Pharm Design,2007,13: 2493-2499.
    [27]Moriishi K, Syuto B, Yokosawa N, et al. Purification and characterization of ADPribosyltransferases (exoenzyme C3) of Clostridium botulinum type C and D strains[J]. J Bacteriol,1991,173(19):60256029.
    [28]Aktories K, Weller U, Chhatwal GS. Clostridium botulinum type C produces a novel ADPribosyltransferase distinct from botulinum C2 toxin[J]. FEBS Lett, 1987,212(1):109113.
    [29]Aktories K, Rosener S, Blaschke U, et al.Botulinum ADPribosyltransferase C3. Purification of the enzyme and characterization of the ADPribosylation reaction in platelet membranes[J].Eur J Biochem,1988,172(2):445450.
    [30]Rubin EJ, Gill DM, Boquet P, et al. Functional modification of a 21kilodalton G protein when ADPribosylated by exoenzyme C3 of Clostridium botulinum [J]. Mol Cell Biol,1988,8(1):418426.
    [31]NemotoY, Namba T, Kozaki S, et al. Clostridium botulinum C3 ADP ribosyltransferase gene.Cloning, sequencing, and expression of a functional protein in Escherichia coli[J]. J Biol Chem,1991,266(29):1931219319.
    [32]Just I, Mohr C, Schallehn G, et al.Purification and characterization of an ADPribosyltransferase produced by Clostridium limosum[J]. J Biol Chem,1992, 267(15):1027410280.
    [33]Just I, Selzer J, Jung M, et al. RhoADPribosylating exoenzyme from Bacillus cereus. Purification, characterization, and identification of the NADbinding site[J]. Biochemistry,1995,34(1):334340.
    [34]Inoue S, Sugai M, Murooka Y, et al. Molecular cloning and sequencing of the epidermal cell differentiation inhibitor gene from Staphylococcus aureus[J]. Biochem Biophys Res Commun,1991,174(2):459464.
    [35]Wilde C, Chhatwal GS, Schmalzing G, et al. A novel C3 like ADP ribosyltransferase from Staphylococcus aureus modifying RhoE and Rnd3[J]. J Biol Chem,2001,276(12):95379542.
    [36]Yamaguchi T, Hayashi T, Takami H, et al. Complete nucleotide sequence of a Staphylococcus aureus exfoliative toxin B plasmid and identification of a novel ADPribosyltransferase, EDINC[J]. Infect Immun,2001,69(12):77607771.
    [37]Borbiev T, Nurmukhambetova S, Liu F, et al. Introduction of C3 exoenzyme into cultured endothelium by lipofectamine[J]. Anal Biochem,2000,285(2):260264.
    [38]Genth H, Gerhard R, Maeda A, et al. Entrapment of Rho ADP ribosylated by Clostridium botulinum C3 exoenzyme in the Rhoguanine nucleotide dissociation inhibitorl complex[J]. J Biol Chem,2003,278(31):2852328527.
    [39]Rossman KL, Der CJ, Sondek J. GEF means go:turning on RHO GTPases with guanine nucleotideexchange factors[J]. Nat Rev Mol Cell Biol,2005,6(2): 167180.
    [40]Wilde C, Vogelsgesang M, Aktories K. Rhospecific Bacillus cereus ADPribosyltransferase C3cer cloning and characterization[J]. Biochemistry, 2003,42(32):96949702.
    [41]Riento K, Guasch RM, Garg R, et al. RhoE binds to ROCK I and inhibits downstream signaling[J]. Mol Cell Biol,2003,23(12):42194229.
    [42]Wennerberg K, Forget MA, Ellerbroek SM, et al. Rnd proteins function as RhoA antagonists by activating p190 RhoGAP[J]. Curr Biol,2003,13(13):11061115.
    [43]Jin Z, Strittmatter SM. Racl mediates collapsinlinduced growth cone collapse[J]. J Neurosci,1997,17(16):62566263.
    [44]Kozma R, Sarner S, Ahmed S, et al. Rho family GTPases and neuronal growth cone remodelling:relationship between increased complexity induced by Cdc42Hs, Racl, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid[J]. Mol Cell Biol,1997,17(3):12011211.
    [45]Fawell S, Seery J, Daikh Y, et al. Tatmediated delivery of heterologous proteins into cells[J]. Proc Natl Acad Sci USA,1994,91(2):664668.
    [46]Schwarze SR, Ho A, VoceroAkbani A, et al. In vivo protein transduction: delivery of a biologically active protein into the mouse[J]. Science,1999, 285(5433):15691572.
    [47]Vives E, Brodin P, Lebleu B. A truncated HIV1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus[J]. J Biol Chem,1997,272(25):1601016017.
    [48]Wender PA, Mitchell DJ, Pattabiraman K, et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake:peptoid molecular transporters[J]. Proc Natl Acad Sci USA,2000,97(24):1300313008.
    [49]Derossi D, Calvet S, Trembleau A, et al. Cell internalization of the third helix of the Antennapedia homeodomain is receptorindependent[J]. J Biol Chem,1996, 271(30):1818818193.
    [50]Derossi D, Joliot AH, Chassaing G, et al.The third helix of the Antennapedia homeodomain translocates through biological membranes[J]. J Biol Chem,1994, 269(14):1044410450.
    [51]Du C, Yao S, Rojas M, et al.Conformational and topological requirements of cellpermeable peptide function[J].J Pept Res,1998,51(3):235243.
    [52]Futaki S. Membranepermeable argininerich peptides and the translocation mechanisms[J]. Adv Drug Deliv Rev,2005,57(4):547558.
    [53]Rojas M, Donahue JP, Tan Z, et al.Genetic engineering of proteins with cell membrane permeability [J].Nat Biotechnol,1998,16(4):370375.
    [54]Morris MC, Depollier J, Mery J, et al.A peptide carrier for the delivery of biologically active proteins into mammalian cells[J]. Nat Biotechnol,2001, 19(12):11731176.
    [55]Winton MJ, Dubreuil CI, Lasko D, et al.Characterization of new cell permeable C3like proteins that inactivate Rho and stimulate neurite outgrowth on inhibitory substrates [J]. J Biol Chem,2002,277(36):3282032829.
    [56]Dubreuil CI, Winton MJ, McKerracher L. Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system[J]. J Cell Biol,2003,162(2):233243.
    [57]Jain A, BradyKalnay SM, Bellamkonda RV. Modulation of Rho GTPase activity alleviates chondroitin sulfate proteoglycandependent inhibition of neurite extension[J]. J Neurosci Res,2004,77(2):299307.
    [58]Haug G, Barth H, Aktories K. Purification and activity of the Rho ADPribosylating binary C2/C3 toxin[J]. Methods Enzymol,2006,406:117127.
    [59]Julien S, Schnichels S, Teng H, et al. Purkinje cell survival in organotypic cultures:implication of Rho and its downstream effector ROCK[J]. J Neurosci Res,2008,86(3):531536.
    [60]Tan EY, Law JW, Wang CH, et al. Development of a cell transducible RhoA inhibitor TATC3 transferase and its encapsulation in biocompatible microspheres to promote survival and enhance regeneration of severed neurons[J]. Pharm Res, 2007,24(12):22972308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700