AMPK及其下游基因与有氧运动能力相关分子标记筛选及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:通过分析AMPK及其下游基因多态性在我国北方汉族长跑运动员中的分布特征,筛选与长跑能力相关的分子标记;通过与长跑训练前后生理指标的关联分析,筛选与长跑训练敏感性相关的分子标记;通过研究多态位点的生物功能,阐明多态位点不同基因型在表达调控上的作用,为解释分子标记与有氧运动能力的关系提供实验依据。
     研究方法:1、利用MALDI-TOF技术和Genescan技术解析AMPKα2、MEF2A、PFK2、TORC2、ACC-β、CPT-1β、HSL等基因17个SNP、2个STR多态位点在长跑运动员和普通人中的分布特征,分析基因多态性与长跑能力的相关性;2、利用MALDI-TOF技术解析AMPKα2、CPT-1β基因9个SNP位点在男性青年中的分布特征,分析基因多态性与长跑训练前后生理指标变化的关联性;3、利用基因重组、细胞转染等分子生物学方法研究Glut4基因启动子区与有氧耐力关联的rs5418位点携带不同等位基因的启动子对报告基因表达活性的影响。
     结果与结论:1、基因多态性与长跑能力相关性分析结果显示:(1)AMPKα2基因rs2796516位点G等位基因可能是优秀女子长跑运动员的分子标记;rs2746342-rs11206889位点AC单体型可能是男子优秀长跑运动员的分子标记,CC单体型可能是女子5/10km运动员的分子标记。(2)HSL基因第六内含子处(CA)n重复多态当以4重复次数为分割点划分短链和长链等位基因进行比较时,LL基因型可能是5/10km运动员的分子标记。2、基因多态性与长跑训练敏感性指标的相关性分析结果显示:(1)AMPKα2基因:rs1418442的AA型、rs11206889的CC型与部分单体型的LVMI指标,以及部分单体型的IVSD指标和部分单体型150W时SVI指标的训练敏感性最高。(2)CPT-1β基因:rs131758的AA型的HR/RE.PWS指标、rs131758-rs470117(AT)单体型安静时SVI、T、COI指标训练敏感性最高。以上基因型/单体型可能是长跑训练敏感性分子标记。3、rs5418位点携带A等位基因的重组载体中报告基因相对活性显著高于携带G等位基因的重组载体,说明其部分生物学活性在于不同等位基因能显著改变启动子活性,从而影响Glut4基因表达活性
Objects:In this study, the molecular markers associated with long-distance running ability were screened through analyzing the distribution of AMPK and its downstream genes'polymorphisms in Han of northern China long-distance runners. The molecular markers associated with long-distance running training sensitivity were screened through analyzing the relationship between genotype and the changes of physiological indexes after long-distance running training. To clarify the function of different allele contribute to gene expression, the biological function of polymorphisms loci was investigated. It may provided experimental evidence for evaluate the relationship between molecular markers and aerobic endurance capability.
     Methods:1. Genetic distribution for 17 SNP and 2 STR locos of AMPK a 2、MEF2A、PFK2、TORC2、ACC-β、CPT-1βand HSL genes in long-distance runners and controls were determined based on MALDI-TOF and Genescan. The relativity between gene locus and long distance running ability was analyzed.2. Genetic distribution for 9 SNP locus of AMPKα2、CPT-1βgenes in young men were determined by MALDI-TOF. The relativity between gene locus and the changes of physiological indexes after long-distance running training were analyzed.3. The molecular biological methods such as gene recombination and cell transfection were used to research the effects of Glut4 promoter carrying different allele in rs5418 contributes to the expression activity of reporter gene.
     Results and conclusions:1. Polymorphisms and their association with long distance performance suggests, (1)For AMPKα2, the G allele (rs2796516) might be served as molecular marker of elite female long distance runners. AC haplotype (rs2746342-rs11206889) might be used as molecular marker of elite male International long distance runners. CC haplotype (rs2746342-rs11206889) might be used as molecular marker of elite female 5/10km long distance runners. (2)Comparing short and long chain allele split by 4, the LL genotype of (CA)n of HSLi6 might be a molecular marker of elite 5/10km long distance runners.2.Polymorphisms and their association with training sensityvity suggests, (1)for AMPK a 2, the locus with higher lever in training sensitivity include the genotype of AA(rs1418442)、CC(rs11206889) and some haplotypes responded to LVMI, certain genotypes responded to IVSD and special genotypes responded to SVI/150W. (2)For CPT-1β, the genotype of AA(rs131758) had a higher lever in the training sensitivity responded to HR/RE and PWS. the haplotype of AT(rs131758-rs470117) had a higher lever in the training sensitivity responded to SVI、T and COI in rest state. Above genotypes/haplotypes might be used as molecular markers of long-distance running training sensitivity.3. is a functional molecular marker of aerobic endurance capability. The relative activity of reporter gene carrying A allele of rs5418 in promoter of Glut4 in recombinant vector is significantly higher than that of G allele. The biological activity of this loci is that different alleles can alter promoter activity significantly, thus affecting the activity of Glut4 gene expression.
引文
1. Klissouras. V. Heritability of adaptive variation[J]. J Appl Physiol,1971.31(3):338-344.
    2. Prud'homme. D, C. Bouchard, C. Leblanc, et al. Sensitivity of maximal aerobic power to training is genotype-dependent[J]. Med Sci Sports Exerc,1984.16(5):489-493.
    3. 马力宏.用双生法探讨遗传因素对通气敏感度及女子最大摄氧量的影响程度[J].天津体育学院学报,1986.1(1):8-17.
    4. Montgomery. H.E, R. Marshall, H. Hemingway, et al. Human gene for physical performance[J]. Nature,1998.393(6682):221-222.
    5. Rivera.M.A, F.T. Dionne, J.A. Simoneau, et al. Muscle-specific creatine kinase gene polymorphism and VO2max in the HERITAGE Family Study[J]. Med Sci Sports Exerc,1997. 29(10):1311-1317.
    6. 邓文骞,王璐,左天香等.耐力素质相关基因的研究进展.中国组织工程研究与临床康复[J],2007.11(17):3.
    7. Carmena. M. AMPK:Sensing energy to travel in mitosis[J]. Cell Cycle,2009. 8(17):2682-2683.
    8. Hardie.D.G, K. Sakamoto. AMPK:a key sensor of fuel and energy status in skeletal muscle[J]. Physiology (Bethesda),2006.21:48-60.
    9. Lage. R, C. Dieguez, A.Vidal-Puig, et al. AMPK:a metabolic gauge regulating whole-body energy homeostasis[J]. Trends Mol Med,2008.14(12):539-549.
    10. Barnes.B.R, S.Glund, Y.C. Long, et al.5'-AMP-activated protein kinase regulates skeletal muscle glycogen content and ergogenics[J]. Faseb J,2005.19(7):773-779.
    11. Hardie.D.G. AMPK:a key regulator of energy balance in the single cell and the whole organ ism [J]. Int J Obes (Lond),2008.32 Suppl 4:S7-12.
    12. Munday. M.R, D.G. Campbell, D. Carling, et al. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase[J]. Eur J Biochem, 1988.175(2):331-338.
    13. Carling.D, K.Aguan, A.Woods, et al. Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism[J]. J Biol Chem,1994.269(15):11442-11448.
    14. Hardie. D.G, S.A. Hawley, J.W. Scott. AMP-activated protein kinase--development of the energy sensor concept[J], J Physiol.2006.574(Pt 1):7-15.
    15. Steinberg.G.R, B.E. Kemp. AMPK in Health and Disease[J]. Physiol Rev,2009. 89(3):1025-1078.
    16. Hardie.D.G, D. Carling. The AMP-activated protein kinase--fuel gauge of the mammalian cell? [J] Eur J Biochem,1997.246(2):259-273.
    17. Cheung. P.C. I.P. Salt, S.P. Davies. et al. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding[J]. Biochem J,2000.346 Pt 3:659-669.
    18. Xiao.B, R. Heath, P. Saiu, et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase[J]. Nature,2007.449(7161):496-500.
    19. Young. L.H. A crystallized view of AMPK activation[J]. Cell Metab,2009.10(I):5-6.
    20. Stapleton.D, K.I. Mitchelhill, G. Gao, et al. Mammalian AMP-activated protein kinase subfamily[J]. J Biol Chem,1996.271(2):611-614.
    21. Chen. Z, J. Heierhorst, R.J. Mann, et al. Expression of the AMP-activated protein kinase betal and beta2 subunits in skeletal muscle[J]. FEBS Lett,1999.460(2):343-348.
    22. Mahlapuu. M, C. Johansson, K. Lindgren, et al. Expression profiling of the gamma-subunit isoforms of AMP-activated protein kinase suggests a major role for gamma3 in white skeletal muscle[J]. Am J Physiol Endocrinol Metab,2004.286(2):E194-200.
    23. Dzamko.N, J.D.Schertzer, J.G.Ryall, et al. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation[J]. J Physiol,2008.586(Pt 23):5819-5831.
    24. Lee-Young.R.S, S.R. Griffee, S.E. Lynes, et al. Skeletal muscle AMP-activated protein kinase is essential for the metabolic response to exercise in vivo[J]. J Biol Chem,2009. 284(36):23925-23934.
    25. Miranda. N, A.R.Tovar, B. Palacios, et al. AMPK as a cellular energy sensor and its function in the organism[J]. Rev Invest Clin,2007.59(6):458-469.
    26. McGee.S.L, M. Hargreaves. AMPK-mediated regulation of transcription in skeletal muscle[J]. Clin Sci(Lond),2010.118(8):507-518.
    27. Wadley. G.D, R.S. Lee-Young, B.J.Canny, et al. Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans[J]. Am J Physiol Endocrinol Metab,2006.290(4):E694-702.
    28. Musi. N, T. Hayashi, N. Fujii, et al. AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle[J]. Am J Physiol Endocrinol Metab,2001.280(5):E677-84.
    29. Sriwijitkamol.A, D.K.Coletta, E. Wajcberg, et al. Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes:a time-course and dose-response study[J]. Diabetes,2007.56(3):836-848.
    30. Lee-Young. R.S, G. Koufogiannis, B.J.Canny, et al. Acute exercise does not cause sustained elevations in AMPK signaling or expression [J]. Med Sci Sports Exerc,2008. 40(8):1490-1494.
    31. Wojtaszewski.J.F, M.Mourtzakis, T.Hillig, et al. Dissociation of AMPK activity and ACCbeta phosphorylation in human muscle during prolonged exercise[J]. Biochem Biophys Res Commun,2002.298(3)309-316.
    32. Wojtaszewski.J.F, P.Nielsen, B.F.Hansen, et al. Isoform-specific and exercise intensity-dependent activation of 5'-AMP-activated protein kinase in human skeletal muscle[J]. J Physiol,2000.528 Pt 1:221-226.
    33. Chen. Z.P, T.J.Stephens, S. Murthy, et al. Effect of exercise intensity on skeletal muscle AMPK signaling in humans[J]. Diabetes.2003.52(9):2205-2212.
    34. Frosig. C, S.B. Jorgensen, D.G. Hardie, et al.5'-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle[J]. Am J Physiol Endocrinol Metab,2004.286(3):E411-417.
    35. Fujii. N, T. Hayashi, M.F. Hirshman, et al. Exercise induces isoform-specific increase in 5'AMP-activated protein kinase activity in human skeletal muscle[J]. Biochem Biophys Res Commun,2000.273(3):1150-1155.
    36. Wojtaszewski. J.F, J.B. Birk, C. Frosig, et al.5'AMP activated protein kinase expression in human skeletal muscle:effects of strength training and type 2 diabetes[J]. J Physiol,2005. 564(Pt2):563-573.
    37. Birk.J.B, J.F.Wojtaszewski. Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle[J]. J Physiol,2006.577(Pt 3):1021-1032.
    38. Rasmussen.B.B,W.W. Winder. Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase[J]. J Appl Physiol,1997.83(4):1104-1109.
    39. Lee-Young.R.S, B.J.Canny, D.E.Myers, et al. AMPK activation is fiber type specific in human skeletal muscle:effects of exercise and short-term exercise training[J]. J Appl Physiol,2009. 107(1):283-289.
    40. Rockl.K.S, M.F. Hirshman, J. Brandauer, et al. Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift[J]. Diabetes,2007. 56(8):2062-2069.
    41. Steffensen.C.H, C.Roepstorff, M.Madsen, et al. Myocellular triacylglycerol breakdown in females but not in males during exercise[J]. Am J Physiol Endocrinol Metab,2002. 282(3):E634-642.
    42. Roepstorff. C, M.Thiele, T.Hillig, et al. Higher skeletal muscle alpha2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise[J]. J Physiol,2006.574(Pt 1):125-138.
    43. Witczak.C.A, N.Fujii, M.F.Hirshman, et al. Ca2+/calmodulin-dependent protein kinase kinase-alpha regulates skeletal muscle glucose uptake independent of AMP-activated protein kinase and Akt activation[J]. Diabetes,2007.56(5):1403-1409.
    44. Hawley.S.A, J.Boudeau, J.L.Reid, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade[J]. J Biol,2003.2(4):28.
    45. Ruderman.N.B. C.Keller, A.M.Richard, et al. Interleukin-6 regulation of AMP-activated protein kinase. Potential role in the systemic response to exercise and prevention of the metabolic syndrome[J]. Diabetes.2006.55 Suppl 2:S48-54.
    46. Koay.A, K..A. Rimmer, H.D.Mertens, et al. Oligosaccharide recognition and binding to the carbohydrate binding module of AMP-activated protein kinase[J]. FEBS Lett.2007. 584(26):5055-5059.
    47. Thomson.D.M. B.B.Porter, J.H.Tall. et al. Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice[J]. Am J Physiol Endocrinol Metab.2007.292(1):E196-202.
    48. Sanders.M.J, P.O.Grondin, B.D.Hegarty, et al. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade[J]. Biochem J,2007.403(1):139-148.
    49. Ponticos.M, Q.L.Lu, J.E.Morgan, et al. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle[J]. Embo J, 1998.17(6):1688-1699.
    50. Taylor.E.B, W.J.Ellingson, J.D.Lamb, et al. Evidence against regulation of AMP-activated protein kinase and LKB1/STRAD/MO25 activity by creatine phosphate [J]. Am J Physiol Endocrinol Metab,2006.290(4):E661-669.
    51. Mu.J, J.T.Brozinick, Jr.O.Valladares, et al. A role for AMP-activated protein kinase in contraction-and hypoxia-regulated glucose transport in skeletal muscle[J]. Mol Cell,2001. 7(5):1085-1094.
    52. Mu.J, E.R.Barton, M.J.Birnbaum. Selective suppression of AMP-activated protein kinase in skeletal muscle:update on'lazy mice'[J]. Biochem Soc Trans,2003.31(Pt 1):236-241.
    53. Merrill.G.F, E.J.Kurth, D.G.Hardie, et al. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle[J]. Am J Physiol,1997.273(6 Pt 1):E1107-1112.
    54. Koistinen.H.A, D.Galuska, A.V.Chibalin, et al.5-amino-imidazole carboxamide riboside increases glucose transport and cell-surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes[J]. Diabetes,2003.52(5):1066-1072.
    55. Lefort.N, E.St-Amand, S.Morasse, et al. The alpha-subunit of AMPK is essential for submaximal contraction-mediated glucose transport in skeletal muscle in vitro[J]. Am J Physiol Endocrinol Metab,2008.295(6):E1447-1454.
    56. Jensen.T.E, P. Schjerling, B.Viollet, et al. AMPK alphal activation is required for stimulation of glucose uptake by twitch contraction, but not by H2O2, in mouse skeletal muscle[J]. PLoS One,2008.3(5):2102.
    57. Jorgensen.S.B, B.Viollet, F.Andreelli, et al. Knockout of the alpha2 but not alphal 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-l-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle[J]. J Biol Chem,2004.279(2):1070-1079.
    58. Barnes.B.R, S.Marklund, T.L.Steiler, et al. The 5'-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle[J]. J Biol Chem,2004.279(37):38441-38447.
    59. Holmes.B.F, D.P.Sparling, A.L.Olson, et al. Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase[J]. Am J Physiol Endocrinol Metab,2005.289(6):E1071-1076.
    60. Bruss.M.D, E.B.Arias, G.E.Lienhard.et al. Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity[J]. Diabetes. 2005.54(1):41-50.
    61. Treebak.J.T, S.Glund, A.Deshmukh, et al. AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits[J]. Diabetes.2006. 55(7):2051-2058.
    62. Yuasa.T, K.Uchiyama, Y.Ogura, et al. The Rab GTPase-activating protein AS160 as a common regulator of insulin- and Galphaq-mediated intracellular GLUT4 vesicle distribution[J]. Endocr J,2009.56(3):345-359.
    63. Chavez.J.A, W.G. Roach, S.R. Keller, et al. Inhibition of GLUT4 translocation by Tbcld1, a Rab GTPase-activating protein abundant in skeletal muscle, is partially relieved by AMP-activated protein kinase activation[J]. J Biol Chem,2008.283(14):9187-9195.
    64. McGee.S.L, B.J.van Denderen, K.F. Howlett, et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5[J]. Diabetes,2008. 57(4):860-867.
    65. Li.L, H.Chen, S.L,et al.Mechanism of AMPK regulating GLUT4 gene expression in skeletal muscle cells[J]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2008.25(1):161-167.
    66. Holmes.B.F, E.J.Kurth-Kraczek,W.W.Winder. Chronic activation of 5'-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle[J]. J Appl Physiol,1999. 87(5):1990-1995.
    67. Arden.C, L.J. Hampson, G.C. Huang, et al. A role for PFK-2/FBPase-2, as distinct from fructose 2,6-bisphosphate, in regulation of insulin secretion in pancreatic beta-cells[J]. Biochem J,2008.411(1):41-51.
    68. Koo.S.H, L. Flechner, L. Qi, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism[J]. Nature,2005.437(7062):1109-1111.
    69. Fu.A, R.A.Screaton. Using kinomics to delineate signaling pathways:control of CRTC2/TORC2 by the AMPK family[J]. Cell Cycle,2008.7(24):3823-3828.
    70. Zammit.V.A, A. Arduini. The AMPK-malonyl-CoA-CPT1 axis in the control of hypothalamic neuronal function[J]. Cell Metab,2008.8(3):175.
    71. Ha. J, S. Daniel, S.S. Broyles, et al. Critical phosphorylation sites for acetyl-CoA carboxylase activity[J]. J Biol Chem,1994.269(35):22162-22168.
    72. Munday.M.R. Regulation of mammalian acetyl-CoA carboxylase[J]. Biochem Soc Trans, 2002.30(Pt 6):1059-1064.
    73. Rubink.D.S, W.W. Winder. Effect of phosphorylation by AMP-activated protein kinase on palmitoyl-CoA inhibition of skeletal muscle acetyl-CoA carboxylase[J]. J Appl Physiol,2005. 98(4):1221-1227.
    74. Miura.S, Y.Kai. Y. Kamei, et al. Alpha2-AMPK activity is not essential for an increase in fatty acid oxidation during low-intensity exercise[J]. Am J Physiol Endocrinol Metab,2009. 296(1):E47-55.
    75. Raney. M.A, L.P.Turcotte. Evidence for the involvement of CaMKII and AMPK in Ca2+-dependent signaling pathways regulating FA uptake and oxidation in contracting rodent muscle[J]. J Appl Physiol.2008.104(5):1366-73.
    76. Roepstorff.C, N.Halberg, T.Hillig, et al. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise[J]. Am J Physiol Endocrinol Metab,2005. 288(1):E133-142.
    77. Fernandez.C, O.Hansson, P.Nevsten, et al. Hormone-sensitive lipase is necessary for normal mobilization of lipids during submaximal exercise[J]. Am J Physiol Endocrinol Metab,2008. 295(1):E179-186.
    78. Roepstorff.C, B.Vistisen, M.Donsmark, et al. Regulation of hormone-sensitive lipase activity and Ser563 and Ser565 phosphorylation in human skeletal muscle during exercise[J]. J Physiol,2004.560(Pt 2):551-562.
    79. Lim.C.T, B.Kola, M.Korbonits. AMPK as a mediator of hormonal signalling[J]. J Mol Endocrinol,2010.44(2):87-97.
    80. 席翼,张得保,王国军等.跑节省化评价有氧耐力及其训练效果实验研究[J].中国运动医学杂志,2008.27(1):17-23.
    81. 任俊芳,秦旭平AMPK与心血管重塑[J].国际病理科学与临床杂志,2008.28(1):33-37.
    82. Russell.R.R, J.Li, D.L.Coven, et al. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury[J]. J Clin Invest, 2004.114(4):495-503.
    83. Miller.E.J, J.Li, L.Leng, et al. Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart[J]. Nature,2008.451(7178):578-582.
    84. Yamazaki.N, Y.Yamanaka, Y.Hashimoto, et al. Structural features of the gene encoding human muscle type carnitine palmitoyltransferase I[J]. FEBS Lett,1997.409(3):401-406.
    85. Robitaille.J, A.Houde, S.Lemieux, et al. Variants within the muscle and liver isoforms of the carnitine palmitoyltransferase I (CPT1) gene interact with fat intake to modulate indices of obesity in French-Canadians[J]. J Mol Med,2007.85(2):129-37.
    86. 杨锡让,傅浩坚.运动生理学进展:质疑与思考[M].北京:北京体育大学出版社,2000.8.
    87. Horie.T, K.Ono, Y.Iwanaga. Abstract 841:MicroRNA-133 Regulates the Expression of CPT-1b and GLUT4 by Targeting SRF and KLF15 and Is Involved in Metabolic Control in Cardiac Myocytes[J]. Circulation,2007.116(2):1.
    88. Tripodi.G, R.Modica, A.Stella, et al. Haplotype analysis of carnitine transporters and left ventricular mass in human essential hypertension[J]. J Ren Nutr,2005.15(1):2-7.
    89. Spencer-Jones.N.J, D.Ge, H.Snieder, et al. AMP-kinase alpha2 subunit gene PRKAA2 variants are associated with total cholesterol, low-density lipoprotein-cholesterol and high-density lipoprotein-cholesterol in normal women[J]. J Med Genet,2006. 43(12):936-942.
    90. Horikoshi.M, K.Hara, J.Ohashi, et al. A polymorphism in the AMPKalpha2 subunit gene is associated with insulin resistance and type 2 diabetes in the Japanese population[J], Diabetes, 2006.55(4):919-923.
    91. Sun. M.W. J.Y. Lee. P.I. de Bakker, et al. Haplotype structures and large-scale association testing of the 5' AMP-activated protein kinase genes PRKAA2. PRKAB1. and PRKAB2 [corrected] with type 2 diabetes[J]. Diabetes,2006.55(3):849-55.
    92. 汪茂荣,李蓉,张素华.重庆地区AMPKa2基因多态性与2型糖尿病及相关代谢的关联研究[J].解放军医学杂志.2008.33(4):385-397
    93. Xu.M, X.Li, J.G.Wang, et al. Glucose and lipid metabolism in relation to novel polymorphisms in the 5'-AMP-activated protein kinase gamma2 gene in Chinese[J]. Mol Genet Metab,2005.86(3):372-378.
    94. Weyrich.P, F.Machicao, H.Staiger, et al. Role of AMP-activated protein kinase gamma 3 genetic variability in glucose and lipid metabolism in non-diabetic whites[J]. Diabetologia, 2007.50(10):2097-2106.
    95. Jiao.H, M.Kaaman, E.Dungner, et al. Association analysis of positional obesity candidate genes based on integrated data from transcriptomics and linkage analysis[J]. Int J Obes (Lond),2008.32(5):816-825.
    96. Wang.L, C.Fan, S.E.Topol, et al. Mutation of MEF2A in an inherited disorder with features of coronary artery disease[J]. Science,2003.302(5650):1578-1581.
    97. Keshavarz.P, H.Inoue, N.Nakamura, et al. Single nucleotide polymorphisms in genes encoding LKB1 (STK11), TORC2 (CRTC2) and AMPK alpha2-subunit (PRKAA2) and risk of type 2 diabetes[J]. Mol Genet Metab,2008.93(2):200-209.
    98. 刘珉,刘伟,郑升.乙酰辅酶A羧化酶B基因多态性与2型糖尿病易感性关系的初步研究[J].中国糖尿病杂,2006.14(4):255-257.
    99. Magre.J, H.Laurell, C.Fizames, et al. Human hormone-sensitive lipase:genetic mapping, identification of a new dinucleotide repeat, and association with obesity and NIDDM[J]. Diabetes,1998.47(2):284-286.
    100. Lavebratt.C, M.Ryden, M.Schalling, et al. The hormone-sensitive lipase i6 gene polymorphism and body fat accumulation[J]. Eur J Clin Invest,2002.32(12):938-942.
    101. Hoffstedt.J, P.Arner, M.Schalling, et al. A common hormone-sensitive lipase i6 gene polymorphism is associated with decreased human adipocyte lipolytic function[J]. Diabetes, 2001.50(10):2410-2413.
    102. 李学英,葛斌,路健.遵义地区人群激素敏感性脂肪酶基因第6内含子多态性与2型糖尿病的关系[J].中国糖尿病杂志,2008.16(12):721-722.
    103. Mortensen.B, P.Poulsen, L.Wegner, et al. Genetic and metabolic effects on skeletal muscle AMPK in young and older twins[J]. Am J Physiol Endocrinol Metab,2009.297(4):E956-964.
    104. Onywera.V.O. East African runners:their genetics, lifestyle and athletic prowess[J]. Med Sport Sci,2009.54:102-109.
    105. Dahlman.I, I.A.Eaves, R.Kosoy, et al. Parameters for reliable results in genetic association studies in common disease[J], Nat Genet,2002.30(2):149-150.
    106. Zoossmann-Diskin.A. The association of the ACE gene and elite athletic performance in Israel may be an artifact[J].Exp Physiol,2008.93(11):1220.
    107. Amir.O, R.Amir, C.Yamin, et al. The ACE deletion allele is associated with Israeli elite endurance athletes[J]. Exp Physiol.2007.92(5):881-886.
    108. Prior.S.J. J.M.Hagberg. C.M.Paton. et al. DNA sequence variation in the promoter region of the VEGF gene impacts VEGF gene expression and maximal oxygen consumption[J]. Am J Physiol Heart Circ Physiol,2006.290(5):11 1848-1855.
    109. Argyropoulos.G. A.M.Stutz. O.Ilnytska, et al. KIF5B gene sequence variation and response of cardiac stroke volume to regular exercise[J]. Physiol Genomics,2009.36(2):79-88.
    110. Menzaghi.C, G.Paroni, C.De.Bonis, et al. The-318 C>G single-nucleotide polymorphism in GNAI2 gene promoter region impairs transcriptional activity through specific binding of Spl transcription factor and is associated with high blood pressure in Caucasians from Italy[J]. J Am Soc Nephrol,2006.17(4 Suppl 2):S115-119.
    111. 李皓,姜春来,于湘晖.hKv4.3基因5’非翻译区序列S160功能分析[J].高等学校化学学报,2008.29(7):1384-1389.
    112. Wootton.P.T, F.Drenos, J.A.Cooper, et al. Tagging-SNP haplotype analysis of the secretory PLA2IIa gene PLA2G2A shows strong association with serum levels of sPLA2IIa:results from the UDACS study[J]. Hum Mol Genet,2006.15(2):355-361.
    113. Nakajima.T, L.B.Jorde, T.Ishigami, et al. Nucleotide diversity and haplotype structure of the human angiotensinogen gene in two populations[J]. Am J Hum Genet,2002.70(1):108-123.
    114. Sproul.K, M.R.Jones, R.Azziz, et al. Association study of AMP-activated protein kinase subunit genes in polycystic ovary syndrome[J], Eur J Endocrinol,2009.161(3):405-409.
    115. 汪茂荣,李蓉,张素华.重庆地区AMPKa2基因多态性与2型糖尿病及相关代谢的关联研究[J].解放军医学杂志,2008.33(4):385-397.
    116. Phillips.M.S, R.Lawrence, R.Sachidanandam, et al. Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots[J]. Nat Genet,2003.33(3):382-387.
    117. 肖尧,何青,戴大鹏.我国汉族人群MEF2A基因多态性位点的检测及其与冠状动脉粥样硬化性心脏病相关性的研究[J].中华检验医学杂志,2006.29(11):975-979.
    118. Jocken, J.W, E.E.Blaak,et al. Blunted beta-adrenoceptor-mediated fat oxidation in overweight subjects:a role for the hormone-sensitive lipase gene[J]. Metabolism,2008.57(3):326-32.
    119. 刘海平,胡扬,许春燕等.基因多态性与运动训练敏感性的关联[J].中国组织工程研究与临床康复,2008.12(15):6.
    120. Krahenbuhl, G.S, T.J.Williams.Running economy:changes with age during childhood and adolescence[J]. Med Sci Sports Exerc,1992.24(4):462-466.
    121. Banks.L, Z.Sasson, M.Busato, et al. Impaired left and right ventricular function following prolonged exercise in young athletes:influence of exercise intensity and responses to dobutamine stress[J], J Appl Physiol,2009.108(1):112-119.
    122. Spirito.P, A.Pelliccia, M.A.Proschan, et al. Morphology of the "athlete's heart" assessed by echocardiography in 947 elite athletes representing 27 sports[J]. Am J Cardiol,1994. 74(8):802-806.
    123. Fagard.R, van.den.Broeke, C.Bielen, et al. Maximum oxygen uptake and cardiac size and function in twins[J], Am J Cardiol,1987.60:6.
    124. 王丽娜,邓树勋.心脏运动适应的生理分析评价[J].解放军体育学院学报,2001.20(2):22-25.
    125.程芮,程显声,杨浣宜.室隔对心功能作用的实验研究[J].中华心血管病杂志,1999.27(2):144-148.
    126. Ramoni, R. B, B.E. Himes,et al. Predictive genomics of cardioembolic stroke[J]. Stroke,2009. 40(3 Supp1):S67-70.
    127. Friedel.S, B.Antwerpen, A.Hoch, et al. Glucose transporter 4 gene:association studies pertaining to alleles of two polymorphisms in extremely obese children and adolescents and in normal and underweight controls[J]. Ann N Y Acad Sci,2002.967:554-557.
    128. 王群.转录因子MEF2A基因多态性及其突变型体外活性的研究.[博士论文],北京:北京市结核病胸部肿瘤研究所,2006.
    129. 孔辉,骆惠均,陈玉英等GLUT4-Cre转基因模型建立与Cre酶特异性表达[J].上海第二军医大学学报,2004.24(20):789-794.
    130. Pesole. G, G. Grillo, A. Larizza, et al. The untranslated regions of eukaryotic mRNAs: structure, function, evolution and bioinformatic tools for their analysis[J]. Brief Bioinform, 2000. 1(3):236-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700