利用拟南芥突变体鉴定木材形成的相关基因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因组学技术研究植物发育某一过程往往获得许多参与该过程的基因,如何采取快速、有效的方法来鉴定这些基因的功能是解析该生物学过程分子机制的基础。拟南芥在人工诱导条件下由形成层活动产生相当数量的木质部,在一定程度上可以模拟树木木材形成。本研究利用该系统分析相关候选基因的拟南芥突变体来研究其参与树木次生维管系统发育的功能。
     根据毛白杨维管系统再生过程中差异表达基因信息,从国际拟南芥突变体库NASC、RIKEN、CSHL筛选了89个基因的151个拟南芥突变系,利用次生诱导体系来研究相应基因对维管系统的影响。在诱导条件下,这些突变体表现出不同的形态和结构的变化,共有22个表型和结构发生变化。20个突变系发芽率或存活率较低,发芽率由10%—60%,其中2个突变系存活率分别为0%和50%。5个突变系在茎或下胚轴的结构上发生变化,其中一个突变系arris-stem(as)发生如下表型变化:从真叶出现至开花结实的整个生长期,生长速度要明显比野生型拟南芥缓慢;叶缘有明显锯齿,莲座叶呈螺旋状排列;茎的基部有较多侧枝,侧枝间距明显缩短,茎有明显扭曲;突变体茎侧面有1至数条棱形突起,内部存在一至数个排列紧密的细胞团,由多层细胞呈环形排列,细胞壁明显加厚,内部存在管状分子,推测为维管组织。
     根据突变体库提供的资料,as突变体T-DNA插入位点位于基因组中At2g44110基因。我们从基因补偿、基因表达分析及基因超量表达等方面分析该基因功能。通过PCR由拟南芥中分离该基因和启动子,构建基因补偿表达载体、基因表达模式分析表达载体和基因超量表达载体并导入as突变体或野生型拟南芥。研究结果表明,通过基因补偿,突变植株表型基本恢复;基因表达分析研究表明,该基因在花和幼叶中沿维管束表达,在幼嫩的根茎中呈束状表达,在幼嫩组织中表达量高,在成熟叶片和成熟茎中不表达。超量表达试验也获得了转化植株,尚未进行表型鉴定。
     根据基因补偿研究结果,证明At2g44110为造成突变体表型变化的决定基因,很可能参与调控维管组织的发育式样。表达分析研究表明,该基因在茎的初生生长初期就已经表达。由上述研究结果,综合推断At2g44110基因在茎的初生生长初期就已经参与了维管组织的发育,调控维管组织的发育式样,而在经充分次生诱导后,该基因的突变能充分表现出来而造成as突变体的表型变化。
     as基因在拟南芥维管系统发育中具有重要的作用,其同源基因在毛白杨维管系统再生过程中也呈差异表达,说明拟南芥和木本植物可能具有一定相似的维管系统发育调控模式。同时本研究作为一个范例,为应用拟南芥次生诱导研究体系来研究参与木材形成的基因的功能,进而为揭示次生维管系统发育的分子调控机制奠定基础。
Wood formation is a comprehensive process which possesses thousands of genes underprecise control. To understand the molecular mechanism of wood formation, a quick andefficient method is necessary to study the function of these genes. Arabidopsis can produceconsiderable amounts of secondary xylem under certain condition, which can mimic theprocess of wood formation. In this study, the induced Arabidopsis secondary growth system areapplied to verify the function of genes previously obtained may involved in the development ofsecond vascular system in poplar.
     According to information of differentially expressed genes during regeneration ofsecondary vascular system in poplar, we obtained 151 Arabidopsis mutant lines comprising 89Arabidopsis genes form mutants center of NASC, RIKEN, CSHL. These were raised underinducing condition to test if any morphology and structure changes. Twenty two Arabidopsismutants had various changes in morphology and anatomical structures. Twenty mutants hadlow germination rate from 10% to 60%, of which 2 had survival rates at 0% and 50%. Fivemutants occurred structure changes in the hypocotyls or stem. One of these lines, namedarris-stem (as), showed some unique changes: slower growth rate in comparison with the wildtype from germination to florescence; serrated margin of leaf blades, spiral rosette; morebranch in the bottom part of the stem, shorter nodes, twisted stem and branch. There were oneor several arrises along the stem. Across sections of the arrises showed one or several compactcells lumps which were round, made up of several layers of cells, looked like vascular-bundle.The tissue was more fluorescent under UV light than the surrounding cells, which suggestedthere was the thickened cell wall. Tracheary elements were observed inside the arrises undermicroscope, suggesting they are similar to vascular bundles.
     According to information from Arabidopsis Mutants Center(http://signal.salk.edu/),T-DNA insert site located in the gene At2g44110. The At2g44110 gene functions wereinvestigated with three approaches, i. e., gene complementary; gene express profile; geneover-expression. The results showed that the phenotype of as mutants came to the normal aftergene complement. The expression profiles showed that the as gene was mainly expressed inthe vascular bundles of the inflorescence, young leaves, and also presented in bundle in young root and stem. The express occurred only in young tissues, and no express was found in oldleave and stem. The transformants intended to over-expression of the gene was obtained butnot characterized yet.
     Based on the complementary study on the as mutants, we suggest T-DNA insertion of theAt2g44110 cause the as phenotype. In addition, its expression pattern indicated that this geneexpressed in the primary growth stage of the stem. These results indicate it may predetermineon the potential vascular development pattern and also fimction in the later development of thevascular systems.
     This study showed that as may play an important role in the vascular system developmentin the Arabidopsis, and this gene have been found differentially expressed in the secondaryvascular system in poplar (Populus tomentosa.). Taking together we suggest that Arabidopsisand poplar may be similar in the vascular system development and regulation mechanisms.This study may serves as an example to study functions of genes involved in wood formation,using the induced secondary vascular system in Arabidopsis, which could provide the basicdata to elucidate the molecular mechanisms of the development of the secondary vascularsystem.
引文
[1] 王忠 (2000) 植物生理学,北京:中国农业出版社.
    [2] Larson PR (1994) The Vascular Cambium. Berlin:Springer-Verlag.
    [3] Mauseth J (1998) Botany: An Introduction to Plant Biology.. sudbury,MA.:Jones and Bartlett Publishers.
    [4] Catesson AM, Funada R, Robert BD, Quinet SM, Chu BJ and Goldberg R (1994) Biochemical and cytochemical cell wall changes across the cambial zone. IAWA Journal 15:91-101.
    [5] Stern KR, Jansky S and Bidlack J (2003) Introductory plant biology 9th. USA:The McGraw.
    [6] Jacobs WP (1952) The role of auxin in differentiation of xylem around a wound. Am J Bot 39:301-309.
    [7] Sachs T (1981) The control of the patterned differentiation of vascular tissues. Ad Bot Res 9:151-262.
    [8] Sachs T (1991) Cell polarity and tissue patterning in plants. Dev Suppl 91:83-93.
    [9] Fukuda H (2004) Signals that control plant vascular cell differentiation. Nature Reviews Molecular Cell Biology 5:379-391.
    [10] Carlsbecker A, Helariutta Y (2005) Phloem and xylem specification: pieces of the puzzle emerge. Current Opinion in Plant Biology 8:512-517.
    [11] Carland F, Nelson T (2004) COTYLEDON VASCULAR PATTERN2-mediated inositol (1,3,5) triphosphate signal transduction is essential for closed venation pattern of Arabidopsis foliar organs. Plant Cell 16:1263-1275.
    [12] Fischer U, Men S and Grebe M (2004) Lipid function in plant cell polarity. Curr Opin Plant Biol 7:670-676.
    [13] Koizumi K, Naramoto S, Sawa S, Yahara N, Ueda T, Nakano A, Sugiyama M and Fukuda H (2005) VAN3 ARF-GAP-mediated vesicle transport is involved in leaf vascular network formation. Development 132:1699-1711.
    [14] Parker G, Schofield R, Sundberg B and Turner S (2003) Isolation of COV1, a gene involved in the regulation of vascular patterning in the stem of Arabidopsis. Development 130:2139-2148.
    [15] Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, lzhaki A, Baum SF and Bowman JL (2003) Radial Patterning of Arabidopsis Shoots by Class Ⅲ HD-ZIP and KANADI Genes. Current Biology 13:1768-1774.
    [16] Juarez MT, Kui JS, Thomas J, Heller BA and Timmermans MC (2004) microRNA-mediated repression of rolled leafl specifies maize leaf polarity. Nature B iotechnology 428:84-88.
    [17] McConnell JR, Emery J, Eshed Y, Bao N, Bowman J and Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709-713.
    [18] McHale NA and Koning RE (2004) MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems. Plant Cell 16:1730-1740.
    [19] Zhong R, Ye ZH (2004) Amphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant Cell Physiol 45:369-385.
    [20] Prigge, M. J., D. Otsuga, et al. (2005). "Class Ⅲ homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development." Plant Cell 17(1): 61-76.
    [21] Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK and Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. EMBO J 23:3356-3364.
    [22] Kidner CA, Martienssen RA (2004) Spatially restricted microRNA directs leaf polarity through ARGONAUTE. Nature 428:81-84.
    [23] Eshed Y, Baum SF, Perea JV and Bowman JL (2001) Establishment of polarity in lateral organs of plants. Curr Biol 11:1251-1260.
    [24] Kerstetter RA, Boliman K, Taylor RA, Bomblies K and Poethig RS (2001) KANADI regulates organ polarity in Arabidopsis. Nature 411:706-709.
    [25] Cano-Delgado A, Yin Y, Yu C, Vafeados D, Mora-Garcia S, Cheng JC, Nam KH, Li J and Chory J (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341-5351.
    [26] Bonke M, Thitamadee S, Ma"ho"nen AP, Hauser M-T and Helariutta Y (2003) APL regulates vascular tissue identity in Arabidopsis.Nature 426:181-186.
    [27] Chaffey N (1999b) Wood formation in forest trees:from Arabidopsis to Zinnia. Trends Plant Science 4:203-204.
    [28] Rayle DL and Cleland RE (1992) The Acid Growth Theory of auxin-induced cell elongation is alive and well. Plant Physiol 99:1271-1274.
    [29] Cosgrove DJ, Li ZC (1993) Role of Expansin in Cell Enlargement of Oat Coleoptiles (Analysis of Developmental Gradients and Photocontrol). Plant Physiol 103:1321-1328.
    [30] Bannigan A, Baskin TI. (2005) Directional cell expansion--turning toward actin. Curr Opin Plant Biol. 8(6):619-624.
    [31] Zhang S, Chen C, Li L, Meng L, Singh J, Jiang N, Deng XW, He ZH, Lemaux PG. (2005) Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family. Plant Physiol. 139(3):1107-1124.
    [32] Schwab B, Mathur J, Saedler R, Schwarz H, Frey B, Scheidegger C, Huiskamp M. (2003) Regulation of cell expansion by the DISTORTED genes in Arabidopsis thaliana: actin controls the spatial organization of microtubules. Mol Genet Genomics. 269(3):350-360.
    [33] Wang H, Lee MM, Schiefelbein JW. (2002) Regulation of the cell expansion gene RHD3 during Arabidopsis development. Plant Physiol. 129(2):638-649.
    [34] Roudier F, Fernandez AG, Fujita M, Himmelspach R, Borner GH, Schindelman G, Song S, Baskin TI, Dupree P, Wasteneys GO, Benfey PN. (2005) COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell. 17(6): 1749-1763.
    [35] Hauser MT, Morikami A, Benfey PN. (1995) Conditional root expansion mutants of Arabidopsis. Development. 121 (4): 1237-1252.
    [36] Richmond TA and Somerville CR (2001) Integrative approaches to determining Csl function. Plant Mol Biol 47.
    [37] Arioli T, Peng L, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J and Birch R (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717-720.
    [38] Fagard M, Desnos T, Desprez T, Goubet F, Refregier G, Mouille G, McCann M, Rayon C, Vernhettes S and Hofte H (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12:2409-2424.
    [39] Taylor NG, Scheible WR, Cutler S, Somerville CR and Turner SR (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11:769-780.
    [40] Turner SR, Taylor N and Jones L (2001) Mutations of the secondary cell wall. Plant Mol Biol 47:209-219.
    [41] Wu L, Joshi CP, Chiang VL (2000) A xylem-specific cellulose synthase gene from aspen (Populus tremuloides) is responsive to mechanical stress. Plant Journal [print] June 22:495-502.
    [42] Murakami Y, Funada R, Sano Y and Ohtani J (1999) The differentiation of contact cells and isolation cells in the xylem ray parenchyma of Populus maximowiczii. Annals of Botany London Oct 84:429-435.
    [43] Rogers LA, Dubos C, Surman C, Willment J, Cullis IF, Mansfield SD, Campbell MM. (2005) Comparison of lignin deposition in three ectopic lignification mutants. New Phytoi. 168(1):123-140.
    [44] Tamagnone L, Merida A, Stacey N, Plaskitt K, Parr A, Chang CF, Lynn D, Dow JM, Roberts K and Martin C (1998) Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphology in leaves of transgenic tobacco plants. Plant Cell 10:1801-1816.
    [45] Patzlaff A, Mclnnis S, Courtenay A, Surman C, Newman L J, Smith C, Bevan MW, Mansfield S, Whetten RW, Sederoff RR and Campbell MM (2003) Characterisation of a pine MYB that regulates lignification. Plant Journal 36:743-754.
    [46] Zhong R, Ye Z-H (2001) Alteration of Auxin Polar Transport in the Arabidopsis ifll Mutants. Plant Physiology 126:549-563.
    [47] Cafio-Delgado AI, Metzlaff K and Bevan MW (2000) The elil mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana. Development 127:3395-3045.
    [48] Kawaoka A, Kaothien P, Yoshida K, Endo S, Yamada K and Ebinuma H (2000) Functional analysis of tobacco LIM protein Ntliml involved in lignin biosynthesis. Plant Journal [print] May 22:289-301.
    [49] Fukuda H (1996) Xylogenesis: Initiation, progression, and cell death. Ann Rev Plant Physiol Plant Mol Biol 41:299-325.
    [50] Groover A, DeWitt N, Heidel A and Jones A (1997) Programmed cell death of plant tracheary elements differentiating in vitro. Protoplasma 196:197-211.
    [51] Groover A, Jones AM (1999) Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis. Plant Physiol 119:375-384.
    [52] Beers EP, Freeman TB. (1997). Proteinase activity during tracheary element differentiation in Zinnia mesophyll cultures. Plant Physiol. 113: 873-880.
    [53] Ye ZH, Varner JE. (1995). Induction of cysteine and serine proteases during xylogenesis in Zinnia elegans. Plant Mol. Biol. 30: 1233-1246.
    [54] lliev I, Savidge R. (1999). Proteolytic activity in relation to seasonal cambial growth and xylogenesis in Pinus banksiana. Phytochem. 50:953-960.
    [55] 王雅清,崔克明(1998)杜仲次生木质部导管分子中的程序化死亡.植物学报40:1102-1107.
    [56] Du J, Xie HL, Zhang DQ, Wang M J, He XQ, Li YZ, Cui KM and Lu MZh (2006) Regeneration of the secondary vascular system in poplar as a novel system to investigate gene expression by a proteomic approach. Proteomics 6:881-895.
    [57] Jones AM. (2001). Programmed cell death in development and defense. Plant Physiol. 125: 94-97.
    [58] 曹仪植(2004)拟南芥.北京:高等教育出版社.
    [59] 李俊华,张艳春,徐云远,种康,王辉(2004)拟南芥室内培养技术.植物学通报21:201-204.
    [60] 李志邈,张海,曹家树,何祖华(2005)拟南芥激活标记突变体库的构建及突变体基因的克隆.植物生理与分子生物学学报31:499-506.
    [61] 陆晓春,薛庆中(2002)插入诱变在拟南芥基因克隆中的应用.中国生物工程杂志22.
    [62] 郑继刚,李成梅,肖英华and李雅轩(2003)激活标签法及其在植物基因工程上的应用.遗传25:471-474
    [63] Oppenheimer DG, Herman PL, Sivakumaran S, Esch J, Marks MD. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell. 1991 Nov 1; 67(3): 483--493.
    [64] Yanofsky M F, Ma H, Bowman J L, Drews G N, Feldmann K A, Meyerowitz E M. 1990. The protein encoded by theArabidopsis homeotic gene agamous resembles transcription factors. Nature, 346:35-39
    [65] Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Ceil. 1994 Jan; 6(1): 147-158.
    [66] Liu, Y.-G., Mitsukawa, N., Oosumi, T., and Whittier, R.F. 1995. Efficient isolation and.mapping of Arabidopsis tha-liana T-DNA insert junctions by thermal asymmetric in-terlaced PCR [J]. Plant J., 8: 457-463.
    [67] Alonso JM, Stepanova AN, Leisse TJ, Kim C J, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC and Ecker JR (2003) Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science 301:653-657.
    [68] Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm C J, Southwick AM, Wu HC, Kim C, Nguyen M, Pham P, Cheuk R, Karlin-Newmann G, Liu SX, Lam B, Sakano H, Wu T, Yu G, Miranda M, Quach HL, Tripp M, Chang CH, Lee JM, Toriumi M, Chan MMH, Tang CC, Onodera CS, Deng JM, Akiyama K, YasserAnsari, Arakawa T, Banh J, Banno F, Bowser L, Brooks S, Carninci P, Chao Q, Choy N, Enju A, Goldsmith AD, Gurjal M, Hansen NF, Hayashizaki Y, Johnson-Hopson C, Hsuan VW, lida K, Karnes M, Khan S, Koesema E, Ishida J, Jiang PX, Jones T, Kawai J, Kamiya A, Meyers C, Nakajima M, Narusaka M, Seki M, Sakurai T, Satou M, Tamse R, Vaysberg M, Wallender EK, Wong C, Yamamura Y, Yuan S, Shinozaki K, Davis RW, Theologis A, Ecker JR (2003) Empirical Analysis of Transcriptional Activity in the Arabidopsis Genome. Science 302:842-846.
    [69] Scholl RL, May ST and Ware DH (2000) Seed and Molecular Resources for Arabidopsis. Plant Physiology 124:1477-1480.
    [70] Chaffey N, Cholewa E, Regan S and Sundberg B (2002) Secondary xylem development in Arabidopsis: a model for wood formation. Physiologia Plantarum 114:594-600.
    [71] Ko J-H, Han K-H, Park S, Yang J (2004b) Plant Body Weight-Induced Secondary Growth in Arabidopsis and Its Transcription Phenotype Revealed by Whole-Transcriptome Profiling. Plant Physiology 135:1069-1083.
    [72] Lev-Yadun S (1994) Induction of sclereid differentiation in the pith of Arabidopsis thaliana(L.) Heynh. Journal of Experimental Botany 45:1845-1849.
    [73] 李正理,崔克明,于春生.(1981)杜仲剥皮再生的解剖学研究.植物学报,23:6-11.
    [74] 李正理,崔克明,于春生.(1981a)杜仲茎部剥皮后塑料膜包裹的效应.中国科学,12:1524-1527.
    [75] Wang YQ, MWANGE KNK and Cui KM (2000) Ultracytochemical localization of ATPase during the secondary xylem differentiation and dedifferentiation in Eucommia ulmoides trunks. Acta Botanica Sinica 42:455-460.
    [76] 王雅清,柴晶晶,崔克明(1999)杜仲次生木质部分化和脱分化过程中酸性磷酸酶的超微细胞化学定位.植物学报 41:1155-1159.
    [77] 崔克明,汪向彬,段俊华(1999)构树形成层活动中内源IAA的变化及其结合蛋白的研究.植物学报 41:1082-1085.
    [78] 崔克明,王雅清(2000)木质部细胞分化和脱分化的机理.西北植物学报.20:907-921.
    [79] Li, Z. L., and Cui, K. M. (1988) Differentiation of secondary xylem after girdling. IAWA Bulletin 9: 375-383
    [80] Stobbe, H., Schmitt, U., Eckstein, D., and Dujesietken, D. (2002) Developmental stages and fine structure of surface callus formed after debarking of living lime trees (Tilia sp.). Annals of Botany 89: 773-782.
    [81] 王敏杰(2005).毛白杨维管系统再生过程中的基因表达分析.北京,中国林业科学研究院.博士研究生学位论文.
    [82] 谢红丽(2003)毛白杨剥皮再生过程中蛋白质的表达分析及差异蛋白的肽质量指纹鉴定.中国农业大学硕士论文.
    [83] 陈军(2006)多维色谱法分析毛白杨次生维管系统再生过程的蛋白质表达谱.北京.中国林业科学研究院.博士研究生学位论文.
    [84] Taylor, N. G. (2002). Populus: Arabidopsis for Forestry. Do we need a model tree? Annals of Botany 90:681-689.
    [85] Taylor NG, Scheible WR, Cutler S, Somerville CR, Turner SR (1999). The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11: 769-780.
    [86] Fukuda, H., and Komamine, A. (1980). Establishment of an experimental system for the tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans. Plant Physiol. 52: 57-60.
    [87] McCabe PF and Leaver CJ (2000) Programmed cell death in cell cultures. Plant Molecular Biology 44:359-368.
    [88] Nakashima J, Mizuno T, Takabe K, Fujita M and Saiki H (1997) Direct visualization of lignifying secondary wall thickenings in Zinnia elegans cells in culture. Plant and Cell Physiology 38:818-827.
    [89] Menges M and Murray J (2002) Synchronous Arabidopsis suspension cultures for analysis of ceil-cycle gene activity. Plant J 30:203-212.
    [90] Menges M, Hennig L, Gruissem W and Murray JAH (2003) Genome-wide gene expression in an Arabidopsis cell suspension. Plant Mol Biol 53:423-442.
    [91] Kalev N, Aloni R (1998) Role of auxin and gibberellin in regenerative differentiation of tracheids in Pinus pinea seedlings. New Phytologist 138:461-468.
    [92] Lee T, Shultz R, Hanley-bowdoin L and Thompson W (2004) Establishment of rapidly proliferating rice cell suspension culture and its characterization by fluorescence-activated cell sorting analysis. Plant Molecular Biology Reporter 22:259-267.
    [93] 卢孟柱(2003)次生维管系统发育的分子基础研究.中国农业科技导报5:14-17.
    [94] Cervera MT, Storme V, lvens B, Gusmao J, Liu BH, Hostyn V, Slycken JV, Montagu MV and Boerjan W (2001) Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158:787-809.
    [95] Shepherd M, Cross M, Dieters MJ and Henry R (2003) Genetic maps for Pinus elliottii var. elliottii and P. caribaea var. hondurensis using AFLP and microsatellite markers. Theor Appl Genet 106:1409-1419.
    [96] DEVEY ME, SEWELL MM, UREN TL and NEALE DB (1999) Comparative mapping in loblolly and radiata pine using RFLP and microsatellite markers. Theor Appl Genet 99:656-662.
    [97] Remington DL, Whetten RW, Liu BH and Malley DM (1999) Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theoretical and Applied Genetics 98:1279-1292.
    [98] Devey ME, Bell JC, Smith DN, Neale DB and Moran FG (1996) A genetic linkage map for Pinus radiata based on RFLP,RAPD and microsatellite markers. Theor Appl Genet 92:673-679.
    [99] Costa P, Pot D, Dubos C, Frigerio JM, Pionneau C, Bodenes C, Bertocchi E, Cervera MT, Remington DL and Plomion C (2000) A genetic map of Maritime pine based on AFLP, RAPD and protein markers Theoretical and Applied Genetics 100:39-48.
    [100] Plomion C, Costa P and Bahrman N (1997) Genetic analysis of needle protein in Maritime pine Mapping dominant and eodominant protein markers assayed on diploid tissue, in a haploid-based genetic map. Silvae Genet 46:161-165.
    [101] Lerceteau E, Plomion C and Andersson B (2000) AFLP mapping and detection of quantitative trait loci (QTLs) for economically important traits in Pinus sylvestris: a preliminary study. Molecular Breeding 6:451-458.
    [102] JrBradshaw HD and Stettler RF (1995) Molecular genetics of growth and development in populus. Ⅳ. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139:963-973.
    [103] Liu Z and Furnier GR (1993) Inheritance and linkage of allozymes and restriction fragment length polymorphisms in trembling aspen. J Hered 84:419-424.
    [104] Bradshaw HD, Stettler RF (1994) Molecular genetics of growth and development in Populus. Ⅱ. Segregation distortion due to genetic load. Theor Appl Genet 89:551-558.
    [105] Yin T, Huang M, Wang M, Zhu LH, Zeng ZB and Wu R (2001) Preliminary interspecific genetic maps of the populus genome constructed from RAPD markers. Genome 44:602-609.
    [106] Zhang D, Zhang Z, Yang K and Li B (2004) Genetic mapping in (Populus tomentosa×Populus bolleana) and P. tomentosa Carr. using AFLP markers. Theor Appl Genet 108:657-662.
    [107] Krutovsky KV, Neale DB (2005) Nucleotide diversity and linkage disequilibrium in cold-hardiness- and wood quality-related candidate genes in Douglas fir. Genetics 171:2029-2041.
    [108] Pot D, Rodrigues JC, Rozenberg P, Chantre G, Tibbits J, Christine C, Pichavant F and Plomion C (2006) QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait.) Submitted to Theoretical and Applied Genetics. Tree Genetics & Genomes 2:10-24.
    [109] Sewell MM, Davis MF, Tuskan GA, Wheeler NC, Elam CC, Bassoni DL and Neale DB (2002) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). Ⅱ. Chemical wood properties. Theor Appl Genet 104:214-222.
    [110] 黄秦军,苏晓华,黄烈健,张志毅 (2004) 美洲黑杨×青杨木材性状QTLs定位研究.林业科学 40.
    [111] Thumma BR, Nolan MF, Evans R and Moran GF (2005) Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 171:1257-1265.
    [112] Gilchrist EJ, Haughn GW, Ying CC, Otto SP, Zhuang J, Cheung D, Hamberger B, Aboutorab F, Kalynyak T, Johnson L, Bohlmann J, Ellis BE, Douglas CJ and Cronk QCB (2006) Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Molecular Ecology 15:1367-1378.
    [113] Dantec LL, Chagne D, Pot D, Cantin O, Garnier-Gere P, Bedon F, Frigerio JM, Chaumeil P, Leger P, Garcia V, Laigret F, Daruvar AD and Plomion C (2004) Automated SNP detection in expressed sequence tags: statistical considerations and application to maritime pine sequences. Plant Mol Biol 54:461-470.
    [114] Hans d, Jong J, Fransz P and Zabel P (1999) High resolution FISH in plants - techniques and applications. Trends Plant Science 4:258-263.
    [115] Jiang J, Gill BS (1994) Nonisotopic in situ hybridization and plant genome mapping: the first 10 years. Genome 37:717-725.
    [116] Jackson SA, Wang ML, Goodman HM and Jiang J (1998) Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome 41:566-572.
    [117] Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomaki P, Lang JC, Schuller DE, Yu L, Bloomfield CD, Caligiuri MA, Yates A, Nishikawa R, Su HH, Petrelli NJ, Zhang X, O'Dorisio MS, Held WA, Cavenee WK and Plass C (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24:132-138.
    [118] Wu C, Morris JR (2001) Genes, genetics, and epigenetics: a correspondence. Science 293:1103-1105.
    [119] Matsuyama T, Kimura MT, Koike K, Abe T, Nakano T, Asami T, Ebisuzaki T, Held WA, Yoshida S and Nagase H (2003) Global methylation screening in the Arabidopsis thaliana and Mus musculus genome: applications of virtual image restriction landmark genomic scanning (Vi-RLGS). Nucleic Acids Res 31:4490-4496.
    [120] Eisen MB, Speilman PT, Brown PO and Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 95.
    [121] Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhalerao R, Larsson M, Villarroel R, Van MM, Sandberg G, Olsson O, Teeri TT, Boerjan W, Gustafsson P, Uhlen M, Sundberg B and Lundberg J (1998) Gene discovery in the wood-forming tissues of poplar: Analysis of 5,692 expressed sequence tags. Proceedings of the National Academy of Sciences of the United States of America 95:13330-13335.
    [122] Sterky F, Bhalerao RR, Unneberg P, Segerman B, Nilsson P, Brunner AM, Charbonnel-Campaa L, Lindvall J J, Tandre K, Strauss SH, Sundberg Br, Gustafsson P, n MU, Bhalerao RP, Nilsson O, Sandberg Gr, Karlsson J, Lundeberg J and Jansson S (2004) A Populus EST resource for plant functional genomics. PNAS 101:13951-13956.
    [123] Yang J, Kamden DP, Keathley DE and Han K-H (2004) Seasonal changes in gene expression at the sapwood-heartwood transition zone of black locust (Robinia pseudoacacia) revealed by cDNA microarray analysis. Tree Physiology 24:461-474.
    [124] Allona I, Quinn M, Shoop E, Swope K, Cyr SS, Carlis J, Riedl J, Retzel E, Campbell MM, Sederoff R and Whetten RW (1998) Analysis of xylem formation in pine by cDNA sequencing. Proceedings of the National Academy of Sciences of the United States of America 95:9693-9698.
    [125] Beers EP, Zhao C (2001) Arabidopsis as a model for investigating gene activity and function in vascular tissues. In N. Morohoshi and A. Komamine (eds.),Molecular Breeding of Woody Plants. New York:Elsevier Science B.V.
    [126] Moreau C, Aksenov N, Lorenzo MG, Segerman B, Funk C, Nilsson P, Jansson S and Tuominen H (2005) A genomic approach to investigate developmental cell death in woody tissues of Populus trees. Genome Biology 6:R34.
    [127] Dejardin A, Leple J-C, Lesage-Descauses M-C, Costa G and Pilate G (2004) Expressed Sequence Tags from Poplar Wood Tissues - A Comparative Analysis from Multiple Libraries. Plant biol (Stuttg) 6:55-64.
    [128] Tuskan GA, DiFazio SP and Teichmann T (2004) Poplar genomics is getting popular: the impact of the poplar genome project on tree research. Plant Biol (Stuttg) 6:2-4.
    [129] Qin L, Overmars H, Helder J, Popeijus H, Voort JRvd, Groenink W, Koert Pv, Schots A, Bakker J and Smant G (2000) An efficient cDNA-AFLP-based strategy for the identification of putative pathogenicity factors from the potato cyst nematode Globodera rostochiensis. Mol Plant Microbe Interact 13:830-836.
    [130] Milioni D, Sado PE, Stacey NJ, Domingo C, Roberts K and McCann MC (2001) Differential expression of cell-wall-related genes during the formation of tracheary elements in the Zinnia mesophyll cell system. Plant Mol Biol 47:221-238.
    [131] Hertzberg M, Aspeborg H, Schrader J, Andersson A, Erlandsson R, Blomqvist K, Bhalerao R, Uhle'n M, Teeri TT, Lundeberg J, Sundberg Br, Nilsson P and Sandberg Gr (2001) A transcriptional roadmap to wood formation. PNAS 98:14732-14737.
    [132] Whetten R, Sun Y-H, Zhang Y and Sederoff R (2001) Functional genomics and cell wall biosynthesis in loblolly pine. Plant Mol Biol 47:275-291.
    [133] Paux E, Tamasloukht MB, Ladouce N, Sivadon P and Grima-Pettenati J (2004) Identification of genes preferentially expressed during wood formation in Eucalyptus. Plant Molecular Biology 55:263-280.
    [134] Paux E, Carocha V, Marques C, Sousa AMd, Borralho N, Sivadon P and Grima-Pettenati J (2005) Transcript profiling of Eucalyptus xylem genes during tension wood formation. New Phytologist 1:1-11.
    [135] Ko J-H, Han K-H (2004a) Arabidopsis whole-transeriptome profiling defines the features of coordinated regulations that occur during secondary growth. Plant Molecular Biology 55:433-453.
    [136] Covert SF, Warren JM, Holliday AB and Long (2001) Molecular analysis of the fusiform rust disease interaction, in IUFRO Conference, Stevenson, Washington.
    [137] Costa P, Pionneau C, Bauw G, Dubos C, Bahrmann N, Kremer A, Frigerio JM and Plomion C (1999) Separation and characterization of needle and xylem maritime pine proteins. Eleetrophoresis 20:1098-1108.
    [138] vander Mijnsbrugge K, Meyermans H, Van MM, Bauw G and Boerjan W (2000) Wood formation in poplar: Identification, characterization, and seasonal variation of xylem proteins. Planta 210:589-598.
    [139] Ko J-H, Beers EP, Hart K-H (2006) Global comparative transcriptome analysis identifies gene network regulating secondary xylem development in Arabidopsis thaliana. Mol Gen Genomics 276:517-531.
    [140] Zhong R, Taylor JJ and Ye Z-H (1997) Disruption of interfascicular fiber differentiation in an Arabidopsis mutant. Plant Cell 9:2159-2170.
    [141] Zhong R, Ye Z (1999) IFL1, a gene regulating interfaseieular fiber differentiation in Arabidopsis, encodes a homeodomain-leucine zipper protein. Plant Cell 11:2139-2152.
    [142] Talbert PB, Adler HT, Paris DW and Comai L (1995) The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Development 121:2723-2735.
    [143] Pineau C, Freydier A, Ranocha P, Jauneau A, Turner S, Lemonnier Gt, Renou J-P, Tarkowski P, Sandberg Gr, Jouanin L, Sundberg Br, Boudet A-M, Goffner D and Pichon M (2005) hca: an Arabidopsis mutant exhibiting unusual cambial activity and altered vascular patterning. The Plant Journal 44:271-289.
    [144] 杜鹃.毛白杨次生木质部分化研究.北京大学博士研究生学位论文,2005。
    [145] Stergaard L and Yanofsky MF (2004) Establishing gene function by mutagenesis in Arabidopsis thaliana. The Plant Journal 39:682-696.
    [146] Zhong R, Ripperger A and Ye ZH (2000) Ectopic deposition of lignin in the pith of stems of two Arabidopsis mutants. Plant Physiology 123:59-69.
    [147] 韦格尔(2004)拟南芥实验手册北京:化学工业出版社.
    [148] Doyle, J. J, Doyle J. L. (1990). " Isolation of plant DNA from fresh tissue." Focus 12: 13-15.
    [149] 萨姆布鲁克等(著),黄培堂等(译).(2002)分子克隆实验指南(上、下册).北京:科学出版社.
    [150] Kim, D. -H., J. -G. Kang, et al. (2002). "A Phytochrome-Associated Protein Phosphatase 2A Modulates Light Signals in Flowering Time Control inArabidopsis." The Plant Cell 14: 3043-3056.
    [151] Chen Z, Hartmann HA, Wu M-J, Friedman EJ, Chen J-G, Pulley M, Schulze-Lefert P and Panstruga R (2006) Expression analysis of the AtMLO gene family encoding plant-specific seven-transmembrane domain proteins. Plant Molecular Biology 60:583-597.
    [152] 付绍红,牛应泽,杨洪全,韦献雅(2004)表面活性剂silwet-77对floral-dip转化甘蓝型油菜效果的影响.分子植物育种2:661-666.
    [153] 徐芳,熊爱生,彭日荷,侯喜林,姚泉洪(2005)植物遗传转化的新方法:Floral Dip.中国蔬菜:29-31.
    [154] 王关林,方宏绮(1998)植物基因工程原理与技术.北京:科学出版社.
    [155] Buschges R, Hollricher K, Panstruga R, Guus Simons, Wolter M, Frijters A, Daelen Rv, Lee Tvd, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F and Schulze-Lefert P (1997) The Barley Mlo Gene: A Novel Control Element of Plant Pathogen Resistance. Cell 88:695-705.
    [156] Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, Heijne Gv and Schulze-Lefert P (1999) Topology, Subcellular Localization, and Sequence Diversity of the Mlo Family in Plants. THE JOURNAL OF BIOLOGICAL CHEMISTRY 274:34993-35004.
    [157] Devoto A, Hartmann HA, Piffanelli P, Elliott C, Simmons C, Taramino G, Gob C-S, Cohen FE, Emerson BC, Schulze-Lefert P and Panstrugav R (2003) Molecular Phylogeny and Evolution of the Plant-Specific Seven-Transmembrane MLO Family. Journal of Molecular Evolution 56:77-88.
    [158] Wolter M, Hollricher K, Salamini F and Schulze-Lefert P (1993) The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype. Mol Gen Genet 239:122-128.
    [159] 秦余香,赵双宜,支大英,夏光敏,陈惠民(2004)根癌农杆菌介导大麦Mlo反义基因转化小麦.山东大学学报 39:102-106.
    [160] 韩德俊,李振岐,曹莉and陈耀锋(2003)大麦抗白粉病基因Mlo的研究进展.西北植物学报 23:496-502.
    [161] 吴耀荣,赵双宜,夏光敏(2002)植物抗白粉病的分子机理.中国生物工程杂志 22:54-57.
    [162] Schultheiss H, Dechert C, Kogel K H. (2002) A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley. Plant Physiology, , 128:1447-1454
    [163] Piffanelli P, Zhou F, Casals C. (2002) The barley MLO modulator of defense and cell death is responsive to biotic and abiotic tress stimuli. Plant physiology. 129:1076-1085
    [164] 刘卫东,王石平(2002)水稻中大麦Mlo和玉米Hm1抗病基因同源序列的分析和定位.遗传学报 29:875-879.
    [165] Kim MC, Lee SH, Kim JK, Chun HJ, Choi MS, Chung WS, Moon BC, Kang CH, Park CY, Yoo JH, Kang YH, Koo SC, Koo YD, Jung JC, Kim ST, Schulze-Lefert P, Lee SY and Cho MJ (2002) Mlo, a Modulator of Plant Defense and Cell Death, Is a Novel Cahnodulin-binding Protein. THE JOURNAL OF BIOLOGICAL CHEMISTRY 277:19304-19314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700