大鼠骨髓间充质干细胞侧脑室植入对SAH后CVS大鼠的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、大鼠骨髓间充质干细胞的分离、培养、鉴定及神经元条件培养基对其定向诱导分化
     目的:掌握骨髓间充质干细胞(Bone Marrow Mesenchymal Stem cells, BMSCs)原代和传代培养方法,并对其进行鉴定,探讨应用海马神经元条件培养基对其进行定向诱导分化。
     方法:体质量(125±25)g SD大鼠,取股骨、胫骨,骨髓腔用DMEM培养基冲出骨髓于离心管中,吹打制成单细胞悬液。接种于培养瓶中,37℃,5% CO2培养箱中培养。取P5细胞爬片多聚甲醛固定,加一抗(兔抗大鼠CD44、CD34),生物素化二抗,37℃孵育1 h,DAB染色,酒精脱水、二甲苯透明,中性树胶封片、显微镜下观察。取原代培养的海马神经元培养液,作为海马神经元条件培养基。另外一组加入碱性成纤维细胞生长因子(Basic-Fibroblast Growth Factor, b-FGF)和10%二甲基亚枫(Dimethl Sulfoxide, DMSO)无血清培养基,最后一组以神经元培养基(Neurobasal加B27)作为神经元基础培养基阳性对照,阴性对照为原培养基(DMEM加10% FBS)继续培养。第5代(Passage 5, P5)BMSCs接种在放有盖玻片的6孔培养板里,爬片后换为基础培养基,海马神经元培养基和无血清培养基(含b-FGF和10%DMSO的无血清L-DMEM培养基)进行诱导,分别将诱导12 h和1 d的细胞用4%多聚甲醛固定。加入小鼠抗大鼠微管相关蛋白(Microtubula association protein-2, MAP-2),兔抗鼠神经元特异性烯醇化酶(Neurospecific enolase, NSE)及兔抗鼠胶质纤维酸性蛋白(Glia fibrillary acidic protein, GFAP)一抗。光镜下观察MAP-2、NSE和GFAP表达阳性细胞,计数阳性细胞百分率并进行显微摄影。
     结果:大鼠BMSCs原代培养,半量换液,悬浮的杂质细胞被清除,贴壁细胞的形态清晰可见并开始迅速增殖。7~9 d左右细胞可长满培养瓶底。大鼠BMSCs传代培养生长较原代快,5~7 d细胞达90%融合。H-E染色BMSCs表现为细胞核大,圆形,居中深染,嗜碱性;胞质着色浅,呈弱嗜酸性,细胞平行排列。兔抗大鼠CD34,CD44免疫细胞染色,BMSCs为CD34染色阴性细胞,而CD44表达阳性,这些CD44阳性细胞胞核和胞浆呈棕褐色。海马神经元条件培养液、b-FGF的无血清培养基和含B27的Neurobasal培养基对P5的BMSCs诱导12 h和1 d后,诱导后细胞体逐渐变成圆形和锥形,细胞向外伸出突起。随着时间延长,突起也逐渐延长,1 d后可见有些连接形成网状。诱导后的BMSCs免疫细胞化学染色,神经类标记物MAP-2,NSE和GFAP进行标记,计数细胞阳性率,以12 h后海马神经元条件培养基的诱导阳性率最高。
     结论:1应用全骨髓结合贴壁分离法成功建立了一种体外简单、快速的大鼠BMSCs原代及传代培养方法,在体外能够进行迅速增殖,且性状稳定。2体外培养的BMSCs经免疫细胞化学染色,表达间充质干细胞表面标记,证明非造血干细胞。3应用含b-FGF的DMEM培养基、海马神经元条件培养基、无血清培养基诱导BMSCs 12 h与1 d,BMSCs均可分化成为神经元样细胞和神经胶质样细胞,经免疫细胞化学染色均表达NSE、MAP-2和GFAP。4三种培养基诱导BMSCs,以12 h的诱导率最高,可达到44.78%,其中海马神经元条件培养基的诱导效率高于其它两组,差异有显著性。
     二、大鼠SAH后CVS模型制备及行为学、生物学指标测定
     目的:大鼠自体血枕大池二次注血法制造蛛网膜下隙出血(Subarachnoid Hemorrhage, SAH)后脑血管痉挛(Cerebro Vascular Spasm, CVS)的动物模型,测定血和脑组织中一氧化氮合酶(Nitric Oxide synthesis, NOS)及内皮素-1(Endotheliam-1, ET-1)含量的变化,测量脑血管痉挛后的血管直径,结合行为学改变对脑血管痉挛动物模型进行评定。
     方法:枕大池二次注血法建立蛛网膜下隙出血模型,尾动脉取血,脑立体定位仪下环枕膜处自体动脉血约5 min注完,于2 d后再次同样的方法二次注血。手术后大鼠参照神经功能等级评分表评定,在1 d、2 d、3 d、5 d、7 d对SAH和对照组大鼠分别评分。10%印度墨水血管灌注,45倍体视显微镜下,应用Nikon NIS-Elements BR 3.0和Image J图像分析系统,测量基底动脉、颈内动脉和大脑中动脉直径。另外应用同样灌注技术,海马组织切片于前囱后4 mm处切开,体视显微镜放大评价微血管充盈状态。于SAH成功后1 d、2 d、3 d、5 d及7 d时间取血,分离海马及皮层组织,取组织上清液测定血清及脑组织匀浆中NOS、ET-1含量。注射血液结束后14 d,进行Morris水迷宫测试。所有数据均用±s表示,应用SPSS14.0软件包进行分析,对照组和实验组间比较用Dunnett-t检验,组间比较用SNK-q检验,神经生物功能评分和脑血管直径,NOS和ET-1含量进行多元线性回归,Morris水迷宫中的平均潜伏时间和NOS、ET-1含量及脑血管直径的关系也进行多元线性回归。
     结果:大鼠SAH后警觉性低,毛发杂乱,饮水摄食行为差,自洁性差,于次日后稍好转,但二次注血后加重,少数可出现偏瘫。术后脑内有血凝块,主要位于小脑延髓池内,1 d可见有陈旧性血液。在海马(前囟后4 mm)切片处可见大脑皮层血管在SAH组血管较少,血管变细。测量大脑中动脉,基底动脉和颈内动脉直径,在SAH组2 d和3 d组血管直径与生理盐水和对照组相比有明显差异(P<0.05)。SAH大鼠在1 d、2 d、3 d、5 d、7 d可见神经功能评分明显增高,与对照组、生理盐水组相比有明显的统计学差异(P<0.01)。SAH后1 d、2 d、3 d、5 d、7 d组脑组织和血液中ET-1均高于对照组和生理盐水组(P<0.05)。进行神经生物功能评分与脑血管直径、NOS和ET-1含量分析,建立回归方程为:Y=-3.586+0.059X1-0.55 X2,X1为血中ET-1的含量,X2为大脑中动脉的直径,可见神经生物功能评分与血中ET-1的含量呈正相关,与大脑中动脉的直径呈负相关,血中ET-1和大脑中动脉相比对神经生物学功能评分的密切程度没有明显统计学差异(P>0.05)。SAH组Morris水迷宫游泳距离明显增长,逃避潜伏期时间较长。在随后的几天实验中各组逃避潜伏期时间逐渐缩短,SAH组成绩虽有提高,但其逃避潜伏期始终维持在较高水平,平均潜伏期与血中ET-1含量呈正相关。SAH组大鼠跨越平台次数明显少于对照组。
     结论:1大鼠自体尾动脉取血枕大池二次注血后,可见各脑池脑沟内有明显的陈旧血凝块聚积,说明蛛网膜下隙出血模型成功。2大鼠脑血管管径测量显示SAH血管变细,血管灌注显示有脑血管灌注不足,证明SAH后有脑血管痉挛的缺血表现。3 SAH组血和脑内NOS含量低于对照组,
     ET-1含量升高,表明SAH后有脑血管痉挛。4 SAH组神经生物学功能评分均明显高于其它组,证明脑血管痉挛后有行为学表现功能下降。5 Morris水迷宫测试表明SAH后大鼠的空间学习记忆能力有一定下降。
     三、BrdU标记的BMSCs侧脑室植入后对SAH后CVS大鼠行为学影响的研究
     目的:通过BMSCs侧脑室植入SAH后CVS大鼠,观察标记的BMSCs在大鼠脑内生长情况,结合行为学检测评价BMSCs植入后效果。
     方法:第5代BMSCs,用5-溴脱氧尿核苷(Bromodeoxyuridine, BrdU)标记2 d。将标记后的细胞爬片进行免疫细胞化学染色,一抗为BrdU抗体。标记好的细胞以5×106的细胞悬液侧脑室注入SAH后的大鼠。SAH大鼠以其神经功能评分为参照,随机分为三组:SAH组、SAH后植入DMEM组和SAH后BMSCs植入组。SAH组不植入干细胞,而DMEM组于第二次注血2 d后立体定向仪下用微量注射器注入30μLDMEM培养基。BMSCs组在第二次注血后2 d立体定位仪下注入30μL的BMSCs悬液。BMSCs组中5只大鼠于14 d后进行Morris水迷宫检测,另外5只取脑进行免疫组化染色。脑立体定位仪下大鼠侧脑室穿刺取前囟定位,前囟后1.2 mm,中线旁2 mm处进针,接上已事先抽好BMSCs悬液或是DMEM的微量注射器,深度为4.5 mm,将30μL BMSCs悬液或DMEM培养基缓慢注入侧脑室。各组大鼠在注射后14 d麻醉,固定取脑,切片,进行免疫组化染色,H2O2灭活内源性酶,加入抗原修复液,生物微波炉加热抗原修复,滴加5% BSA封闭液,一抗(小鼠抗BrdU IgG),37℃1 h,生物素化二抗,37℃20 min,DAB染色,脱水透明,中性树胶封片。SAH组及DMEM组、BMSCs组1 d、2 d、3 d、5 d、7 d后行神经生物学功能评分,于14 d后进行水迷宫检测。
     结果:BrdU标记后BMSCs,经免疫细胞化学染色为胞核着色,以胞核呈棕黄色者为阳性。脑立体定位仪下行侧脑室穿刺,以前囟定位,能准确注入侧脑室。SAH大鼠侧脑室穿刺注入干细胞悬液后无不良反应。脑石蜡切片DAB染色后,可见经BrdU标记的阳性细胞胞核呈棕褐色,阳性细胞在切片内无明显规律,散在分布于阴性细胞之间。DMEM组可见阴性细胞核仍呈蓝色。将SAH组、DMEM组及BMSCs组大鼠于注射后1 d、2 d、3 d、5 d、7 d进行神经生物功能评分,无论是SAH组还是DMEM、BMSCs组可见,在各组里以1 d神经生物学功能评分普遍高于其它组(P<0.05),以后评分逐渐下降,BMSCs组大鼠在7 d时与DMEM和SAH组相比,神经生物功能评分明显减低,感觉运动功能恢复(P<0.05)。Morris水迷宫检测BMSCs组大鼠平均逃避潜伏期时间比SAH组和DMEM组要短,有统计学差异,探索实验显示BMSCs组跨越平台的次数多于其它两组,差异有明显统计学意义(P<0.05)。
     结论:1 BrdU可以用来标记BMSCs,标记后的细胞可用相应的抗体检测。2脑立体定位仪下以前囟后1.2 mm,中线旁2 mm处进针,深度为4.5 mm的位置能准确注入侧脑室,注射后大鼠未见明显不良反应。3注入BrdU标记过的BMSCs后,取前囟后4 mm的海马组织切片免疫组化染色显示有BrdU阳性细胞存在。4生物学功能评分可见BMSCs组在7 d时评分下降,表明感觉和运动功能有一定程度的恢复。5 Morris水迷宫显示BMSCs组在学习记忆能力方面也有一定的改善。
     四、SAH后CVS大鼠移植BMSCs后海马神经元凋亡的研究
     目的:大鼠SAH后CVS模型基础上植入BMSCs,大鼠感觉、运动功能有一定程度的恢复,进一步观察BMSCs植入后对大鼠脑内海马神经元凋亡相关蛋白Bcl-2和Bax表达的影响。
     方法:在第三部分大鼠脑组织切片基础之上,取SAH组、DMEM组和BMSCs组14 d前囟后4 mm处大脑皮层及海马组织石蜡切片,以兔抗鼠Bcl-2和Bax为一抗,进行免疫组织化学染色。图像分析软件分析阳性细胞数目比率。无菌条件下取SAH及BMSCs14 d组大脑,剥出海马,按每100 mg脑组织加入1 mL裂解液,超声裂解后低温离心,取上清,考马斯亮兰测定蛋白含量,蛋白变性后上样,电泳、转硝酸纤维素膜(NC膜),脱脂奶粉封闭,分别加入兔抗大鼠Bcl-2、Bax一抗,4℃静置过夜。滴加辣根过氧化物酶标记二抗,免疫化学发光,X光片显影定影。使用Hema成像分析系统对显色条带进行半定量分析,测定各组蛋白相对表达水平。
     结果:与SAH组相比,BMSCs组海马可见Bcl-2阳性细胞数目增加,细胞呈黄褐色,深染;Bax阳性细胞数目减少,着色较浅。SAH组大鼠海马可见Bcl-2阳性细胞数目较少,着色浅;相反Bax阳性细胞数目增加,细胞呈棕褐色较深。DMEM组可见Bax阳性细胞数目增加,而Bcl-2阳性细胞数目相对减低。Western blot显示,DMEM组、SAH组和BMSCs组大鼠海马GAPDH表达三组基本相似,Bcl-2在BMSCs组比DMEM组和SAH组表达高(P<0.05)。Bax的表达在SAH组与DMEM组高于BMSCs组,相比有明显统计学差异(P<0.05)。
     结论:1 SAH后CVS模型大鼠侧脑室植入BMSCs后,大脑皮层和海马内可见神经元抑制凋亡相关基因表达增加,而促凋亡相关基因表达下降。2 SAH组14 d大鼠脑内促凋亡相关基因表达升高,抑制凋亡相关基因表达下降。3 DMEM组大鼠脑内仅有少量的抑制凋亡相关基因表达,促凋亡相关基因表达较高。
     五、SAH后CVS大鼠侧脑室植入BMSCs脑血管超微结构观察与血中NOS、ET-1含量变化
     目的:观察SAH后CVS大鼠侧脑室植入BMSCs后血中一氧化氮合酶、内皮素-1含量变化,同时透射电镜观察大鼠脑内血管和神经元超微结构改变,为细胞移植治疗提供理论和实验依据。
     方法:实验动物分组、SAH模型制备及BMSCs移植同前面几部分,分为正常对照组、SAH组及BMSCs组。于移植BMSCs后1 d、3 d、7 d进行取血,测定大鼠血中NOS和ET-1含量,具体方法同前面第二部分。同时取前囟后4 mm大脑皮层脑组织约1 mm×1 mm×2 mm大小,用2.5%戊二醛磷酸盐缓冲液中后固定1 d,备透射电镜检查。将标本用0.1 M磷酸缓冲液洗3次,质量分数为1%锇酸固定,逐级梯度乙醇、丙酮脱水,环氧树脂812包埋,聚合,用超薄切片机作0.5μm厚度切片,经1%甲苯胺蓝-天青II染色,光镜下定位后制作超薄切片,片厚约50 nm,铜网捞片,醋酸铀、柠檬酸铅液染色。日立H-7500型透射电镜观察各组大鼠大脑皮层神经元及微血管的超微结构,照相,记录。组间比较采用单因素方差分析,各组间两两比较采用SNK-q检验,P<0.05表示差异有统计学意义。
     结果:与对照组相比,SAH组后1 d、3 d、7 d血中NOS含量明显下降,而血中ET-1含量则明显上升,其中以SAH 3 d组血中ET-1升高最为明显,差异有统计学意义。与SAH组相比,BMSCs组可见血液中ET-1含量逐渐下降,而NOS含量上升,差异有统计学意义。与正常组相比,BMSCs组ET-1含量仍然较高,差异有明显统计学意义(P<0.05),血中NOS含量有一定下降,与对照组相比不能说明有差异(P>0.1)。透射电镜显示,对照组神经元细胞核大而圆,染色质密度均匀,核仁明显,核膜完整。大脑皮层毛细血管可见其内皮细胞内膜光滑,细胞核、细胞器、紧密连接清晰可见,内皮细胞的基质和基膜完整,层次清楚,管腔无狭窄。SAH组可见大脑皮层神经元和微血管内皮细胞的水肿程度达到高峰,神经元高度水肿,线粒体肿胀,可见部分凋亡、坏死神经元。BMSCs组大脑皮层神经元和微血管内皮细胞可见轻度水肿,血管内皮细胞的吞饮小泡略减少。微血管内皮细胞核固缩,管腔内微绒毛减少,管腔狭窄有一定缓解。
     结论:1 SAH后CVS大鼠侧脑室移植BMSCs后ET-1下降,NOS含量升高。说明脑血管痉挛有一定程度的缓解。2脑组织及血管超微结构观察,SAH组大脑皮层神经元坏死加重,部分微血管闭塞。BMSCs移植后神经元的凋亡与死亡减少,微血管闭塞有一定的缓解。
1.Rat bone marrow mesenchymal stem cells isolation, cultivation, identification and neuronal conditioned medium induce it’s differentiation
     Objective: To master the method of rat bone marrow mesenchymal stem cells primary cultivation, passage, and identification, to investigate use hippocampal neuron’s conditioned medium to induce it differentiation.
     Methods: Use weight about (100-150) g SD rat, get the tibia and femur with germ free condition, expose the bone cavity, flush the cavity with antibiotic (penicillion 100 u/mL, streptomycin 100u/mL) DMEM medium, collect it in centrifuge tube, susupension it and cultured with 10% FBS medium into the cultured bottle, incubate in 37℃、5% CO2 incubator. 3d change the half medium, 5 d change the medium completely, then change the medium every 3 d. use CD34 and CD44 as the primary antibody to do the immunocytochemistry staining, PBS as the negative control, add the biotinize secondary antibody, 37℃, 1 h, PBS wash 3 times, add horseradish peroxidase, staining with DAB, stop with water, ethanol dehydration, xylene transparent, fix it with gum, observe under microscope. Use primary cultured hippocampal neuron’s medium as conditioned medium, b-FGF group add 10% DMSO, b-FGF and L-DMEM, the last group use Neurobasal plus B27 as serum free medium, negative control is DMEM medium(with 10%FBS). P5 BMSCs planted on the cover slip wih covering 0.1% PLL ( Poly-L-Lysine ) in 6 wells plate, when the BMSCs growth on the cover slip and change with Neurobasal medium, hippocampal conditioned medium and serumfree medium, induced the cell for 12 h and 1 d, after that fixed with paraformaldehyde. BMSCs following induce with different medium, use immunocytochemistry by MAP-2, NSE and GFAP antibody, observe the positive expression of MAP-2, NSE and GFAP, count the positive ratio of different groups and photographed.
     Results: BMSCs primary culture for 1 d, few of them adhere to the bottom, 2 d cleavage and proliferate, show oval ship or multiform, often form cell cluster, 4 d prolife rapidally, 3 d change the medium half, the impurity is clear, the cell morphology is obvious, the body is larger and prolife. 7-9 d is full on the bottom, about 95% emerge. BMSCs after passage growth fast,4h is adhere to the substance, 24h adhere completely and prolife. 5-7d can growth about 90% of the bottom. After 1’st passage, the purity is about 95%, passage it for 6 generation, each passage is the same in morphology and growth. BMSCs H-E staining show spindle and multiform, the nuclei is large, round and heavy dye, basophilic, cytoplasma is light, acidophilic, cell paralled. Rabbit anti rat CD34 show negative and colorless, CD44 cell adhere molecular positive, nuclei and cytoplasma show brown. Hippocampal neuron conditioned medium, b-FGF medium and B27 plus neurobasal (serum free) medium induced the BMSCs for 12 h and 1 d, after inducing the cell body changed into round and pyramid gradually, process elongate, 1 d some of them can connect each other. With immunocytochemistry stainin, 12 h and 1 d labeled with MAP-2, NSE and GFAP, count the positive showed conditioned medium induced BMSCs positive ratio is the highest, express NSE, MAP-2, GFAP higher than others, have the significant statistically difference(P<0.05)
     Conclusions: 1.Full bone marrow culture method and adhere way is a successful method to isolation, purify the BMSCs in vitro, and it can prolife rapidly and stable. 2. BMSCs in vitro with immunocytochemistry staining, it’s express mesenchymal stem cells characteristic, not the hemotopoitic stem cells. 3. With b-FGF DMEM medium, hippocampal conditioned medium, serum free medium induced BMSCs 12 h and 1 d, BMSCs can differentiate into neuronal like cell and glial like cell, with immunocytochemistry identification it’s express NSE, MAP-2 and GFAP positive characteristic. 3. With b-FGF DMEM medium, hippocampal medium, serum free medium induce BMSCs, 12 h is the highest ratio, it’s about 44.78%, conditioned medium compare with others, there are statistically differences.
     2. CVS model following SAH and ethological, biological detection
     Objective: Observe rat autologous blood cisterna magna injection to produce CVS model following SAH, detect blood and brain NOS and ET-1 content varation, the diameter of cerebro vessel, value the model of CVS from ethological performance.
     Methods: Use double hemorrhage cistern magna injection method to produce SAH model, separate the atlanto-occipital membrane and cut anterio the end of tail about 5-6 cm, get the arterial blood 0.2-0.3 mL from tail artery, with stereotaxica coordinate inject the arterial blood from atlanto-occipital membrane about 5 min, and 2 d later inject the blood again the same way. Rat was valued with neurological functional score, in 1 d, 2 d, 3 d, 5 d, 7 d compare SAH and control group. After vessel perfusion with 10% of india ink detect the diameter of cerebral artery with magnification of 45, with Nikon NIS BR 3.0 and Image J analysis system, detect the basal artery, introcarotid artery, and middle cerebral artery diameter. With the same perfusion way, filling the microvessel, 1 mm thick slice around the hippocampus 4 mm posterior bregma, valure the vessel filling under 45 magnification. SAH 1 d, 2 d, 3 d, 5 d, 7 d extract the eyeball, get 2 mL blood, get the hippocampus and cortex of brain, use serum and detect the ET-1 and NOS according to it’s manual, after injection 14 d, do Morris mazer test. All data process with SPSS14.0 soft ware and use one way annova, compare control and experimental group with Dunnett-t method, among groups with SNK-q test, with neurological functional score and cerebral diameter, NOS and ET-1 use multiple linear regression, Morris mazer mean escape time and NOS, ET-1, cerebral diameter also use multiple linear regression.
     Results: after SAH rat show decrese in eating, some kind of abnormal ethology, show lower reaction, lower alartness, sleepy, bloom, lack of diat, it can be better on 2’nd day, but double hemorrhage aggrevate, some of them can be paralysis. After injection there are blood clot in cerebullar medullary cistern, 1 d can see obsolete blood. Posterior 4 mm of bregma cortex vessel attenuate and lessen, the branches to medullary is lessen, but the control group show normal and abundant. With image analysis detect the vessel, SAH 2 d and 3 d the diameter have statistically difference versus control group. For neurological function score, SAH 1 d, 2 d, 3 d, 5 d have higher score, versus control group have significant difference. SAH 1 d, 2 d, 3 d, 5 d, 7 d blood and brain ET-1 were higher than sham. With multiple linear regression, neurological function score is related with ET-1 and middle cerebral artery. The average swimming speed is the same, while the swimming distance and escaping time of SAH group is longer than others, SAH span the flat less than control group.
     Conclusions: 1. Rat autologous tail blood cistern magna injection double hemorrhage model, there are clot around the sulcus and gyrus, with microperfusion shows clearly brain vessel hypoperfusion. 2. Compare with control group, SAH rat diameter of BA, MCA, ICA is thinning, especially for MCA. 3. SAH brain and blood ET-1, NOS show NOS lower than control group, ET-1 higher than the others. 4. SAH neurological score higher than others. 5. Morris mazer average escaping time of SAH is longer than control group, span times lower than sham.
     3. BrdU Labelled BMSCs transplant to CVS rat following SAH from lateral ventricle injection
     Objective: To transplant labeled BMSCs in to SAH following CVS from lateral ventricle, investigate the labeled cell development in brain, valure the cell transplantation effect with ethological method.
     Methods: P5 BMSCs, with BrdU to labelled for 2 d, after that check it by immnunocytochemistry staining with BrdU antibody. Then use labelled cell suspension, as 5×106 cell density to transplant to rat brain from lateral ventricle. By neurological score valure the 3 groups: SAH group, BMSCs group, and only transplant DMEM group. Sandomize 3 group, SAH didn’t transplant cell, DMEM only inject 30μL DMEM medium after 2’nd blood injecton 2 d, BMSCs group after SAH 2 d under stereotaxic coordinate inject 30μL BMSCs suspension as previous describe density. The Morris mazer and ethological exam after 14 d. Under stereotaxic coordinate, rat lateral ventricle localize is: posterior to bragma 1.2 mm, median line 2 mm, and the deep is 4.5 mm, after injection 14 d, fixed with paraformadehyde and get the brain slices, by immunohistochemistry staining method to show the positive BrdU labeled BMSCs. Detect neurological score at 1 d, 2 d, 3 d, 5 d, 7 d after SAH inject DMEM and BMSCs, 14 d do the Morris mazer experiment.
     Results: BrdU labelled BMSCs, immnunohistochemistry staining show nuclei brown is positive, negative is baby blue. Localize lateral ventricle under stereotaxic coordinate with bragam, it’s accurate into lateral ventricle and have no other untoward reaction, compare with DMEM group, BMSCs group sensory and motor disable no aggravate. With DAB staining of brain slice, the positive cell of BrdU labelled show brown color, positive cell irregular line within the negative cells. Neurological score show 1 d is the highest, with time it’s decrease little by little. DMEM group and SAH group have no statistically difference, Morris mazer BMSCs escaping time is shorter than SAH and DMEM group, spaning flat times show BMSCs more than others, have statistically difference.
     Conclusions: 1. BrdU can labelled BMSCs, with BrdU antibody immnunocytochemistry staining show brow color. 2. Under stereotaxic coordinate localize posterior bragma 1.2 mm, median line 2 mm, depth 4.5 mm can accurate inject into lateral ventricle, have no other side effect. 3.Labelled BrdU BMSCs, show positive BrdU cell in the brain slice. 4. Rat neurological score show BMSCs group 7 d has recover in motor and sensory in certain degree. 5. Morris mazer show BMSCs group have some kind of recover in learning and memory.
     4. The apoptosis investigation of hippocampus neuron after transplantation of BMSCs to CVS rat following SAH
     Objective: after transplantation BMSCs to CVS rat following SAH, observe the expression of Bcl-2 and Bax protein which are related with apoptosis in brain and hippocampus.
     Methods: With the SAH group, DMEM group and BMSCs group brain slices, use rabbit anti rat Bcl-2 and Bax as primary antibody, immunohistobiochemistry staining method to observe the morphological change. With Image analysis soft ware count the positive cell ratio of each groups. Get the SAH, DMEM and BMSCs group rat brain in 14 d, dissect the hippocampus, add the lysate about 1 mL per 100 mg brain tissue, ultrasonic clearage and centrifuge hypothermia, get the supernatant, detect it’s protein content with Coomassie agent. Protein denaturation and spotting, electrophoresis and transfer to nitrocellulose membrane. Blocking with defatted milk powder, add primary antibody of Bcl-2 and Bax, 4℃over night, add horseradish peroxidase, immune-developing, with Hema analysis system to detect each group protein expression level.
     Results: Compare with SAH, BMSCs at hippocampal slice Bcl-2 positive expression increase, Bax expression decrease, SAH group at the hippocampal slice Bcl-2 decrease and Bax increase. DMEM group Bcl-2 decrease and Bax increase. Western blot show, control group, SAH group, BMSCs group GAPDH expression is the same, BMSCs group Bcl-2 is higher than the others, and Bax expression is lower. Have statistically difference.
     Conclusions: 1. SAH following CVS transplant BMSCs, the express of inhibit apoptosis gene is decrease and promote apoptosis gene is increase. 2. SAH 14 d rat brain promote apoptosis gene expression increase and inhibit apoptosis gene decrease. 3.There are a little expression of promote apoptosis gene expression in DMEM group.
     5. The blood NOS, ET-1 content change and micro-ultral structure change after BMSCs transplantation to CVS rat following SAH
     Objective: To investigate blood NOS, ET-1 changes of BMSCs transplantation to CVS rat following SAH, transmission electron microscope observe the cerebrovascular and neuron’s ultra-micro-structural change.
     Methods: Animal grouping, SAH model and cell transplantation as previous subscribe, collect blood after BMSCs transplantation 14 d, detect the content of NOS and ET-1, as previous. Get the blood at 1 d, 3 d, and 7 d. Detect the NOS and ET-1 content in blood, as previous describe. Get the brain cortex posterior bregma about 1mm×1mm×2mm, fix it with 2.5% glutaral phosphates about 24h, ultral thin slices for TEM, wash it with 0.1mol/L phosphate 3 times, 1% osmic acid fix, ethanol and acetone dehydration, bed with epoxy resins, polymerization, 0.5μm thickness slicing the tissue, 1% toluidin blue-azure thickness about 50 nm, dredge with copper screen, uranyl acetate and citric acid staining, Hitachi H-7500 TEM observe ultra-structure of the brain cortex neuron and microvascular, photography. Comparasion between groups use one way ANOVA, among groups use SNK-q test, P<0.05 represent difference.
     Results: Compare with control group, SAH 1 d, 3 d and 7 d blood NOS decrease and ET-1 increase, as SAH 3 d increase for typical, have statistically difference. BMSCs group blood ET-1 decerease versus SAH group, NOS increase, have statistically difference. Compare with control group, BMSCs group ET-1 is still in high level, have statistically difference, NOS have certain level decrease, but have no statistically difference. TEM ultra-micro-structure show control group neuclus is big and round, Chromosome density is even, karyosome is clear, nuclear membrane is intergreted. Endothelial cell endomembrane is smooth, cell neuclear, apparatus, tight injunction is clear, endothalia matrix and basal lamina is integrated, stratification is clear, vessel have no narrow. SAH group cortex neuron and microvascular endothelial edema is the highest, mitochondria swelling, most of crest and membrane emerge, disappear, some of them medulla change, there are vaculous in cytoplasma, neuron nuclear chromosome concentrate, heterochromatin increase, mitochnodia, rough endoplasm reticulum swelling, even collapse. BMSCs transplantation can see little bit of edema in cortex neuron and microvasular endothelial, pinocytosis bulb attenuate in vascular endothelial cell.
     Conclusions: BMSCs lateral ventricle transplantation to SAH following CVS rat blood ET-1 decreas, NOS increase, SAH group neuron necrosis deeply and some of microvessel stenosis, after transplant BMSCs is attenuate the effect of CVS, imply cerebral vascular have a certain degree of release.
引文
1章静波,张世馥,黄东阳,等,组织和细胞培养技术,人民卫生出版社,北京, 2002, 200
    2 Delorme B,Chateauvieux S,Charbord P.The concept of mesenchymal stem cells. Regen Med, 2006, 1(4): 497-509
    3 Niemeyer P,Kornacker M,Mehlhorn A. Comparison of immunological properties of bone marrow stromal cells and adipose tissue-derived stem cells before and after osteogenic-differentiation in vitro. Tissue Eng, 2007, 13(1): 111-121
    4 Robert E.Schwartz, Morayma Reyes, et al, Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells.Clin Invest, 2002, 109:1291-1302
    5 Ira B B,Dale Woodbury, Adult Rat and Human Bone Marrow Stromal Cells Differentiate into Neurons. Blood Cells Molecules and Diseases, 2001, 27(3): 632-636
    6 Siddiqui F J, Rabbani F, Hasan R, et al. Typhoid fever in children: some epidemiological considerations from Karachi, Pakistan. Int Infect Dis, 2006, 10(3):215-222
    7 Lei Z, Yongda L, Jun M, et al. Culture and neural differentiation of rat bone marrow mesenchymal stem cells in vitro. Cell Biol Int, 2007, 31(9): 916-923
    8卢仁荣,陈良龙,江琼等,大鼠骨髓间充质干细胞的分离培养纯化与鉴定.心肺血管病杂志, 2008, 27(4):239-242
    9 Schoeberlein A, Holzgreve W, Dudler L, et al. Tissue-specific engraftment after in utero transplantation of allogeneic mesenchymal stem cells into sheep fetuses. Am J Obstet Gynecol, 2005, 192(4):1044-1052
    10 Chapel A, Bertho JM, Bensidhoum M, et al. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. Gene Med, 2003, 5: 1028-1038
    11 Zappia E, Casazza S, Pedemonte E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 2005, 106:1755-1761
    12 Caplan AI. The mesengenic process. Clin Plast Surg, 1994, 3:429-35
    13 Haynesworth SE, Goshima J , Goldberg VM , et al. Characterization of cells with osteogenic potential from human marrow. Bone, 1992, 13(1): 81-88
    14 Lu L, Zhao C, Liu Y, et al. Therapeutic benefit of TH-engineering mesenchymal stem cells for Parkinson’s disease. Brain Res Protoc, 2005, 15:46-51
    15 Kurozumi K, Nakamura K, Tamiva T, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middlecerebral artery occlusion model. Mol Ther, 2005, 11:96-104
    16 Butnariu-Ephrat M, Robinson D, Mendes DG et al. Resurfacing of gaot articular cartilage by chondrocytes derived from bone marrow. Clin Orthop, 1996, 330:234-243
    17 Pittenger MF ,Mackay AM,Beck SC ,et al .Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284:143 -147
    18 Tondreau T,Lagneaux L,Dejeneffe M,et al. Isolation of Bone Marrow Mesenchymal stem cells by plastic adhesion or negative selection: phenotype,proliferation kinetics and differentiation potential. Cytotherapy, 2004, 6:372-379
    19 Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res, 2000, 61:364-370
    20朱晓峰,神经干细胞基础及应用,北京,科学出版社,2005:131-135
    21 Dezawa M, Takahashi I, Esaki M, et al. Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Euro J Neurosci, 2001,14: 1771-1776
    22 Croft and S.A. Przyborski, Formation of neurons by non-neural adult stem cells: potential mechanism implicates an artifact of growth in culture. Stem Cells, 2006, 24:1841-1851
    23 Sanchez-Rames J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cellsin vitro. Exp Neurol, 2000,164:247-256
    24 Majumdar MK, Banks V, Peluso DP et al. Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol, 2000, 185:98-106
    25 Conget PA, Minguell JJ. Pheno typical and functional properties of huamn bone marrow mesenchymal progenitor cells.J Cell Physiol, 1999, 181: 67-73
    26项鹏,夏文杰,王连英,等.丹参注射液诱导间质干细胞分化为神经元样细胞.中山医科大学学报, 2001 ,22:321-324
    27项鹏,夏文杰,张丽蓉,等.成人骨髓间质干细胞定向诱导为神经元样细胞的研究.中国病理生理杂志, 2001 ,17:385
    28刘金保,董晓先,董燕湘,等.当归诱导骨髓间充质干细胞分化为神经元样细胞.广东医学杂志, 2003, 24:466-468
    29撒亚莲,李海标.三七总皂甙诱导骨髓间质干细胞分化为神经元样细胞.中山医科大学学报, 2002, 23:409-410
    30肖庆忠,李浩威.麝香多肽体外诱导成年大鼠和人骨髓间充质干细胞定向分化为神经元的研究.中国病理生理杂志, 2002, 18:1179-1182
    1 Solenski NJ, Haley EC, Kassell NF, et al. Medical complications of aneurismal subarachnoid hemorrhage: a report of the multicenter, cooperative aneurysm study. Crit Care Med,1995. 1007-1017
    2 Treggiari-Venzi MM, Suter PM, Romand JA. Review of medical prevention of vasospasm after aneurismal subarachnoid hemorrhage:a problem of neurointensive care. Neurosurgery, 2001,48:249-261
    3 Vajkoczy P, Meyer B, Weidauer S, et al. a selecive endothelin A receptor antagonist, in the prevention of cerebral vasospasm following severe aneurysmal subarachnoid hemorrhage: Results of a randomized, double-blind, placebo-controlled, multicenter phase IIa study. Neurosurg, 2005, 103:9-17
    4 Vatter H, Zimmermann M, Seifert V, et al. Experimental approaches to evaluate endothelin-A receptor antagonists. Methods Find Exp Clin Pharmacol, 2004, 26:277-286
    5 Raabe A, Zimmermann M, SEtzer M, et al. Effect of intrvenricular sodium nitroprusside on cerebral hemodynamics and oxygenation in poor-grade aneurysm patients with severe,medically refractory vasospasm. Neurosurgery, 2002, 50:239-242
    6 Rabinstein AA, Pichelmann MA, Friedman JA, et al. Symptomatic vasospasm and outcomes following aneurysmal subarachnoid hemorrhage: A comparison between surgical repair and endovascular coil occlusion.Neurosurg, 2003, 98:319-325
    7 Hop JW, Rinkel GJ., Algra A, et al. Case-Fatality rates and functional outcome after subarachnoid hemorrhage: as systematic review. Stroke, 1997, 28:660-664
    8 Rabinstein AA, Pichelmann MA, Friedman JA, et al. Symptomatic vasospasm and outcomes following aneurysmal subarachnoid hemorrhage: A comparison between surgical repair and endovascular coil occlusion. Neurosurg, 2003, 98:319-325
    9 Grasso G. An overview of new pharmacological treatments for cerebrovascular dysfunction after experimental subarachnoid hemorrhage. Brain Res Rev, 2004, 44:49-63
    10 Plauta RM. Delayed cerebral vasospasm and nitric oxide: Review, new hypothesis, and proposed treatment. Pharmacol The, 2005, 105:23-56
    11 Solomon RA, Anfunes JL, Chen RY, et al. Decrease in cerebral blood flow in rat after experimental subarachnoid hemorrhage: A new animal model. Stroke, 2002, 33:775-781
    12郭云良,姚维成,高焕民,等.神经生物学技术,青岛海洋出版社,2005:8-9
    13 Parra A, McGirt MJ, Sheng H, et al. Mouse model of subrachnoid hemorrhage associated cerebra vasospasm:methodological analysis. Neurol Res, 2002, 20:281-291
    14 Ken T, Huaxin S, Cecil OB, et al. Long-term cognitive dysfunction following experimental subarachnoid hemorrhage: new perspectives. Experimental Neurology, 2008, 213:336-344
    15 Lyubimova N, Hopewell JW. Experimental evidence to support the hypothesis that damage to vascular endothelium plays the primary role in the development of late radiation-induced CNS injury. Br J Radiol, 2004, 20:488-492
    16 Kiyohara Y, Ueda K, Hasuo Y, et al. Incidence and prognosis of subarachnoid hemorrhage in a Jampanese rural community. Stroke, 1989,20:1150-1155
    17 Sarti C, Tuomilehto J, Salomaa V, et al. Epidemiology of subarachnoid hemorrhage in Finland from 1983 to 1985. Stroke, 1991, 22:848-853
    18 Hop JW, Rinkel GJ, Algra A, et al. Case-Fatality rates and functional outcome after subarachnoid hemorrhage: as systematic review. Stroke, 1997,28:660-664
    19 Meguro T, Clower BR, Carpenter R, et al. Improved rat model for cerebral vasospasm studies. Neurol Res, 2001. 761-766
    20 Bigio MR, Yan HJ, Buist R, et al. Experimental intrcerebral Hemorrhage in Rats: magnetic Resonance Imaging and Histopsthological correlates. Stroke, 1996, 27:2312-2320
    21 Kastner S, Oertel MF, Scharbrodt W, et al. Endothelin-1 in plasma, cisternal CSF and microdialysate following aneurysmal SAH. Acta Neurochir, 2005, 147:1271-1279
    22张良文,吴承远,朱树干,等.颅内动脉瘤术后脑血管痉挛与血浆ET-1含量的相关研究.山东医药, 2002, 42(21): 12-13
    23李合华,王玉梅,毛兴爱.蛛网膜下腔出血患者血清与脑脊液中NO和CGRP水平变化及意义.山东医药, 2006, 46(19): 1-3
    24 Yanagisawa M, Kurihara H, Kimura S, et al. A novel potenvasoconstrictor peptide produced by vascular endothelial cells. Nature, 1988, 332: 411-415
    25 Hiroyuki Masaoka, Ryuta Suzuki, Yukio Hirata, et al, raised plasma endothelin in aneurysmal subarachnoid haemorrhage. Lancet, 1989, 334(8676)1420
    26 Suzuki H, Sato S, Suzuki Y, et al. Increased endothelin concentration in CSF in patients with subarachnoid hemorrhage. Acta Neural Scand, 1990,81:533-554
    27 Fujimori A, Yanagisawa M, Saito A, et al. Endothelin in plasma and cerebrospinal fluid of patients with subarachnoid hemorrhage. Lancet, 1990, 336:336-633
    28 Hickey J, Buekley D. The Clinical Practice of Neurological and Neurosurgical Nursing. 5’th ed. Philadelphia: LIPPincott Williams & Wilklns; 2003,523-548
    29 Baldwin ME, Macdonald RL,Huo D: Early vasospasm on admission angiography in Patients with aneurismal subarachnoid hemorrhage is a predietor for in-hosPital complications and Pooroutcome. Stroke, 2004, 35:2506-2511
    1 Woodbury D, Schwarz EJ, Prockop DJ, et al, Adult rat and human bone marrow stromal cells differentiate into neurons. Neurosci Res, 2000, 61: 364-370
    2 Siddiqui F J, Rabbani F, Hasan R, et al. Typhoid fever in children: some epidemiological considerations from Karachi, Pakistan. Int J Infect Dis, 2006, 10:215-222
    3侯玲玲,郑敏,王冬梅,等.人骨髓间充质干细胞在成年大鼠脑内的迁移及分化.生理学报, 2003, 55:153-159
    4张化彪,许予明,张苏明,等.骨髓间充质干细胞移植治疗大鼠脑出血的实验研究.中华神经科杂志, 2003, 36:432
    5 Nakamura S, Takeda Y, Kanno M, et al. Application of bromodeoxyuridine (BrdU) and anti–BrdU monoclonal antibody for the in vivo analysis of proliferative characteristics of human leukemia cells in bone marrow. Oncology, 1991, 48:285-289
    6 George Paxinos, Charles Watson,大鼠脑立体定位图谱,北京,人民卫生出版社, 2005,P30-35
    7郭云良,姚维成,高焕民,等.神经生物学技术.中国海洋大学出版社,青岛, 2005, 13-15
    8 Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol, 2000, 164(2):247-256
    9 Ling ZD, Potter DE, Lipton JW, et al. Differentiation of msencephalic progenitor cells into dopaminergic nuerons by ctykoiens. Exp Neurol, 1998, 149:411-243
    10 Temple S. The deve1opment of neural stem cells. Nature, 2001, 414: 112-117
    11刘超,苗雷英,孙新华,等. BrdU和EGFP标记大鼠骨髓间充质干细胞的对比研究.口腔医学研究, 2009, 25:19-23
    12 Nakamura S, Takeda Y, Kanno M, et al. Application of bromodeoxyuridine (BrdU) and anti–BrdU monoclonal antibody for the in vivo analysis of proliferative characteristics of human leukemia cells in bone marrow. Oncology, 1991, 48:285-289
    13 Nemoto R, Uchida K, Hottorl K, et al. Phase fraction of human bladder tumor measured in situ with bromodeoxyuridine labeling. J Virol, 1988, 139: 286-289
    14 Munoz-Elias G, Woodbury D, Black IB. Marrow stromal cells mitosis and neuronal differentiation stem cell and precursor functions. Stem Cells, 2003, 21: 437-48
    15 DeansRJ, MoseleyAB. Mesenchymal stem cells: biology and potential Clinical uses. Exp Hematol, 2000, 28:875-884
    16 Kornblom Hl, Gall CM, Seroogy KB,et al. A subpopulation of striatal GABAnergic neurons expresses the Epidermal growth factor receptor Neuorscience, 1955, 69:1025-1029
    17 Groves AK, Brnett SC, Franklin RJ, et al. Repair of demyelinated lesions by tanrspantation of purified 0-2A progenitor cel1s. Nature, 1993, 362:543 -455
    18 Azizi SA, Strokes D, Augelli BJ, et al. Engraftment and migration of human bone marrow stromal cells implanted in the brain of albinerat-similarities to astrocyte grafts. Proc Natl Acad Sci USA, 1998, 95: 3908-3913
    19 Zhao LR. Duan WM, Reyes M, et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol, 2002, 174:11220
    20 Kondo T, raff M. Oligo dendrocyte precursor cells reprogrammed to become multipotential CNS stem cells, Science, 2000, 289: 1754-1757
    21 Li Y, Chen XG. Human marrow stromal cells therapy for stroke in rats: neurotrophins and functional recovery. Neurology, 2002, 59:514-523
    22 Chen JL, Li Y, Katakowski M, et al. Intravenous bone marrow stromalcells therapy reduces apoptosis and promote endogenous cell proliferation after stroke in females rat. Neurosci Res, 2003,73:778-786
    23 Chen JL, Zhang ZG, Li Y, et al, Intravenous administration of human marrow stromal cells induces angiogenesis in the ischemic boudaryzone after stroke in rats. Circ Res, 2003, 92:692-699
    24 Brazelton TR, Rossi FMV, Keshet GI, et al. From marrow to brain: expression of neuronal phenotypes in adult mice. Science, 2000, 290:1775
    25 Kopen GC, Prockop DJ, Phinney DG. Marrow tromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natlacad Sci USA, 1999, 96:10711-10716
    1 Ogihara K, Zubkov AY, Bernanke DH, et al. Oxyhemoglobin induced apoptosis in cultured endothelial cells. Neurosurg, 1999; 91: 459-465
    2 Matsushta K, Meng W, Wang X, et al. Evidence for apoptosis after intercerebralhemorrhage in rat striatum. J Cereb Blood Flow Metab, 2000,20:396-404
    3 Solenski NJ, Haley EC, Kassell NF, et al. Medical complications of aneurismal subarachnoid hemorrhage: a report of the multicenter, cooperative aneurysm study. Crit Care Med,1995. 1007-1017
    4 Treggiari-Venzi MM, Suter PM, Romand JA. Review of medical prevention of vasospasm after aneurismal subarachnoid hemorrhage:a problem of neurointensive care. Neurosurgery, 2001, 48:249-261
    5 Hickey J , Buekley D. The Clinical Practice of Neurological and Neurosurgical Nursing. 5’th ed. Philadelphia: LIPPincott Williams & Wilklns; 2003, 523-548
    6 Henric-Noack P, Prehn JHM, Krieglstein J. TGF-β1 protects hippocampal neurons against degeneration caused by transient global ischemia: dose-reponse relationship and potential neuroprotective mechanism. Stroke, 1996,27(9):1609-1615
    7韩漫夫,迟发性神经元的研究.国外医学脑血管疾病分册, 1993, 1:195.
    8 Pluta RM, Thompson BG, Dowson TM, et al. Loss of metric oxide synthase immunoreactivity in cerebral vadospasm. Neurosurg, 1996, 86: 648.
    9 Hiashima Y, Endo S, Kato R, et al. Prevention of cerebrovasospasm following subarachnoidhemorrhage in rabbits by the platelet activating factor antagonist ES880. Neurosurg, 1996,84:826-830
    10 Baldwin ME, Macdonald RL, Huo D. Early vasospasm on admission angiography in Patients with aneurismal subarachnoid hemorrhage is a predietor for in-hosPital complications and Pooroutcome. Stroke, 2004, 35:2506-2511
    11 Beilharz EJ, Williams CE, Dragunow M, et al. Mechanisms of delayed cell death-following hypoxic-ischemic injury in the immature rat:evidence for apoptosis during selective neuronal loss. Brain Res Mol Brain Res, 1995, 29:1
    12 Zhang L, Kokonen G, Roth GS. Identification of neuronal programmed cell death in sim in the striatum of normal adult rat brain and it’srelationship to neuronal death during aging. Brain Res, 1995, 677:177
    13 ItoV. Neuron alteration after brain isehemia. Act Neuro Path, 1975, 32:210
    14郑彩梅.脑缺氧与缺血性脑血管病神经元损伤的研究进展.国外医学脑血管疾病分册, 1993, l:7
    15丁艳洁,蒋犁,汤云珍,等.缺氧缺血与迟发性神经元死亡.国外医学儿科学分册, 1995, 25:119
    16吴军,饶明俐,张海鸥,等.实验性大鼠迟发性脑血管痉挛的细胞增生、调亡和坏死.中国老年医学杂志, 2003, 23:441-442
    17白万胜,高国栋,赵振伟,等.兔脑血管痉挛后海马CA1区c-FOS表达及尼莫地平的神经保护作用.第四军医大学学报, 2003, 24:2171-2174
    18 Shimazaki K, Ishida A, Kawai N, et al. Increase in Bcl-2 oncoprotein and the tolerance to ischemia induced neuronal death in the gerbil hippocampus. Neurosci Res, 1994, 20:95
    1 Janjua N, Mayer SA. Cerebral vasospasm after subarachnoid hemorrhage. Curr Opin Crit Care, 2003,9:113-119
    2 Dorhout Mees SM, Rinkel GJ, Hop JW, et al. Antiplatelet therapy in aneurysmal subarachnoid hemorrhage: a systematic review. Stroke, 2003,34:2285-2289
    3 Tsurutani H, Ohkuma H, Suzuki S. Effects of thrombin inhibitor on thrombin-related signal transduction and cerebral vasospasm in the rabbit subarachnoid hemorrhage model. Stroke, 2003,34:1497-1500
    4 Laher I, Zhang JH. Protein kinase C and cerebral vasospasm. J Cereb Blood Flow Metab, 2001, 21:887-906
    5 Kosty T.Cerebral vasospasm after subarachnoid hemorrhage:an update. Crit Care Nurs Q, 2005, 28:122-134
    6 Kastner S, Oertel MF, Scharbrodt W, et al. Endothelin-1 in plas-ma, cisternal CSF and microdialysate following aneurysmal SAH. Acta Neurochir (W ien), 2005, 147:1271-1279
    7张良文,吴承远,朱树干,等.颅内动脉瘤术后脑血管痉挛与血浆ET-1含量的相关研究.山东医药, 2002, 42: 12-13
    8李合华,王玉梅,毛兴爱.蛛网膜下腔出血患者血清与脑脊液中NO和CGRP水平变化及意义.山东医药, 2006, 46:1-3
    9 Webster C, Ricky M, Neal F, et al. New insights into the causes and therapy of cerebral vasospasm following subarachnoid hemorrhage. Drug Discovery today, 2008, 13:254-260
    10 Pluta RM,Thompson BG, Dowson TM, et al. Loss of metric oxide synthase immunoreactivity in cerebral vadospasm. Neurosurg, 1996,86:648
    11刘全生,黄袓春,内皮素与脑血管痉挛.重庆医学, 2007, 36:478-480
    12 Yanagisawa M, Kurihara H, Kimura S, et al. A novel potential vasoconstrictor peptide produced by vascular endothelial cells. Nature, 1988, 332: 411-415
    13 Hiroyuki M, Ryuta S, Yukio H, et al. Raised plasma endothelin in aneurysmal subarachnoid haemorrhage. Lancet, 1989, 334:1420
    14 Suzuki H, Sato S, Suzuki Y, et al. Increased endothelin concentration in CSF in patients with subarachnoid hemorrhage. Acta Neural Scand, 1990,81:533-554
    15 Fujimori A, Yanagisawa M, Saito A, et al. Endothelin in plasma and cerebrospinal fluid of patients with subarachnoid hemorrhage. Lancet, 1990:336-633
    1 Zubkov AY, Tibbs RE, Aoki K, et al. Prevention of vasosapasm in penetration arteries with MAPK inhibitors in dog double-hemorrhage model. Surg. Neurol, 2000, 52(2): 221-228
    2 Zubkov AY, Tibbs RE, Aoki K, et al. Morphological changes of cerebral penetration arteries in a canine double hemorrhage model. Surg. Neurol, 2000,54:212-220
    3 Psaqualin A. Epidemiology and pathophysiology of cerebral vasospasm following subarachnoid hemorrhage. Neurosurg, Sci, 1998, 42:15-21
    4 Zubkov AY, Lewis AI, Raila FA, et al. Risk factors for the development of post-traumatic cerebral vasospasm. Surg Neurol, 2000, 53:126-130
    5 LeRoux PD, Haglund MM, Mayberg MR, et al. Symptomatic cerebral vasospasm following tumor resection: reprot of two cases. Surg Neuurol, 1991, 36:25-31
    6 Yamashima T, Kashihara K, Ikeda K, et al. Three phases of cerebral arteriopathy in meningitis: vasospasm and vasodilatation followed by organic stenosis. Neurosurgery, 1985, 16:546-553
    7 Dorsch NW. cerebral arterial spasm- a clinical review. Br J Neurosurg, 1995, 9:403-412
    8 Macdonald RL, Weir BK. Cerebral vasospasm and free radicals. Free Radic Biol Med, 1994, 16:633-643
    9 Ogihara K, Zubkov AY, Bernanke DH, et al. Oxyhemoglobin-induced apoptosis in cultured endothelial cells. Neurosurg, 1999, 91:459-465
    10 Ecker AD. Does chronic cerebral vasospasm precede development and rupture of intracranial aneurysms? Mayo Clin Proc, 1984, 59:797
    11 Wilkins RH. Cerebral vasospasm. Crit Rev Neurobiol, 1990, 6:51-77
    12 Macdonald RL, Weir BK, Runzer TD, et al. Etiology of cerebralvasospasm in primates. Neurosurg, 1991, 75:415-424
    13 Zuccarello M, Lewis AI, Upputuri S, et al. Anderson, Effect of remacemide hydrochloride on subarachnoid hemorrhage-induced vasospasm in rabbits. Neruotrauma, 1994, 11:691-698
    14 Zhang H, Weir BK, Macdonald RL, et al. Mechanisms of [Ca2+] elevation induced by erthrocyte components in endothelial cells. Pharmacol Exp Ther, 1996, 277:501-1509
    15 Hempelmann RG, Pradel RH, Barth HL, et al. Interactions between vasoconstractors in isolated human cerebral arteries. Acta Neurochir ( Wien), 1997, 139:574-581
    16 Masaoka H, Suzuki R, Hirata Y, et al. Raised pasma endothelin in aneurysmal subarachnoid haemorrhage. Lancet, 1989, 2:1402
    17 Suzuki H, Sato S, Suzuki Y, et, al. Endothelin immunoreactivity in cerebrospinal fluid of patients with subarachnoid heamorrhage. Ann Med, 1990, 20:233-236
    18 Mima T, Yanagisawa M, Shigeno T, et al. Endothelin acts in feline and canine cerebral arteries from the adventitial side. Stroke, 1989, 20:1553- 1556
    19 Ide K, yamakawa K, Nakagomi T, et al. The role of endothelin in the pathogenesis of vasospasm following subarachnoid haemorrhage. Neurol Res, 1989, 11:101-104
    20 Asano T, Ikegaki I, Suzuki Y, et al. Endothelin and the production of cerebral vasospasm in dogs. Biophys Res Commun, 1989, 159:1345 -1351
    21 Alabadi JA, Salom JB, Torregrosa G, et al. Changes in the cerebrovascular effects of endothelin-1 and nicardiping after experimental subarachnoid hemorrhage. Neurosurgery, 1993,33:707-714.
    22 Roux S, Loffler BM, Gray GA, et al. The role of endothelin in experimental cerebral vasospasm. Neurosurgery, 1995, 37:78-85
    23 Zuccarello M, Soattin GB, Lewis AI, et al. Prevention of subarachnoid hemorrhage induced cerebral vasospasm by oral administration ofendothelin receptor antagonists. Neurosurg, 1996, 84:503-507
    24 Hino A, Weir BK, Macdonald RL, et al. Prospective, randomized, double-blind trial of BQ-123 and bosentan for prevention of vasospasm following subarachnoid hemorrhage in monkeys. Neurosurg, 1995, 83: 503-509
    25 Gaw AJ, Wadsworth RM, Humphrey PP. Neurotransmission in the sheep middle cerebral artery: modulation of responses by 5-HT and heamolysate. Cereb Blood Flow Metab, 1990, 12:409-416
    26 Svendarrd NA, Edvinsson L, Owman C, et al. Increased sensitivity of the basilar artery to norepinephrine and 5-hydoxytryptamine following experimental subarachnoid hemorrhage. Surg. Neurol, 1997, 8:191-195
    27 Zubkov AY, Ogihara K, Tumu P, et al. Bloody cerebospinal fluid alters contraction of cultured arteries. Neurol Res, 1999, 21:553-558
    28 Gaetani P, Cafe C, Baena R. Superoxide dismutase activity in cisternal cerebrospinal fluid after aneurysmal subarachnoid haemorrhage. Acta Neurochir.(Wien), 1997, 139:1033-1037
    29 Iwasa K, Bernanke DH, Smith RR. Nonmuscle arterial constriction after subarachnoid hemorrhage: role of growth factors derived from platelets. Neurosurgy, 1993, 32:619-623
    30 Berk BC, Brock TA, Webb RC, et al. Epidermal growth factor, a vascular smooth muscle mitogen, induces rat aortic contraction. Clin Invest, 1985, 75:1083-1086
    31 Benham CD, Hess P, Tsien RW. Two types of calcuium channels in single smooth muscle cells from rabbit ear artery studied with whole-cell and single-channel racordings. Cric Res, 1987, 20:110-116
    32 Nelson MT, Standen NB, Brayden JE, et al. Noradrenaline contracts arteries by activating voltage-dependent calcium channels. Nature, 1988, 336:382-385
    33 Liu H, Sperelakis N. tyrosine kinases modulate the activity of single L-type calcium channels in vascular smooth muscle cells from rat portal vein. Physiol Pharmacol, 1997, 75:1063-1068
    34 Zhang H, Weir B, Marton LS, et al. Mechanism of hemolysate-induced [Ca2+]i elevation in cerebral smooth muscle cells. Physiol, 1995, 269: H1974-H1890
    35 Alborch E, Salom JB, Torregrosa G. Calcium channels in cerebral arteries. Pharmacol, 1995, 68:1-34
    36 Missiaen L, Smedt DH, Droogmans G, et al. Calcium ion homeostasis in smooth muscle. Pharmacol Ther, 1992, 56:191-231
    37 Iwabuchi S, Marton LS, Zhang JH. Role of protein tyrosine phosphorylation in erythrocyte lysate-induced intracellular free calcium concentration elevation in cerebral smooth-muscle cells. Neurosurg, 1999, 90:743-751
    38 Aoki K, Zubkov AY, Parent AD, et al. Mechanism of ATP-induced [Ca2+]i mobilization in rat basilar smooth muscle cells. Stroke, 2000,31:1377-1384
    39 Kim P, Yoshimoto Y, Iino M, et al. Impaired calcium reguation of smooth muscle during chronic vasospasm following subarachnoid hemorrhage. Cereb Blood Flow Metab, 1996, 16:334-341
    40 Zuccarello M, Boccaletti R, Tosun M, et al. Role of extracellular Ca2+ in subarachnoid hemorrhage-induced spasm of the rabbit basilar artery. Stroke, 1996, 27:1896-1902
    41 Kim CJ, Weir B, Macdonald RL, et al. Hemolysate inhibits L-type Ca2+ channels in rat basilar smooth muscle cells. Vasc Res, 1996, 33:258-264
    42 Takenake K, Yamada H, Sakai N, et al. Intracellular Ca2+ changes in cultured vascular smooth muscle cells by treatment with various spasmogens. Neurol Res, 1991, 13:168-172
    43 Kim CJ, Weir BK, Macdonald RL, et al. Erythrocyte lysate release Ca2+ from IP3-sensitive stores and activates Ca2+ dependent K+ channels in rat basilar smooth muscle cells. Neurol Res, 1998, 20:23-30
    44 Vollrath BA, Weir BK, Macdonald RL, et al. Intracellular mechanism involved in the responses of cerebrovascular smooth-muscle cells to hemoglobin. Neurosurg, 1994, 80:261-268
    45 Takenake K, Kishino J, Yamada H, et al. DNA synthesis and intracellular calcium elevation in porcine cerebral arterial smooth muscle cells by cerebrospinal fluid from patients with subarachnoid haemorrhage. Neurol Res, 1992, 14:330-334
    46 Krueger C, Weir B, Nosko M, et al. Nimodipine and chronic vasospasm in monkeys: Part 2, Pharmacological studies of vessels in spasm. Neurosurgery, 1985, 16:137-140
    47 Kohno K, Sakaki S, Ohue S, et al. Intracellular calcium levels in canine basilar artery smooth muscle following experimental subarachnoid hemorrhage : an electron microscopic cytochemical study. Acta Neuropathol, 1991, 81:664-669
    48 Bulter WE, Peterson JW, Zervas NT, et al. Intracellular calcium, myosin light chain phophorylation, and contractile force in experimental cerebral vasospam. Neurosurgery, 1996, 38:781-787
    49 Tanaka Y, Masuzawa T, Saito M, et al. Change in Ca2+ sensitivity of cerebrovascular smooth muscle in experimental chronic cerebral vasospasm. Neurol Med Chir (Tokyo), 1998, 38:459-463
    50 Stull JT, Lin PJ, krueger JK, et al. Myosin light chain kinase: functional domains and structural motifs. Acta Physiol. Scand, 1998, 164:471-482
    51 Somlyo AP, Walker JW, Goldman YE, et al. Inositol trisphophate, calcium and muscle contraction. Philos Trans R Soc Lond B Biol Sci, 1988, 20:399-414
    52 Aaronson PI. Intracellular Ca2+ release in cerebral arteries. Ther, 1994, 4:495-507
    53 Kim I, Leinweber BD, orgalla M, et al. Thin and thick filament regulation of contractility in experimental cerebral vasospam. Neurosurgery, 2000, 64:440-446
    54 Harada T, Seto M, Sasaki Y, et al. The time course of myosin light-chain phosphorylation in blood induced vasospasm. Neurosurgery, 1995, 36: 1178-1182
    55 Berridge M. J. Inositol triphosphate and calcium signalling. Nature, 1993,361:315-325
    56 Vollrath B, Weir BK, Cook DA. Hemoglobin causes release of inositol trisphosphate from vascular smooth muscle. Biochem Biophys Res Commmun, 1990, 171:506-511
    57 Sima B, MacDonald L, Marton LS, et al. Effect of P2-purinoceptor antagonists on hemolysate-induced and adenosine 5'-triphosphate-induced contractions of dog basilar artery in vitro. Neurosurgery, 1996, 39:815-821
    58 Kobayashi S, Somlyo AP, Somlyo AV. Guanine nucleotide and inositol 1,4,5-trisphosphate induced calcium release in rabbit main pulmonary artery. Physiol, (Lond), 1988, 360:601-619
    59 Nishizuka Y. Membrane phospholipid degradation and protein kinase C for cell signalling. Neurosci Res, 1992, 15:3-5
    60 Huang KP. The mechanism of protein kinase C activation. Trends Neurosci, 1989, 12:425-432
    61 Moolenaar WH, Kruijer W, Tilly BC, et al. Growth factor-like action of phosphatidic acid Nature, 1986, 12:323
    62 Yu CL, Tsai MH, Stacey DW. Cellular ras activity and phospholipid metabolism. Cell, 1988, 52:63-71
    63 Leijten PA, van BC. The effects of caffein on the noradrenaline-sensitive calcium store in rabbit aorta. Physiol(Lond), 1984, 357:327-339
    64 laBelle EF, Fulbright RM, Barsotti RJ, et al. Phospholipase D is activated by G protein and not by calcium ions in vascular smooth muscle. Physiol, 1996, 27:H1031-H1037
    65 Ward DT, Ohanian J, Heagerty AM, et al. Phospholipase D-induced phosphatidate production in intact small arteries during noradrenaline stimulation: involvement of both G -protein and tyrosine-phosphorylation-linked pathways. Biochem, 1995, 307:451-456
    66 Jones AW, Shukla SD, Geisbuhler BB. Stimulation of phospholipase D activity and phosphatidic acid production by norepinephrine in rat aorta. Am J Physiol, 1993,2 64:C609-C616
    67 Billah MM, Anthes JC. The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem, 1990, 269:281-291
    68 Freeman EJ, Chisolm GM, Tallant EA. Role of calcium and protein kinase C in the activation of phosphlipase D by angiotensin II in vascular smooth muscle cells. Arch. Biochem Biophys, 1995, 319:84-92
    69 Cook DA, Vollrath B. Free radical and intracellular events associated with cerebrovascular spasm. Cardiovasc Res, 1995, 30:493-500
    70 Matsui T, Takuwa Y, Kaizu H, et al. Possible involvement of C-kinase in occurrence of chronic cerebral vasospasm after subarachnoid hemorrhage. Adv Exp Med Biol, 1993, 331:177-182
    71 Whitney G, Throckmorton D, Isales C, et al. Kinase activation and smooth muscle contraction in the presence and absence of calcium. Vasc Surg, 1995, 22:37-44
    72 Rasmussen H, Takuwa Y, Park S. Protein kinase C in the regulation of smooth muscle contraction. FASEB, 1987, 1:177-185.
    73 Epstein AM, Throckmorton D, Brophy CM. Mitogen acitvated protein kinase activation: an alternate signaling pathway for sustained vascular smooth muscle contraction. Vasc Surg, 1997, 26:327-332
    74 Matsui T, Sugawa M, Johshita H. Activation of the protein kinase C-mediated contactile system in canine basilar artery undergoing chronic vasopasm. Stroke, 1991, 236:1183-1187
    75 Nishizawa S, Nezu N, Uemura K. Direct evidence for a key role of protein kinase C in the development of vasospasm after subarachnoid hemorrhage. Neurosurg, 1992, 76:635-639
    76 Nishizawa S, Peterson JW, Shimoyama I, et al. Relation between protein kinase C and calmodulin systems in cerebrovascular contration: investigation of the pathogenesis of vasospam after subarachnoid hemorrhage. Neurosurgery, 1992, 31:711-716
    77 Sako M, Nishihara J, Ohta S, et al. Role of protein kinase C in the pathogenesis of cerebral vasospasm after subarachnoid hemorrhage. Cereb. Blood Flow Metab, 1993, 13:247-254
    78 Takuwa Y, Matsui T, Abe Y, et al. Alterations in protein kinase C activity and membrane lipid metabolism in cerebral vasospasm after subarachnoid hemorrhage. Cereb Blood Flow Metab, 1993, 13:409-415
    79 Zuccarello M, Bonasso CL, Lewis AI, et al. Ralaxation of subarachnoid hemorrhage-induced spasm of rabbit basilar artery by the K+ channel activator cromakalim. Stroke, 1996, 27:311-316
    80 Tachibana E, Harada T, Shibuya M, et al. Intra-arterial infusion of fasudil hydrochloride for treating vasospam following subarachnoid haemorrhage. Acta Neurochir (Wien), 1999, 141:13-19
    81 Kaplan N, Salvo DJ. Coupling between arginine -vassopresin -activated increases in protein tyrosine phosphorylation and cellular calcium in A7r5 aortic smooth muscle cells. Biochem Biophys, 1996, 326:271-280
    82 Hollenberg MD. Tyrosine kinase pathways and the regulation of smooth muscle contractility. Trends Phamacol Sci, 1994, 15:109-114
    83 Steusloff A, Paul E, Semenchuk LA, et al. Modulation of Ca2+ sensitivity in smooth muscle by genistein and protein tyrosine phosphorylation. Arch Biochem Biophys, 1995, 320:236-242
    84 Gokita T, Miyauchi Y, Uchida MK. Effects of tyrosine kinase inhibitor, genistein, and phosphotyrosine-phosphatase inhibitor, orthovanadate, on Ca2+ free contraction o uterine smooth muscle of the rat. Gen Pharmacol, 1994, 25:1673-1677
    85 Abebe W, Agrawal DK. Role of tyrosine kinases in norepinephrine induced contraction of vascular smooth muscle. Cardiovasc Pharmacol, 1995, 26:153-159
    86 Seigelbaum SA. Channel regulation. Ion channel control by tyrosine phosphorylation. Curr. Biol, 1994, 4:242-245
    87 Watanabe M, Doi M, Sasaki K, et al. Modulatory role of protein tyrosine kinase activation in the receptor-induced contraction of the bovine cerebral artery. Neurol Med Chir, 2000, 31:526-533
    88 Marton LS, Weir BK, Zhang H. Tyrosine phosphorylation and [Ca2+]i elevation induced by hemolysate in bovine endothelial cells: implicationsfor cerebral vasospam. Neurol Res, 1996, 18:349-353
    89 Kim CJ, Weir BK, Macdonal RL, et al. Erythrocyte lysate releases Ca2+ from IP3-sensitive stores and activate Ca2+ dependent K+ channels in rat basilar smooth muscle cells. Neurol Res, 1998, 20:23-30
    90 Vollrath B, Cook D, Megyesi J, et al. Novel mechanism by which hemoglobin induces constraction of cerebral arteries. Eur J Pharmacol, 1998, 361:311-319
    91 Katoch SS, Moreland RS. Agonist and membrane depolarization induced activation of MAP kinase in the swine carotid artery. Am J Physiol, 1995, 269:H222-H229
    92 Griending KK, Ushio-Fukai M, Lassegue B, et al. Angiotensin II signaling in vascular smooth muscle. New concepts Hypertension, 1997, 29:366-373
    93 Watson MH, Venance SL, Pang SC, et al. Smooth muscle cell proliferation. Expression and kinase acitvities of P34cdc2 and mitogen-activated protein kinase homologues. Circ Res, 1993, 73:109 -117
    94 Zubkov AY, Ogihara K. Tumu P, et al. Mitogen-acitvated protein kinase mediation of hemolysate-induced contraction in rabbit basilar artery. Neurosurg, 1999, 90:1091-1097
    95 Zubkov, Rollins KS, Parent AD, et al. Mechanism of endothelin-1induced contraction in rabbit basilar artery. Stroke, 2000, 31:526-533
    96 Zubkov AY, Rollins KS, McGehee B, et al. Relaxant effect of U0126 in hemolysate-, oxyhemoglobin-, and bloody cerebrospinal fluid-induced contraction in rabbit basilar artery. Stroke, 2001, 32:154-161
    97 Tibbs R, Zubkov AY, Aoki K, et al. Effects of mitogen-activated protein kinase inhibitors on cerebral vasospasm in a double-hemorrhage model in dogs. Neurosurg, 2000, 93:1041-1047
    98 Rodriguex-Viciana P, Warne P. H, Vanhaesebroeck B, et al. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J, 1996, 15:2442-2451
    99 Osuka K, Suzuki Y, Tanazawa T, et al. Interleukin-6 and development of vasospasm after subarachnoid haemorrhage. Acta Neurochir (Wein), 1998, 140:943-951
    100 Guillet-Deniau I, Burnol AF, Girard J, et al. Identificaton and locallization of a skeletal muscle secrotonin 5-HT2A receptor coupled to the Jak/STAT pathway. Biol Chem, 1997, 272:14825-14829
    101 Love DW, Whatmore AJ, Clayton PE, et al. Growth hormone stimualtion of the mitogen-activated protein kinase pathway is cell type specific. Endocrinology, 1998, 139:1965-1971
    102 Earley JJ, Su X, Moreland RS. Caldesmon inhibits active crossbridge in unstimulated vascular smooth muscle: an antisense oligodeoxynucleotide approach. Circ Res, 1998, 83:661-667
    103 Adam LP, Hathaway DR. Identification of mitogen-activated protein kinase phosphorylation sequences in mammalian. FEBS Lett, 1993,322: 56-60
    104 Wang Z, Jiang H, Yang ZQ, et al. Both N-terminal myosin-binding and C-terminal actin-binding sites on smooth muscle caldesmon are required for caldsmon-mediated inhibition fo actin filament velocity. Proc Natl Acad Sci USA, 1997, 94:11899-11904
    105 Itoh T, Suzuki A, Watanabe Y, et al. A calponin peptide enhances C2+ sensitivity of smooth muscle contraction without affecting myosin light chain phosphorylation. Biol Chem, 1995, 27:20400-20403
    106 Doi M, Kasuya H, Weir B, et al. Reduced expression of calponin in canine basilar artery after subarachnoid haemorrhage. Acta Neurochir, 1997, 139:77-81
    107 Menice CB, Hulvershorn J, Adam LP, et al. Calponin and mitogen activated protein kinase signalling in differentiated vascular smooth muscle. Biol Chem, 1997, 272:25157-25161
    108 Xiong Z, Sperelakis N, Fenoglio-Presiser C. Regulation of L-type calcium channels by cyclic nucleotides and phophorylation in smooth muscle cells from rabbit portal vein. Vasc Res, 1994, 31:271-279
    109 Yoshida Y, Sun HT, Cai JQ, et al. Cyclic GMP-dependent protein kinase stimulates the plasma memebrane Ca2+ pump ATPase of vascular smooth muscle via phosphorylation of a 240-kDa protein. Biol. Chem, 1991, 266:19819-19825
    110 Furukawa K, Nakamura H. Cyclic GMP regulation of the plasma membrane (Ca2+-Mg2+) ATPase in vascular smooth muscle. Biochem (Tokyo), 1987, 101:286-290
    111 Twort CH, Breemen VC. Cyclic guanosine monophosphate enhanced sequestration of Ca2+ by sqrcoplasmic reticulum in vascular smooth muscle. Circ Res, 1988, 62:961-964
    112 Lanerolle PD, Nishikawa M, Yost DA, et al. Increased phosphorylation of myosin light chain kinase after an increase in cyclic AMP in intact smooth muscle. Science, 1984, 223:1415-1417
    113 Vegesna RV, Diamond J. Effects of isoproterenol and forskolin on tension, cyclic AMP levels, and cyclic AMP dependent protein kinase activity in bovine coronary artery. Can J Physiol Pharmacol, 1984, 62:1116-1123
    114 Todo H, Ohta S, Wang J, et al. Impairment in biochemical level of arterial dilative capability of a cyclic nucleotides-dependent pathway by induced vasospasm in the canine basilar artery. Cereb Blood Flow Metab, 1998, 18:808-817
    115 Edwards DH, Byrne JV, Griffith TM. The effect of chronic subarachnoid hemorrhage on basal endothelium-derived relaxing factor activity in intrathecal cerebral arteries. Neurosurg, 1992, 12:830-837
    116 Macdonald RL, Weir BK. A review of hemoglobin and the pathogenesis of cerebral vasospasm. Stroke, 1991, 22:971-982
    117 Sobey CG, Faraci FM. Effects of a novel inhibitor of guanylyl cyclase on dilator responses of mouse cerebral arterioles. Stroke, 1997, 28:837-842
    118 Kim P, Schini VB, Sundt TJ, et al. Reduced production of cGMP underlies the loss of endothelium-dependent relaxations in the canine basilar artery after subarachnoid hemorrhage. Circ Res, 1992, 7:248-256
    119 Kasuya H, Weir BK, Nakane M, et al. Nitric oxide synthase andguanylate cyclase levels in canine basilar artery after subarachnoid hemorrhage. Neurosurg, 1995, 82:250-255
    120 Kim P. Loss of relaxations, metabolic failure and increased calcium permeability of smooth muscle during chronic cerebral vasospasm. Auton. Nerv. Syst, 1994, 49:S157-S162
    121 Sobey CG, Faraci FM. Subarachnoid haemorrhage: What happens to the cerebral arteries?. Clin Exp Pharmacol Physiol, 1998, 25:867-876
    122 Harder DR, Dernbach P, Waters A. Possible cellular mechanism for cerebral vasospasm after experimental subarachnoid hemorrhage in the dog. Clin Invest, 1987, 80:875-880
    123 Aihara Y, Kasuya H, Onda H, et al. Quantitative analysis of gene expressions related to inflammation in canine spastic artery after subarachnoid hemorrhage editorial comment. Stroke, 2001, 32:212-217
    1 Broderick JP., Brott T, Tomsick T, et al. The risk of subarachonodi andintracerebral hemorrhages in blacks as compared with whites. N Engl J Med,1992. 733-736
    2 Ingall T, Asplund K, Mahonen M, et al. A multinational comparison of subarachnoid hemkorrhage epidemiology in the WHO MONICA stroke studey. Stroke, 2000, 31:1054-1061
    3 Kiyohara Y, Ueda K, Hasuo Y, et al. Incidence and prognosis of subarachnoid hemorrhage in a Jampanese rural community. Stroke, 1989, 20:1150-1155
    4 Sarti C, Uomilehto JT, Salomaa V, et al. Epidemiology of subarachnoid hemorrhage in Finland from 1983 to 1985. Stroke, 1991, 22:848-853
    5 Hop JW, Rinkel GJ, Algra A, et al. Case-Fatality rates and functional outcome after subarachnoid hemorrhage: as systematic review. Stroke, 1997, 28:660-664
    6 Broderick JP, Brott TG, Duldner JE, et al. Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke, 1994, 25:1342-1347
    7 Treggiari-Venzi MM, Suter PM. and Romand JA. Review of medical prevention of vasospasm after aneurysmal subarachnoid hemorrhage: a problem of neurointensive care. Neurosurgery, 2001, 48:249-261
    8 Kassell NF, Helm GN, Simmons, et al. Treatment of cerebral vasospasm with intr-arterial papaverine. J Neurosurg, 1992, 77:848-852
    9 Romner B, Reinstrup P. Triple H therapy after aneurysmal subarachnoid hemorrhage. A review. Acta, Neurochir Suppl, 2001, 77:237-241
    10 Solomon RA, Fink ME, Lennihan L. Prophylactic volume expansion therapy for the prevention of dylayed cerebral ischemia after early aneurysm surgery. Results of a preliminary trial. Arch Neurol, 1988, 45:325-332
    11 Tettenborn D, Dycka J. Prevention and treatment of delayed ischemic dysfunction in patients with aneurysmal subarachnoid hemorrhage. Stroke, 1990. 23:IV85-IV89
    12 Murray GD. Surgical bleeding and calcium antagonists. British aneurysmnimodipine trial reported improved clinical outcome with nimodipne. BMJ, 1995, 311:388-389
    13 Pickard JD, Murray GD, lllingworht R, et al. Effect of nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. BMJ, 1989, 298:636-642
    14 Karinen P, Kooivukangas P, et al. Cost-effectiveness analysis of nimodipine treatment afteraneurysmal subarachnoid hemorrhage and surgery. Neurosurgery, 1999, 45:780-784
    15 Flamm ES, Adasms HP, Beck JDW, et al. Doseescalation study of intravenous nicardipine in patients with aneurysmal subarahnoid hemorrhage. Neurosurg, 1988, 68:393-400
    16 Haley EC, Kassell NF, Torner JC, A randomized controlled trial of high-dose intravenous nicardinping in aneurysmal subarachnoid hemorrhage. A report of the Cooperative Aneurysm Study. Neurosurg, 1993, 78:537-547
    17 Haley EC, Kassell JNF, Torner JC. A randomized trial of nicardipine in subarachnoid hemorrhage: angiographic and transcranial Doppler ultrasound results. A report of the Cooperative Aneurysm Study. Neurosurg, 1993, 78:548-553
    18 Haley ECJ, Kassell NF, Torner, et al. A randomized trial of two koses of nicardipine in aneurysmal subarachnoid hemorrhage. A report of the Cooperative Aneurysm Study. Neurosurg, 1994, 80:788-796
    19 Macdonald RL, Curry DJ, Aihara Y, et al. Magnesium and experimental vasospasm. Neurosurg, 2000, 100:106-110
    20 Veyna RS, Seyfried D, Burke DG, et al. Magnesium sulfate herapy after aneurysmal subarachnoid hemorrhage. Neurosurg, 2002, 96:510-514
    21 Van den Bergh WM, Algra A, Van Kooten F, et al. Magnesium sulfate in aneurysmal subarachnoid hemorrhae: a randomized controlled trial. Stroke, 2005, 36:1011-1015
    22 Rinkel GJ, Feigin VL, Algra A, et al. Calcium antagonists for aneurysmal subaachnoid haemorrhage. Cochrane Database Syst Rev, 2005:CD000277
    23 Biondi A, Ricciardi GK, Puybasset L, et al. Intra-arterial nimodipine for the treatment of symptomatic serebral vasospasm after aneurysmal subarachnoid hemorrhage:preliminary results. AJNR. Am J Neuroradiol, 2004. 1067-1076
    24 Song JK, Elliott JP, Eskridge JM. Neuroradiologic diagnosis and treatment of vasospasm. Neuroimaging Clin N Am, 1997, 7:819-835
    25 Zubkov YN, Nikiforov BM, Shustin VA. Ballon catheter technique for dilatation of constricted cerebral arteries after aneurysmal SAH. Acta Neurochir, 1984, 70:65-79
    26 Rosenwasser RH, Armonda RA, Thomas JE, et al. Therapeutic modalities for the management of cerebral vasospasm: timing of endovascular options. Neurosurgery, 1999, 44:975-979
    27 Smith TP, Enterline DS. Endovascular treatment of cerebral vasospasm. J Vasc Interv Radio, 2000, 11:547-559
    28 Fujii Y, Takahashi A, Yoshimoto T. Effect of balloon angioplasty on high grade symptomatic vasospasm after subarachnoid hemorrhage. Neurosurg Rev, 1995, 18:7-13
    29 Kobayashi H, Ide H, Aradachi H, et al. Histological studies of intracranial vessels in primates following gransluminal angioplasty for vasospasm. J. Neurosurg, 1993, 78:481-486
    30 Megyesi JF, Vloorath B, D. A, Cook, et al. Long-term effects of in vivo angioplasty in normal and vasospastic canine carotid arteries: pharmacological and morphological analyses. J Neurosurg, 1999,91:100-108
    31 Bejjani GK, Bank WO, Olan WJ, et al. The efficacy and safety of angioplasty for cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery, 1998,42:979-986
    32 Eskridge JM, McAuliffe W, Song JK, et al. Balloon angioplasty for the treatment of vasospasm: results of first 50 cases. Neurosurgery, 1998, 42:510-516
    33 Firlik AD., Kaufmann AM, Jungreis CA, et al. Effect of transluminal angioplasty on cerebral blood flow int he managemnet of symptomatic vasospasm following aneurysmal subarachnoid hemorrhage. Neurosurg, 1997, 86:830-839
    34 Song JK, Elliott JP, Eskridge JM. Neuroradiologic diagnosis and treatment of vasospasm. Neuroimaging Clin N AM, 1997, 7:819-835
    35 Kinoshita Y, Terada T, Nakamura Y, et al. Endovascular treatment of cerebral vasospasm with intra-arterial papaverine infusion. No Shinkei Geka,1995. 881-887
    36 Numaguchi Y, Zoarshi GH. Intra-arterial papaverine treatment for cerebral vasospasm: our experience and review of the literature. Neurol Med Chir, 1998, 8:189-195
    37 Polin RS, Hansen CA, German P, et al. Intra-arterially administered papaverine for the treatment of symptomatic cerebral vasospasm. Neurosurgery, 1998, 42:1256-1264
    38 Elliott JP, Newell DW, Lam DJ, et al. Comparison of ballon angioplasty and papaverine infusion for th e treatment of vasospasm follow aneurysmal subarachnoid hemorrhage. Neurosurg, 1998, 24:277-284
    39 Dalbasti T, Karabiyiloglu M, Ozdamar N, et al. Efficacy of controlled release papaverine pellets in preventing symptomatic cerebral vasospasm. Neurosurg, 2001, 95:44-50
    40 Adjatia NB, Topcuoglu MA, Pryor JC, et al. Preliminary experience woth intra-arterial nicardiping as a treatment for cerebral vasospasm. A JNR Am J Neuroradiol, 2004, 25:819-826
    41 Carhuapoma JR, Qureshi AL. Intra-arterial papaverine- induced seizures: case report and review of the literature. Surg Neuro, 2001, 56:159-163
    42 CrossIII DT, Moran C, Angtuaco EE, et al. intracranial pressure monitoring during intraarterial papaverine infusion for cerebral vasospasm. AJNR Am J, Neuroradiol, 1998, 19:1319-1322
    43 Numaguchi Y, Zoarski GH, Clouston JE, et al. Repeat intra-arterial papaverine for recurrent cerebral vasospasm after subarachnoidhaemorrhage. Neuroradiology, 1997, 39:751-759
    44 Milburn JM, Moran CJ, CrossIII DT, et al. Increase in diameters of vasospastic intracranial arteries by intra-arterial papaverine administration. J. Neurosurg, 1998, 88:38-42
    45 Babbitt DG., Perry JM, Forman MB. Intracoranary verapamil for reversal of refractory coronary vasospasm during percutaneous transluminal coronary angioplasty. J Am, Coll Cardiol, 1988, 12:1377-1381
    46 Pomerantz RM, Kuntz RE, Diver DJ, et al. Inracoronary verapamil for the treatment of distal microvascular coronary artery spasm following PTCA. Cathet Cardiovasc Diagn, 1991, 24:283-285
    47 Tanjyama Y, Ito H, Iwakura K, et al. Beneficial effect of intracoronary verapamil on microvasular and myocardiol salvage in patients with acute myocardial infarction. J Am Coll Cardilol, 1997,30:493-501
    48 Feng L, Fitzsimmons BF, Young WL, et al. Intraarterially administrered verapamil as adjunct therapy for cerebral vasospasm: satfety and 2-year experience. AJNR Am J Neuroradiol, 2002, 23:1284-1290
    49 Biondi A, Ricciardi GK, , Puybasset L, et al. Intra-arterila nimodipine for the treatment of symptomatic cerebral vasospasm after aneurysmal aubarachnoid hemorrhage: preliminary results. AJNR Am J Neuroradiol, 2004, 25:1067-1076
    50 Murayama Y, Song JK, Uda K, et al. Combined endovascular treatment for both intracranial aneurysm and symptomatic vasospasm. AJNR Am J Neuroradiol, 2003, 15:133-139
    51 Anggard E. Nitric oxide: mediator, Murderer, and medicine. Lancet, 1994, 343:1199-1206
    52 Faraci FM. Role of nitric oxide in regulation fo basilar artery tone in vivo. Am, J Physiol, 1990, 259:1216-1221
    53 Gabikian P, Clatterbuck RE, Eberhart CG, et al. Prevention of experimental cerebral vasospasm by intracranial delivery of a nitric oxide donor from a controlled-release polymer: toxicity and efficacy studies in rabbits and rats. Stroke, 2002, 33:2681-2686
    54 Hino A, Tokuyama Y, Weir B, et al. Changes in endothelial nitric oxide synthase mRNA during vasosapsm after subarachnoid hemorrhage in monkeys. Neurosurgery, 1996, 39:562-567
    55 Pluta RM, Thompson BG, Dawson TM, et al. Loss of nitric oxide synthase immunoreactivity in cerebral vasospasm. Neurosurg, 1996,84: 648-654
    56 Thomas JE, Rosenwasser RH, Armonda RA, et al. Safety of intrathecal sodium nitroprusside for the treatment and prevention fo refractory cerebral vasospasm and ischmia in humans. Stroke, 1999, 30:1409-1416.
    57 Afshar JK, Pluta RM, Boock RJ, et al. Effect of intracarotid nitric oxide on primate cerebral vasospasm after subarachnoid hemorrhage. Neurosurg, 1996,83:118-122
    58 Pradilla G, Thai QA, Legnani FG, et al. Delayed intracranial delivery of a nitric oxide donor from a controlled-release polymer prevents experimental cerebral vasospasm in rabbits. Neurosurgery, 2004, 55: 1393-1399
    59 Egemen N, Turker RK, Sanlidilek U, et al. The effect of intrathecal sodium nitroprusside on severe chronic vasospasm. Neurol Res, 1993, 15: 310-315
    60 Kistler JP, Lees RS, Candia G, et al. Intravenous nitroglycerin in experimental cerebral vasospasm, A preliminary report. Stroke, 1979, 10: 26-29
    61 Asano T.. Oxyhemoglobin as the principal cause of cerebral vasospasm: a holistic view of its actions. Crit Rev Neurosurg, 1999, 9:303-318
    62 Ito Y, Isotani E, Mizuno Y, et al. Effective improvement of the cerebral vasospasm after subarachnoid hemorrhage with low- dose nitroglycerin. J Cardiovasc Pharmaco, 2000, 35:45-50
    63 Paulson OB. Reginal cerebral blood flow in apoplexy due to occlusion of the middle cerebral artery. Neurology, 1970, 20:63-77
    64 Raabe A, Zimmermann M, Setzer M, et al. Effect fo intraventricular sodium nitroprusside on cerebral hemodynamics and oxygenation inpoor-grade aneurysm patients with severe, medically refractory vasospasm. Neurosurgery, 2000, 50:1006-1013
    65 Vajkoczy P, Horn P, Bauhuf C, et al. Effect of intra-arterial papaverine on regional cerebral blood flow in hemodynamically relevant cerebral vasospasm. Stroke, 2001, 32:498-505
    66 Cosby K, Partovi KS, Crawford JH, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. NatMed, 2003, 9:1498-1505
    67 Pluta RM, Dejam A, Grimes G, et al. Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhae. JAMA, 2005, 293:1477-1484
    68 Nilsson T, Cantera L, Adner M, et al. Presence of contractile endothelin A and dilatory endothelin-B receptors in human cerebral arteries. Neurosurgery, 1997, 40:346-351
    69 Kwan AL, Bavbek M, Jeng AY, et al. Prevention and reversal of cerebral vasospasm by an endothelin-converting enzyme inhibitor. J Neurosurg, 1997, 87:281-286
    70 Nirei H, Hamada K, Shoubo M, et al. An endothelin ETA receptor antagonist. Life Sci, 1993, 52:1869-1874
    71 Cirak B, Kiymaz N, Ari HH, et al. The effects of endothelin antagonist BQ-610 on cerebral vasular wall following experimental subarachnoid hemorrhage and cerebral vasospas. Clin Auton Res, 2004, 14:197-201
    72 Clatterbuck RE, Gailloud P, Ogata L, et al. Prevention fo cerebral vasospasm by a humanized anti-CD11/CD18 moniclonal antibody administered after experimental suarachnoid hemorrhage in nonhuman primates. J Neurosurg, 2003, 99:376-382
    73 Mack WJ, Mocco J, Hoh DJ, et al. Outcome prediction with serum intercellular adhesion molecule-1 levels after aneurysmal subarachnoid hemorrhage. J. Neurosurg, 2002, 96:71-75
    74 Mocco J, Choudhri TF, Mack WJ, et al. Elevation of soluble intercellular adhesion molecule-1 levels in symptomatic and asymptomatic carotidatherosclerosis. Neurosurgery, 2001, 48:718-721
    75 Bavbek M, Plin R, Kwan AL, et al. Monoclonal antibodies against ICAM-1 and CD18 attenuate cerebral vasospasm after experimental subarahnoid hemorrhage in rabbits. Stroke, 1998, 29:1930-1935
    76 Pradilla G, Wang PP, Legnani FG, et al. Prevention fo vasospasm by anti-CD11/CD18 monoclonal antibody therapy following subarachnoid hemorrhage in rabbits. J Neurosurg, 2004, 101:88-92
    77 Oshiro EM, Hoffman PA, Dietsch GN, et al. Inhibition fo experimental vasospam with anti-intercellular adhesion molecule-1 monoclonal antibody in rats. Stroke, 1997. 28:2037-2037
    78 Roux S, Breu V, Giller T, et al. Ro 61-1790, a new hydosoluble endothelin antagonist: general pharmacology and effects on experimental cerebral vasospasm. J Pharmacol Exp Ther, 1997, 283:1110-1118
    79 Kapiotis S, Sengoelge G, Sperr WR, et al. Ibuprofen inhibits pyrogen-dependent epression of VCAM-1 and ICAM-1on human endothelial cells. Life Sci, 1996, 58:2167-2181
    80 Nielsen VG, Webster RO. Inhibition of human polymorphonuclear leukocyte functions by ibuprofen. Immunopharmacology, 1987,13:61-71
    81 Frazier JL, Pradilla G, Wang PP, et al. Inhibiton of cerebral vasospasm by intracranial delivery of ibuprofen from a controlled release polymer in a rabbit model of subarachnoid hemorrhage. Neurosurg, 2004, 101:93-98
    82 Manno EM., Gress DR, Ogilvy CS, et al. The safety and efficacy of cyclosporine A in the prevention of vasospasm in patients with Fisher grade 3 subarachnoid hemorrhages: a pilot sudy. Neurosurgery, 1997, 40: 289-293
    83 Chyatte D, Fode NC, Nichols DA, et al. Preliminary report: effects of high dose methylprednisolone on delayed cerebral ischemia in patients at high risk for vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery, 1987, 21:157-160
    84 Adams HP, Brott TG, Crowell RM, et al. Guidelines for the management of patients with acute ischemic stroke, A statement of healthcareprofessionals from a special writing group of the Stroke Council. Stroke, 1994, 25:1901-1914
    85 Yanamoto H, Kikuchi H, Sato M, et al. Therapeutic trial of cerebral vasospasm with the serine protease inhibitor, FUT-175, administered in the acute stage after subarachnoid hemorrhage. Neurosurgery, 1992, 30: 358-363
    86 Dandy W. An operative procedure for hydocephalus. Johns Hopkins Hosp Bull, 1922, 22:189
    87 Andaluz N, Zuccarello M. Fenestration fo the lamina terminalis as a valuable adjunct in aneurysm surgery. Neurosurgery, 2004. 11:1050 -1059
    88 Macdonald RL. Pathophysiology and molecular genetics of vasospasm. Acta Neurochir Suppl, 2001, 77:7-11
    89 Weir B, Macdonal RL, Stoodley M. Etiology of cerebral vasospasm. Acta Neurochir Suppl, 1999, 72:27-46
    90 Klimo P, Kestle JR, MacDonald JD, et al. Marked reduction of cerebral vasospasm with lumbar drainage of cerebrospinal fluid after subarachnoid hemorrhage. Neurosurg, 2004, 10:215-224
    91 SuZuki, Shimizu H, Takahasi H. Head shaking mathod in cisternal irrigation for prevention of vasospasm. Surg Cereb Stroke, 1991, 19:295 -300
    92 Kawamoto S, Tsutsumi K, Yoshikawa G, et al. Effectiveness of the head-shaking method combined with cisternal irrigation with urokinase in subarachnoid hemorrhage. Neurosurg, 2004, 100:236-243
    93 Edwards DH, Byrne JV, Griffith TM. The effect of chronic subarachnoid hemorrhage on basal endothelium-derived relaxing factor activity in intrathecal cerebral arteries. J. Neurosurg, 1992, 76:830-837
    94 Sakowitz OW, Wolfrum S, Sarrafzadeh AS, et al. Relation of cerebral energy metabolism and extracellualr nitrite and intrate concentrations in patients after aneurysmal subarachnoid hemorrhage. Cereb Blood Flow Metab, 2001, 21:1067-1076
    95 Laufs U, Fata VL, Liao J. K. Inhibiton of 3-hydoxy-3- methyglutaryl (HMG-CoA) reductase blocks hypoxia-mediated down regulation of endothelial nitric oide synthase. J Biol Chem, 1997, 272:31725-31729
    96 Drscoll GO, Green D, Taylor RR. Simvastatin, an HMG-coenzyme A reductase inhibitor, improves endothelial function within 1 moth. Circulation, 1997, 95:1126-1131
    97 McGirt MJ, Lynch JR, Parra A, et al. Simvastatin increases endothelial nitric oxide synthase and ameliorates cerebral vasospasm resulting from subarachnoid hemorrhae. Stroke, 2002, 33:2950-2955
    98 Parra A, Kreiter KT, Williams S, et al. Effect of prior statin use on functional outcome and delayed vasospasm after acute aneurysmal subarachnoid hemorrhage: a matched controlled cohort study. Neurosurgery, 2005, 56:323-328
    99 Zuccarello M, Marsch JT, Schmitt G, et al. Effect of the 21-aminosteriod U-74006F on cerebral vasospasm following subarachnoid hemorrhage. J. Neurosurg, 1989,71:98-104
    100 Haley EC, Kassell NF, Alves WM. et al. Phase II trial of tirilazad in aneurysmal subarachnoid hemorrhage. J Neurosurg, 1995, 82:786-790
    101 Haley EC, Kassell NF, AppersonHansen C, et al. A randomized, double-blind, vehicle-controlled trial of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhae: a cooperative study in North America. J. Neurosurg, 1997, 86:467-474
    102 Asano T, Takakura K, Sano K, et al. Effects of hydorxyl radical scavenger on delayed ischemic neurological deficits following aneurysmal subarachnoid hemorrhage: results of a muticenter, placebo-controlled double-blind trial. J Neurosurg, 1996, 84:792-803
    103 Marshall JW, Cummings RM, Bowes LJ, et al. Functional and histological evidence for the protective effect of NXY-059 in a primate model of stroke when given 4 hours after occlusion. Stroke, 2003, 34: 2228-2233
    104 Marshall JW, Duffin KJ, Green AR, et al. NXY-059, a freeradical-trapping agent, substatially lessens the functional disability resultingg from cerebral ischemia in a primate species. Stroke, 2001, 32: 190-198
    105 Marshall JW, Green AR, Ridley RM. Comparison fo the neuroprotective effect of clomethiazole, AR-R 15896AR and NXY-059 in a primate model of stroke using histological and behavioursal measures. Brain Res, 2003, 972:119-126
    106 Marshall JW, Ridley RM. Assessment of cognitive and motor deficits in a marmoset model of stroke. Stroke, 2003, 44:153-160
    107 Lees KR, Barer D, Ford GA, et al. Tolerability of NXY-059 at higher target concentrations in patients with acute stroke. Stroke, 2003, 34: 482-487
    108 Lees KR, Sharma AK, Barer D, et al. Tolerability and pharmacokinetics of the nitrone NXY-059 in patients with acute stroke. Stroke, 2001, 32: 675-680

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700