植物发育突变体的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质组学研究在功能基因组时代发挥着越来越重要的作用。蛋白质组研究旨在研究基因组编码的整套蛋白质的结构和功能,从而补充转录组的研究。目前,基因突变引起的蛋白质表达变化是蛋白质组学研究的重要内容。拟南芥和水稻是植物分子生物学研究中两种重要的模式植物。本文以新筛选的拟南芥突变体和实验室已有的水稻突变体为材料,利用蛋白质组学方法分别研究了它们发育突变体中蛋白质表达谱的变化,获得了以下主要研究结果。
     (1)拟南芥发育突变体的筛选研究
     以拟南芥蓝光受体双突变体cry1cry2为实验材料,通过激活标签技术构建了T-DNA插入突变体库,并从中筛选到6个与开花时间有关和2个矮化的发育突变体。采用质粒拯救(plasmid rescue)、IPCR(inverse PCR,反向PCR)和TAIL-PCR(Thermal asymmetric interlaced-PCR,热不对称巢式PCR)等方法,分析得出了这些发育突变体T-DNA插入位点的基因组侧翼序列。通过RT-PCR方法分析了突变体T-DNA插入位点两侧基因的表达情况,结果表明突变体表型的变化可能是T-DNA插入后35S强启动子引起附近的基因表达量增加造成的,从而进一步证实了这些发育突变体的突变分子基础。通过筛选发育突变体和鉴定相关基因,为深入研究植物光周期开花调控以及下胚轴伸长抑制的机理奠定了基础。
     (2)水稻和拟南芥育性突变体的蛋白质组学研究
     通过双向电泳、MALDI-TOF质谱、MALDI-TOF-TOF质谱等技术比较分析了水稻株1S不育和可育条件下花粉母细胞形成期,减数分裂期以及花粉内容物充实期(第Ⅴ、Ⅵ、Ⅶ期)的幼穗蛋白的动态变化过程。结果发现水稻株1S在不育和可育条件下,分别在幼穗第Ⅴ期有43个差异蛋白质点,第Ⅵ期有32个差异蛋白质点,第Ⅶ期有23个差异蛋白质点。选取其中50个蛋白用于质谱鉴定,最后有20个差异蛋白质点得到了鉴定,分析后发现这些蛋白主要参与了糖代谢,能量代谢,蛋白质的生物合成,细胞壁形成和胁迫响应等与花粉发育相关的过程。通过RT-PCR方法对其中3个蛋白质对应基因进行表达分析,结果发现其中1个蛋白质的表达与相应mRNA水平的表达相一致,另外2个蛋白质的表达与其mRNA水平的表达不一致,表明后2个蛋白质对应基因可能由于基因表达存在翻译后修饰。我们共得到了8个与育性相关的蛋白,其中UDP-葡糖醛酸脱羧酶、咖啡酰辅酶A-氧-甲基转移酶和OSJNBa0060D06.10蛋白与育性转换紧密关联。这些分析结果表明温度控制水稻的育性是通过共调节相关基因的表达而实现的,初步从蛋白质水平阐述了温敏核不育水稻育性转换的分子机理。
     选取筛选到的拟南芥晚开花突变体scc106-D和对照材料cry1cry2作为研究对象,比较了两者生长在白光下的蛋白质水平差异,通过质谱分析最后鉴定得到了22个差异蛋白质点,并发现其中17个蛋白在scc106-D突变体中同时下调,而另有3个蛋白仅在cry1cry2中表达。分析鉴定得到的差异蛋白发现,它们主要参与了碳水化合物代谢、能量代谢、硫代谢、光合作用、光呼吸、胁迫响应和蛋白质的合成等过程,其中光合蛋白占36%,能量相关蛋白占14%。结果说明光合速率下降和能量降低可能是使突变体发育迟缓,开花延迟,育性降低,下胚轴变短的主要原因。这些结果提示,T-DNA插入后35S强启动子引起附近的基因表达量增加,在光作用下调节相关基因的表达从而导致突变体表型的变化。
     (3)水稻和拟南芥矮化突变体的蛋白质组学研究
     采用双向电泳技术分离水稻株1S、矮秆突变体SV14和湘陵628S的茎蛋白,通过质谱鉴定得到了33个差异蛋白质点。其中在矮秆突变体SV14中27个蛋白点下调,1个仅在SV14中表达,2个仅在株1S中表达:在湘陵628S中25个蛋白点下调,1个仅在湘陵628S中表达,3个仅在株1S中表达。通过分析可以将这些差异蛋白分为两大类:第一类是调节性蛋白,如咖啡酸三氧转甲基酶,热激蛋白70,醛酮变位酶I,肌动蛋白等,它们主要参与蛋白质的合成和加工、胁迫响应、细胞骨架稳定等过程;第二类是功能性蛋白,如抗坏血酸过氧化物酶,细胞质苹果酸脱氢酶,细胞质磷酸甘油酸激酶,S-腺苷蛋氨酸合成酶,ATP合酶等,它们则参与氧化还原平衡、光合作用、光呼吸和各种代谢等过程。调节性蛋白丰度的下调可能引起了水稻发育的迟缓,功能性蛋白活性和丰度的改变,则主要破坏水稻植株细胞内的代谢平衡,两者共同作用从而最终导致茎变短和植株变矮。该结果从蛋白质表达水平阐述了水稻植株矮化的内在原因,为进一步开展水稻矮秆分子育种奠定了基础。选取筛选到的矮化突变体scc8-D和对照材料cry1cry2作为研究对象,比较了两者生长在白光下的蛋白质水平的差异。通过质谱分析共鉴定得到了22个差异蛋白质点,其中有16个蛋白在scc8-D突变体中都是下调的,同样有3个蛋白仅在cry1cry2中表达。经分析发现这些差异蛋白可能参与了碳水化合物代谢、光合作用、光呼吸、胁迫响应、蛋白质的合成和氧化还原平衡等过程,其中光合蛋白占32%。此结果进一步说明调节性蛋白和功能性蛋白丰度的表达受到光调控从而抑制植物下胚轴的伸长。
Proteomics study is playing an increasingly important role in the functional genomics era. Proteome studies aim at the complete set of proteins encoded by the genome and thus complement the transcriptome studies. At present, the change at the protein expression level caused by gene mutation is one of the most important parts in proteome studies.Rice and Arabidopsis are two important model plants. In the present study, we analyzed the difference at the protein expression level in rice development mutants and Arabidopsis development mutants screened. The results of this study were listed as follows:
     (1) The screening of Arabidopsis development mutants
     We used Arabidopsis mutant cry1cry2 as material in this paper and constructed a library of arabidopsis mutants by activation tagging. Through screening and observation, some mutants with visible morphological phenotypic variations were obtained, including six mutants related to flowering time and two dwarf mutants. Plasmid rescue, inverse PCR (IPCR) and Thermal asymmetric interlaced-PCR (TAIL-PCR) were used to identify the flanking genomic sequences of mutated target genes. At the same time, the semi-quantitative RT-PCR was used to analyse expression of the T-DNA insertion flanking genes.We conclude that phenotypic variations in mutants were caused by the increased expression of T-DNA insertion flanking genes.The result laid the foundation for further study of regulation of flowering time and inhibition of hypocotyl elongation.
     (2) Proteome analysis of rice and Arabidopsis sterile mutants
     We used proteomic analysis to investigate the changing patterns of young panicle proteins during different developmental stages [the formation stage of pollen mother cell(Ⅴ), the stage of meiotic division of pollen mother cell(Ⅵ), the filling stage of pollen (Ⅶ)] under sterile and fertile conditions. Proteins were extracted from the spikelets samples and separated by 2-D gel electrophoresis (2-DE). Image acquisition and analysis, under sterile and fertile conditions, 43 protein spots were differently expressed in Zhu-1S during No.Ⅴstage; 32 protein spots were differently expressed in Zhu-1S during No.Ⅵstage; 20 protein spots were differently expressed in Zhu-1S during No.Ⅶstage. Based on spot quantity and quality, 50 protein spots were analyzed by matrix associated laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) and 20 spots were identified. Most of these proteins are closely associated with sugar metabolism, energy metabolism, protein biosynthesis, cell wall formation and stress responses, which are essential cell activities to the pollen development. The expression of genes corresponding to three protein spots was analyzed by semi-quantitative RT-PCR. One of them the mRNA and protein levels was correlated well confirmed, but the other two in some instance, the level of mRNAs and the expression level of the related proteins were inconsistent. This difference could be affected by post-translational modifications. We identified 8 proteins related to fertility, of which UDP-glucuronic acid decarboxylase, putative caffeoyl-coA O-methyl- transferase 1 and OSJNBa0060D06.10 were closed to fertility change. The results indicate that temperature control of rice fertility is co-regulated by many other related genes and elucidate the molecular mechanism of thermo-sensitive genic male-sterile rice fertility change at the protein level.
     To study the difference at the protein expression level of the cry1cry2 and scc106-D, we used a proteome approach based on 2-DE to compare their protein patterns. The 22 different protein spots were identified by MALDI-TOF-TOF-MS. There are 17 protein spots were decreased in scc106-D and 3 protein spots only appeared in cry1cry2. The identified proteins are involved in several processes, i.e. protein biosynthesis, stress responses, photosynthesis, photorespiration and metabolisms of carbon, sulfur and energy. Most proteins showed enhanced degradation in scc106-D, especially 36% photosynthetic proteins such as Rubisco large subunit and 14% proteins related with energy. The decrease of photosynthesis rate and energy may be the cause of dwarf, sterile, later flower of mutant. The results indicate that light control of phenotypic variations in mutants caused by the increased expression of T-DNA insertion flanking genes is co-regulated by many other related genes.
     (3) Proteomic analysis of rice and Arabidopsis dwarf mutants
     The stem of thermo-sensitive genic male-sterile rice Zhu-1S and its dwarfing variant SV14 and H628S were separated by 2-DE. 33 differential spots were identified by MALDI-TOF-TOF-MS. There were 27 protein spots were decreased in SV14 and 2 protein spots only appeared in Zhu-1S. There were 25 protein spots were decreased in H628S and 3 protein spots only appeared in Zhu-1S. The identified proteins were divided into two following categories: one is regulatory proteins, for example, caffeic acid 3-O-methyltransferas, HSP70, glyoxalase I , actin, and so on. They are involved in protein biosynthesis and processing, cellular structural organization and stress responses. The other is function proteins, for instance, ascorbate peroxidase, cytoplasmic malate dehydrogenase, cytosolic phosphoglycerate kinase, S-adenosyl methionine synthetase, ATP synthase, and so on. They are involved in photosynthesis, photorespiration, redox homeostasis, and metabolisms. The regulatory proteins promoted the devolopment of stem and their decrease impacted the stem elongation. The decrease of function proteins destroyed the metabolism homeostasis in rice and impacted the stem elongation. The results elucidate the molecular mechanism of rice dwarf at the protein level and lay the foundation for further study of molecular breeding of dwarf rice.
     To study the difference at the protein expression level of the cry1cry2 and scc8-D, we used a proteome approach based on 2-DE to compare their protein patterns. The 22 different protein spots were identified by MALDI-TOF-TOF-MS. There are 16 protein spots are decreased in scc8-D and 3 protein spots only appeared in cry1cry2. The identified proteins are involved in several processes, i.e. redox homeostasis, stress responses, photosynthesis, photorespiration, and metabolisms of carbon. 32% proteins showed enhanced degradation in scc8-D, especially the photosynthetic proteins such as Rubisco large subunit. The results suggest that the inhibition of hypocotyl elongation was caused by the decreased expression of regulatory proteins and function proteins, which is under light control.
引文
[1] Wasinger V C, Cordwell S J, Cerpapoljak A, et al. Progerss with gene-product mapping of the mollicutes: Mycoplasma genitaliurn. Electrophoresis, 1995, 16(7): 1090-1094
    [2] Wilkins M R, Sanchez J C, Gooley A A, et al. Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet Eng Rev, 1996, 13(1): 19-50
    [3] Richard J S, Donna S D. Cancer proteomics: from signaling networks to tumor markers. Trends in Biotechnology, 2001, 19(10): 40-48
    [4] Robert F. Proteomics, Can Celera do it again? Science, 2000, 287(5461): 2136-2138
    [5] Lesley S A. High-throughput proteomics: protein expression and purification in the postgenomic world. Protein Expression and Purification, 2001,22(2):159-164
    [6] Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome. Science, 2001, 291(5507):1304-1351
    [7] Henningsen R, Gale B L, Straub K M, et al. Application of zwitterionic detergents to the solubilization ofintegral membrane proteins for two-dimensional gel electrophoresis and mass spectrometry. Proteomics, 2002, 2(11): 1479-1488
    [8] Ong S-E, Pandey A. An evaluation of the use of two-dimensional gel electrophoresis in proteomics. Biomolecular Engineering, 2001, 18(5): 195-205
    [9] Méchin V, Consoli L, Le Guilloux M, et al. An eficient solubilization buffer for plant proteins focused in immobilized pH gradients. Proteomics, 2003, 3(7): 1299-1302
    [10] Dongre A R, Opiteck G, Cosand W L, et al. Proteomics in the post-genome age. Biopolymers, 2001, 60(3): 206-211
    [11] Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature, 2003, 422(6928): 198-207
    [12] Pesaresi P, Varotto C, Richly E, et al. Functional genomics of Arabidopsis photosynthesis. Plant Physiol Biochem, 2001, 39(3-4): 285-294
    [13] O' Farrel P Z. High resolution two-dimensional electrophoresis of proteins. J Biol Chem, 1975, 250(10): 4007-4021
    [14] Fenn J B, Mann M, Meng C K, et al. Electrospray ionization for mass spectrometry of large biomolecules.Science, 1989, 246(4926): 64-71
    [15] Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal Chem, 1988, 60(20): 2301-2303
    [16] Hillenkamp F, Karas M, Beavis R C, et al. Matrix-assisted laser desorption / ionization mass-spectrometry of biopolymers. Anal Chem, 1991, 63(24): A1193- A1202
    [17] Tripathi K K. Bioinformatics: The foundation of present and future biotechnology. Curr Sci, 2000, 79(5): 570-575
    [18] Canovas F M, Dumas-Gaudot E, Recorbet G, et al. Plant proteome analysis. Proteomics, 2004, 4(2): 285-298
    [19] Komatsu S, Kajiwara H, Hirano H. A rice protein library:a data-file of rice proteins separated by two-dimensional electrophoresis. Theor Appl Genet, 1993, 86(8): 935-942
    [20] Tsugita A, Kawakami T, Uchiyama Y, et al. Separation and characterization of rice proteins. Electrophoresis, 1994, 15(5): 708-720
    [21] Zhong B, Karibe H, Komatsu S, et al. Screening of rice genes from a cDNA catalog based on the sequence data-file of proteins seperated by two-dimensional electrophoresis. Breed Sci,1997, 47(3): 245-251
    [22] Hirano H. Screening of rice genes from the cDNA catalog using the data obtained by protein sequencing. J Protein Chem, 1997, 16(5): 533-536
    [23] Shen S, Matsubae M, Takao T, et al. A proteomic analysis of leaf sheaths from rice. J. Biochem, 2002, 132(4): 613-620
    [24] Woo S H, Fukuda M, Islam N, et al. Efficient peptide mapping and its application to identify embryo proteins in rice proteome analysis. Electrophoresis, 2002, 23(4): 647-654
    [25] Kim S T, Cho K S, Jang Y S, et al. Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays. Electrophoresis, 2001, 22(10): 2103-2109
    [26] Koller A, Washburn M P, Markus-Lange B, et al. Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci USA, 2002, 99(18): 11969-11974
    [27] Tanaka N, Fujita M, Handa H, et al. Proteomics of the rice cell: Systematic identification of the protein population in subcellular compartments. Mol Gen Genomics, 2004, 271(5): 566-576
    [28] Tanaka N, Mitsui S, Nobori H, et al. Expression and function of proteins duringdevelopment of the basal region in rice seedlings. Mol Cell Proteomics, 2005, 4(6): 796-808
    [29] Imin N, Kerim T, Weinman J J, et al. Characterisation of rice anther proteins expressed at the young microspore stage. Proteomics, 2001, 1(9): 1149-1161
    [30] Kerim T, Imin N, Weinmann J J, et al. Proteome analysis of male gametophyte development in rice anthers. Proteomics, 2003, 3(5): 738-751
    [31] Dai S, Li L, Chen T, et al. Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated potentially with pollen germination and tube growth. Proteomics, 2006, 6(8): 2504-2529
    [32] Yang P F, Li X J, Wang X Q, et al. Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics, 2007, 7(18): 3358-3368
    [33] Komatsu S, Muhammad A, Rakwa1 R. Separation and characterization of proteins from green and etiolated shoots of rice(Oryza sativa L.): Towards a rice proteome. Electrophoresis, 1999, 20(3): 630-636
    [34]王玉忠,邵继荣,刘永胜,等.温敏失绿突变体水稻1103S在失绿过程中全叶蛋白的变化.植物学报,1999,41(5):519-523
    [35]谢锦云,李小兰,陈平,等.温敏核不育水稻花药蛋白质组初步分析.中国生物化学与分子生物学报,2003,19(2):215-221
    [36] Komatsu S, Yang S, Hayashi N, et al. Alterations by a defect in a rice G protein alpha subunit in probenazole and pathogen-induced responses. Plant Cell Env, 2004, 27(7): 947-957
    [37] Tanaka N, Matsuoka M, Kitano H, et al. gidl, a gibberellin-insensitive dwarf mutant, shows altered regulation of probenazole-inducible protein (PBZI) in response to cold stress and pathogen attack. Plant Cell Environ, 2006, 29(4): 619-631
    [38] Tanaka N, Takahashi H, Kitano H, et al. Proteome approach to characterize the methylmalonate-semialdehyde dehydrogenase that is regulated by gibberellin. J. Proteome Res, 2005, 4(5): 1575-1582
    [39] Takahashi A, Kawasaki T, Wong H L, et al. Hyperphosphorylation of a mitochondrial protein, prohibitin, is induced by calyculin A in a rice lesion-mimic mutant cdrl. Plant Physiol, 2003, 132(4): 1861-1869
    [40] Tsunezuka H, Fujiwara M, Kawasaki T, et al. Proteome analysis of programmed cell death and defense signaling using the rice lesion mimic mutant cdr2. Mol. Plant Microbe Interact, 2005,18(1): 52-59
    [41] Jung Y H, Lee J H, Agrawal G K, et al. The rice(Oryza sativa) blast lesion mimicmutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiol Biochem, 2005, 43(4): 397-406
    [42] Sang G K, Mohammad N M, Hanhong B, et al. Proteome analysis and characterization of phenotypes of lesion mimic mutant spotted leaf 6 in rice. Proteomics, 2007, 7(14): 2447-2458
    [43] Islam N, Upadhyaya N M, Campbell P M, et al. Decreased accumulation of glutelin types in rice grains constitutively expressing a sunflower seed albumin gene. Phytochemistry, 2005, 66(21): 2534-2539
    [44] Fujiwara M, Umemura K, Kawasaki T, et al. Proteomics of Rac GTPase signaling reveals its predominant role in elicitor-induced defense response of cultured rice cells. Plant Physiol, 2006, 140(2): 734-745
    [45] Mikami S, Hori H, Mitsui T. Separation of distinct compartments of rice Golgi complex by sucrose density gradient centrifugation. Plant Sci, 2001, 161(4): 665-675
    [46] Mikami S, Kishimoto T, Hori H, et al. Technical improvement to 2D-PAGE of rice organelle membrane proteins. Biosci Biotechnol Biochem, 2002, 66(5): 1170- 1173
    [47] Heazlewood J L, Howell K A, Whelan J, et al. Towards an analysis of the rice mitochondrial proteome. Plant Physiology, 2003, 132(1): 230-242
    [48] Khan M M, Komatsu S. Rice proteomics: recent developments and analysis of nuclear proteins. Phytochemistry, 2004, 65(12): 167l-1681
    [49] Komatsu S, Kojima K, Suzuki K, et al. Rice Proteome Database based on two-dimensional polyacrylamide gel electrophoresis:its status in 2003. Nucl Acids Res, 2004, 32: 388-392
    [50] Komatsu S. Plant Proteomics Databases:Their Status in 2005. Curr Bioinformatics, 2006, l(1): 33-36
    [51] Ramani S, Apte S K. Transient expression of multiple genes in salinity-stressed young seedlings of rice (Oryza sativa L. cv. Bura Rata). Biochemical and Biophysical Research Communications, 1997, 233(3): 663-667
    [52] Yan S P, Tang Z C, Su WA,et al. Proteomic analysisof salt stress-responsive proteins in rice root. Proteomics, 2005, 5(1): 235-244
    [53] Salekdeh G H, Siopongco J, Wade L J, et al. Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2002, 2(2):1131-1145
    [54] Ali G M, Komatsu S. Proteomic analysis of rice leaf sheath during drought stress.J Proteome Res, 2006, 5(2): 396-403
    [55] Komatsu S, Karibe H, Hamada T, et al. Phosphorylation upon cold stress in rice (Oryza sativa L .) seedlings.Theor Appl Genet, 1999, 98(8): 1304-1310
    [56] Cui S, Huang F, Wang J, et al. A proteomic analysis of cold stress responses in rice seedlings. Proteomics, 2005, 5(12): 3162-3172
    [57] Yan S P, Zhang Q Y, Tang Z C, et al. Comparative proteomic analysis provides new insights into chilling stress responses in rice. Molecular & Celluar Proteomics, 2006, 5(3): 484-496
    [58] Hashimoto M, Komatsu S. Proteomic analysis of rice seedlings during cold stress. Proteomics, 2007, 7(8):1293-1302
    [59] Lin S K, Chang M C, Tsai Y G, et al. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the efect of high temperature on expression. Proteomics, 2005, 5(8): 2140-2156
    [60] Agrawal G K, Rakwal R, Yonekura M, et al. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics, 2002, 2(8): 947-959
    [61] Rakwal R, Agrawal G K, Kubo A, et al. Defense/stress responses elicited in rice seedlings exposed to the gaseous air pollutant sulfur dioxide. Env Exp Bot, 2003, 49(3): 223-235
    [62] Shen S, Jing Y, Kuang T. Proteomics approach to identify wound-response related proteins from rice leaf sheath. Proteomics, 2003, 3(4): 527-535
    [63] Komatsu S, Yang G, Unno K, et al. Characterization of a membrane-associated phosphoprotein (pp47) in rice (Oryza sativa L.) seedling treated by gibberellin. J Plant Physiol, 2002, 159(2): 121-128
    [64] Shen S, Sharma A, Komatsu S. Characterization of proteins responsive to gibberellin in the leaf sheath of rice (Oryza sativa L.) seedling using proteome analysis. Biological and Pharmaceutical Bulletin, 2003, 26(2): 129-136
    [65] Khan M M, Jan A, Karibe H, et al. Identification of phosphoproteins regulated by gibberellin in rice leaf sheath. Plant Mol Biol, 2005, 58(1): 27-40
    [66] Tanaka N, Konishi H, Khan M, et al. Proteome analysis of rice tissues separated and visualized by two-dimensional electrophoresis: approach to investigating the gibberellin regulated proteins. Mol Gen Genomics, 2004, 270(6): 485-496
    [67] Konisbi H, Yamane H, Maeshima M, et al. Characterization of fructose- bisphosphate aldolase regulated by gibbereliin in roots of rice seedling. Plant Mol Biol, 2004, 56(6): 839-848
    [68] Konishi H, Maeshima M, Komatsu S. Characterization of vacuolar membrane proteins changed in rice root treated with gibberellin. J Proteome Res, 2005, 4(5): 1775 -1780
    [69] Komatsu S, Zang X, Tanaka N. Comparison of two proteomics techniques used to identify proteins regulated by gibberellin in rice. J Proteome Res, 2006, 5(2): 270-276
    [70] Oguchi K, Tanaka N, Komatsu S, et al. Characterization of NADPH-dependent oxidoreductase from rice induced by auxin and zinc. Physiol Plant, 2004, 121(1): 124-131
    [71] Oguchi K, Tanaka N, Komatsu S, et al. Methylmalonate-semialdehyde dehydrogenase is induced in auxin-and zinc-stimulated root formation in rice. Plant Cell Rep, 2004, 22(11): 848-858
    [72] Yang G, Inoue A, Takasaki H, et al. A proteomic approach to analyze auxin-and zinc-responsive protein in rice. J Proteome Res, 2005, 4(2): 456-463
    [73] Moons A, Gielen J, Vandekerckhove J, et al. An abscisic-acid and salt-stress- responsive rice cDNA from a novel plant gene family. Planta, 1997, 202(4): 443-454
    [74] Asakura T, Hirose S, Asatsuma S,et al. Proteomic characterization of tissue expansion of rice scutellum stimulated by abscisic acid. Biosci Biotechnol Biochem, 2007, 71(5): 1260-1268
    [75] Rakwal R, Komatsu S. Role of jasmonate in the rice (Oryza sativa L.) self-defense mechnism using proteome analysis. Electophoresis, 2000, 21(12): 2492-2500
    [76] Kamo M,Kawakami T,Miyatake N,et al. Separation and characterization of Arabidopsis thaliana proteins by two-dimensional gel electrophoresis. Electrophoresis, 1995, 16(5): 423-430
    [77] Gallardo K, Job C, Groot S P C, et al. Proteomic analysis of Arabidopsis seed germ ination and priming. Plant Physiol, 2001, 126(2): 835-848
    [78] Chibani K, Ali-Rachedi S, Job C, et al. Proteomic analysis of seed dormancy in Arabidopsis. Plant Physiol, 2006, 142(4): 1493-1510
    [79] Santoni V, Bellini C, Caboche M. Use of two-dimensional protein-pattern analysis for the characterization of Arabidopsis thaliana mutants. Planta, 1994, 192(4): 557-566
    [80] Gallardo K, Job C, Groot S P C. Proteomics of Arabidopsis seed germination: a comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol,2002, 129(2): 823-837
    [81] Rajjou L, Belghazi M, Huguet R, et al. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol, 2006, 141(3): 910-923
    [82] Giacomelli L, Rudella A, Van W K J. High light response of the thylakoid proteome in Arabidopsis wild type and the ascorbate-deficient mutant vtc2-2. A comparative proteomics study. Plant Physiol, 2006, 141(2): 685-701
    [83] Sorin C, Negroni L, Balliau T, et al. Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development. Plant Physiol, 2006, 140(1): 349-364
    [84] Park O K. Proteomic studies in plants. J Biochem Mol Biol, 2004, 37(1):133-138
    [85] Balmer Y ,Vensel W H, Tanaka C K, et al. Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc Natl Acad Sci USA, 2004, 101(8): 2642-2647
    [86] Prime T A, Sherrier D J, Mahon P, et al. A proteomic analysis of organelles from Arabidopsis thaliana. Electrophoresis, 2000, 21(16): 3488-3499
    [87] Kieselbach T, Bystedt M, Hynds P, et al. A peroxidase homologue and novel plastocyanin located by pr teomics to the Arabidopsis chloroplast thylakoid lumen. FEBS Lett, 2000, 480(2-3): 271-276
    [88] Baginsky S, GruissemW. Chloroplast proteomics: potentials and challenges. J Exp Bot, 2004, 55(400): 1213-1220
    [89] Klefmann T, Russenberger D, von Zychlinski A, et al. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol, 2004, 14(5): 354-362
    [90] van Wijk K J. Proteomics of the chloroplast: Experimentation and prediction. Trends Plant Sci, 2000, 5(10): 420-425
    [91] Peltier J B, Friso G, Kalume D E, et al. Proteomics of the chloroplast:Systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell, 2000, 12(3): 319-341
    [92] Vener A V, Harms A, Sussman M R, et al. Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of Arabidopsis thaliana. J Boil Chem, 2001, 276(10): 6959-6966
    [93] Schubert M, Petersson U A, Haas B J, et al. Proteome map of the chloroplast lumen of Arabidopsis thaliana. J Biol Chem, 2002, 277(10): 8354-8365
    [94] Shimaoka T, Ohnishi M, Sazuka T, et al. Isolation of intact vacuoles andproteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana. Plant Cell Physiol, 2004, 45(6): 672-683
    [95] Chivasa S, Ndimba B K, Simon W J, et al. Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis, 2002, 23(11):1754-1765
    [96] Mayfield J A, Fiebig A, Johnstone S E, et al. Gene families from the Arabidopsis thaliana pollen coat proteome. Science, 2001, 292(5526): 2482-2485
    [97] Kruft V, Eubel H, Jansch L, et al. Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol, 2001, 127(4): 1694-1710
    [98] Fuller B, Stevens S M, Sehnke P C, et al. Proteomic analysis of the 14-3-3 family in Arabidopsis. Proteomics, 2006, 6(10): 3050-3059
    [99] Chivasa S, Hamilton J M, Pringle R S, et al. Proteomic analysis of differentially expressed proteins in fungal elicitor-treated Arabidopsis cell cultures. J Exp Bot, 2006, 57(7): 1553-1562
    [100] Peck S C, Nuhse T S, Hess D, et al. Directed proteomics identifies a plant-specific potein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell, 2001, 13(6): 1467-1475
    [101] Kwon H K, Yokoyama R, Nishitani K. A proteomic approach to apoplastic proteins involved in cell wall regeneration in protoplasts of Arabidopsis suspension-cultured cells.Plant Cell Physiol, 2005, 46(6): 843-857
    [102] Bong K P, Jin H C, Park S, et al. Proteomic analysis of the response of Arabidopsis chloroplast proteins to high light stress. Proteomic, 2004, 4(11): 3560- 3568
    [103] Lee S, Lee E J, Yang E J, et al. Proteomic identification of annexins, calcium- dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell, 2004, 16(5): 1378-1391
    [104] Kang J G, Pyo Y J, Cho J W, et al. Comparative proteome analysis of differentially expressed proteins induced by K+ defi-ciency in Arabidopsis thaliana. Proteomics, 2004, 4(11): 3549-3559
    [105]张自国,曾汉来,元生朝,等.再论光敏核不育水稻育性转换的光温作用模式.华中农业大学学报,1992,11(1):1-6
    [106] Ku S, Yoon H, Suh H S, et al. Male-sterility of thermosensitive genic male- sterile rice is associated with premature programmed cell death of the tapetum. Planta, 2003, 217(4): 559-565
    [107]肖辉海,陈良碧.温敏雄性核不育水稻几种同工酶的热激反应.常德师范学院学报(自然科学版),1999,11(3):64-67
    [108]白书农,谭克辉.湖北光敏核不育水稻农垦58S叶片60 kD蛋白特异性及其功能的讨论.植物学报,1997,39(2):189-192
    [109] Parnell F R, Rangswani G N, Ayyanggar C R S. The inheritance of characters in rice. Agri India Bot Ser, 1922, 11: 185-208
    [110] Ichijima K. On the artificially induced mutations and polyploidy plants in subsequent generations. Proc Imp Acad Tokyo, 1934, 10(6): 388-391
    [111]谷福林,翟虎渠,万建民,等.水稻矮秆性状研究及矮源育种利用.江苏农业学报,2003,19(1):48-54
    [112] Takane M, Yuzo F, Fumio K, et al. Science of the rice plant volume three genetics. Tokyo: Food and Araiculture Policy Research Center, 1997: 301-317
    [113]林世成,阂绍楷.中国水稻品种及其系谱.上海:上海科学技术出版社,1991: 3-9
    [114]熊振民,阂绍楷,程式华.我国水稻矮源的研究与利用.水稻文摘,1988,7(4):1-5
    [115]朱立宏,顾铭洪,薛元龙.籼稻矮秆遗传及其利用.南京农学院学报,1980,2(2):1-7
    [116]顾铭洪.矮源及其在水稻育种上的利用.江苏农学院学报,1980,1(1):40-44
    [117] Chang T T, Zuno C,Marciano-Romena A, et al. Semidwarf in rice germplasm collections and their protentials in rice improvement. Phytibreedon, 1985, 1(1): 1-9
    [118] Joshua H E,Rao N S,Bhatia CR,et al. Characteristics of dwarf mutations induced in rice. Proc Symp Radiom Subs Mutant Breed, 1969: 185-197
    [119]王新其,股丽青,沈革志.水稻矮秆突变体的遗传分析.上海农业学报,2002,18(2):19-23
    [120]杨远柱,唐平徕,杨文才,等.水稻广亲和温敏不育系株1S的选育及应用.杂交水稻,2000,15(2):6-9
    [121]刘选明,杨远柱,陈彩艳,等.利用体细胞无性系变异筛选水稻株1S矮杆突变体研究.中国水稻科学,2002,16(4):321-325
    [122] Lin C.Plant blue-light receptors. Trends Plant Sci, 2000, 5(8): 337-342
    [123] Ahamd M,Cashmore A R. HY4 gene of A.thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature, 1993, 366(6451): 162-166
    [124] Sancar A. Structure and function of DNA photolyase. Biochemistry, 1994, 33(1):2-9
    [125] Mockler T C, Guo H, Yang H, et al. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction.Development, 1999, 126(10): 2073-2082
    [126] Todd M, Yang H, Yu X, et al. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci USA, 2003, 100(4): 2140-2145
    [127] Lin C, Yang H, Guo H, et al. Enhancement of blue-light sensitivity of Arabidopsis seedings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci USA, 1998, 95(5): 2686-2690
    [128] Guo H, Yang H, Mockler T C, et al. Regulation of flowering time by Arabidopsis photoreceptors. Science, 1998, 279(5355): 1360-1363
    [129] Mas P, Devlin P F, Panda S, et al. Functional interaction of phytochrome B and cryptochrome 2. Nature, 2000, 408(6809): 207-211
    [130]瞿绍洪,张文俊,景健康,等.玉米转座子Ac在单倍体烟草中转座的研究.遗传学报,1998,25(2):150-154
    [131]廖鸣娟,董爱华,王正栋,等.植物转座子及其在功能基因组学中的应用.遗传,2000,22(5):345-348
    [132] Chang C, Kwok S F, Bleecker A B, et al. Arabidopsis ethylene response gene etrl:similarity of product to two-component regulators. Science, 1993, 262(5133): 539-544
    [133] Schneuwly S, Klemenz R, Gehring W J. Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia. Nature, 1987, 325(6107): 816-818
    [134] Weigel D, Ahn J H, BldzquezM A, et al. Activation tagging in Arabidopsis. Plant Physiol, 2000, 122(4): 1003-1014
    [135]郑继刚,李成梅,肖英化,等.激活标签法及其在植物基因工程上的应用.遗传,2003,25(4):471-474
    [136]陈其军,肖玉梅,王学臣,等.植物功能基因组研究中的基因敲除技术.植物生理学通讯,2004,40(1):121-126
    [137]李志邈,张海扩,曹家树,等.拟南芥激活标记突变体库的构建及突变体基因的克隆.植物生理与分子生物学学报,2005,31(5):499-506
    [138] Sancar A. structure and function of DNA photolyase. Biochemistry, 1994, 33(1):2-9
    [139] Liu Y G, Mitsukawa N, Oosumi, et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J, 1995, 8(3): 457-463
    [140] Meadus1 W J. A semi-quantitative RT-PCR method to measure the in vivo effect of dietary conjugated linoleic acid on porcine muscle PPAR gene expression.Biological Procedures Online, 2003, 5(1): 20-28
    [141] Marone M, Mozzetti S, Ritis D D, et al. Semiquantitative RT-PCR analysis to assess the expression levels of mμLtiple transcripts from the same sample. Biological Procedures Online, 2001, 3(1): 19-25
    [142] Mockler T C, Yu X, Shalitin D, et al. Regulation of flowering time in Arabidopsis by K homology domain protein. Proc Nat Acad Sci USA, 2004, 101(34): 12759-12764
    [143]徐孟亮,周广洽.培矮64S育性表达的温敏感部位研究.杂交水稻,1996,(2):28-30
    [144] Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding. Anal Biochem,1976, 72(5): 248–254
    [145] Huang L, Li B, Luo C, et al. comparative analysis of gynogenetic haploid and diploid embryos of goldfish (Carassius auratus). Proteomics, 2004, 4(1): 235-243
    [146] Izydorczyk M S, Biliaderis C G. Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydrate Polymer, 1995, 28(1): 33-48
    [147] Faik A, Price N J, Raikhel N V, et al. An Arabidopsis gene encoding an a-xylosyltransferase involved in xyloglucan biosynthesis. Proceedings of the National Academy of Sciences, 2002, 99(11): 7797-7802
    [148] Bailey R W, Hassid W Z. Xylan synthesis from uridine-diphodphate-Dxylose by particulate preparations from immature corncobs. Proceedings of the National Academy of Sciences, 1966, 56(5): 1586-1593
    [149] Ye Z H, Kneusel R E, Matern U, et al. An alternative methylation pathway in lignin biosynthesis in zinnia. Plant Cell, 1994, 6(10): 1427–1439
    [150] Maury S, Geoffroy P, Legrand M. Tobacco O-methyltransferases involved in phenylpropanoid metabolism. The different caffeoylcoenzyme A/5- hydroxyferuloy l-coenzyme A 3/5-O-methyltransferase and caffeic acid/5- hydroxyferulic acid 3/5-O-methyltransferase classes have distinct substrate specificities and expression patterns. Plant Physiol, 1999, 121(1): 215–224
    [151] Espartero J, Sanchez-Aguayo I, Pardo J M. Molecular characterization of glyoxalase-I from a higher plant; upregulation by stress. Plant Mol Biol, 1995, 29(6): 1223–1233
    [152] Moons A, Gielen J, Vandekerckhove J, et al. An abscisic-acid- and salt-stress-responsive rice cDNA from a novel plant gene family. Planta, 1997,202(4): 443-454
    [153] Minarik P, Tomaskova N, Kollarova M, et al. Malate dehydrogenases--structure and function. Gen Physiol. Biophys, 2002, 21(3): 257-265
    [154] Vanbreusegem F, Dekeyser R, Gielen J, et al. Characterization of a S- adenosylmethionine synthetase gene in rice. Plant Physiology, 1994, 105(4): 1463- 1464
    [155] Houston N L, Fan C, Xiang Q Y, et al. Phylogenetic analyses identify 10 classes of the protein disulfide isomerase family in plants, including single-domain protein disulfide isomerase-related proteins. Plant Physiology, 2005, 137(2): 762- 778
    [156] Chen W, Singh K B. The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J, 1999, 19(6): 667-677
    [157] Paiva N L, Edwards R, Sun Y, et al. Stress responses in alfalfa (Medicago sativa L.)1l.Molecular cloning and expression of alfalfa isoflavone reductase,a key enzyme of isoflavonoid phytoalexin biosynthesis. Plant Molecular biology, 1991, 17(4): 653-667
    [158] Dixon R A. Natural products and plant disease resistance.Nature, 2001, 411(6839): 843-847
    [159]梁国华,潘学彪,顾铭洪,等.矮泰引-2中半矮秆基因的分离和鉴定.中国水稻科学,1995,9(5):189-192
    [160]李欣,徐金凤,王兴稳,等.水稻半矮秆基因sd-n的染色体定位研究.扬州大学学报(农业与生命科学版),2002,23(1):40-44
    [161] Kiddle G A, Bennett R N, Hick A J, et al. C-S lyase activities in leaves of crucifers and non-crucifers, and the characterization of three classes of C-S lyase activities from oilseed rape (Brassica napus L.). Plant Cell Environ, 1999, 22(5): 433-445
    [162] Harper A D, Bar-Peled M. Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms. Plant Physiol, 2002, 130(4): 2188-2198
    [163] Dixon R A, Achnine L, Kota P, et al. The phenylpropanoid pathway and plant defence-a genomics perspective. Molecular Plant Pathology, 2002, 3(5): 371-390
    [164] Sugihara K, Hanagata N, Dubinsky Z, et al. Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in themangrove Bruguiera gymnorrhiza. Plant Cell Physiol, 2000, 41(11): 1279-1285
    [165] Agrawal G K, Rakwal R, Yonekura M, et al. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics, 2002, 2(8): 947-959
    [166] Rakwal R, Agrawal G K, Kubo A, et al. Defence/stress responses elicited in rice seedlings exposed to the gaseous air pollutant sulfur dioxide. Environ Exp Bot, 2003, 49(3): 223-235
    [167] Kim D W, Rakwal R, Agrawal GK, et al. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis, 2005, 26(23): 4521-4539
    [168] Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem, 1998, 67: 425-479
    [169] Veena, Reddy V S, Sopory S K. Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J, 1999, 17(4): 385-395
    [170]张少斌,任东涛,徐小静,等.豌豆肌动蛋白异型体PEAcl与绿色荧光蛋白融合基因的原核表达与特性分析.科学通报,2004,49(6):563-569
    [171] Luan S. Signalling drought in guard cells. Plant Cell Environ, 2002, 25(2): 229-237
    [172] Hwang J U, Sub S, Yi H J, et al. Actin filaments modulate both stomatal opening and inward K+-channel activities in guard cells of Vicia faba L. Plant Physiol, 1997, 115(2): 335-342
    [173] Li Q B, Haskell D W, Guy C L. Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato. Plant Mol Biol, 1999, 39(1): 21-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700