喷灌喷头(全射流喷头)性能特征及水滴漂移运动机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究由“国家高技术研究发展计划”(863计划,项目编号:2011AA100506)及“国家农业科技成果转化资金”(2011GB2C100015)资助。喷灌作为适应性较强的灌溉方式之一,应用广范,甚至能应用于地面灌溉不太适宜的场合。因此,包括中国在内的多个国家都致力于喷灌技术的发展。全射流喷头是中国人发明的一种新型旋转式喷头,具有结构简单、能耗低、成本低的优点。虽然已展开了一些理论分析、数值模拟和室内试验研究,有助于从结构和水力性能方面改善全射流喷头,然而,对全射流喷头在田间受风影响时的性能评估研究较为缺乏。因此,本文主要考虑全射流喷头田间有风时的工作情况,研究全射流喷头多指标和影响因素下的性能特征,目的在于提高其工作性能,给出改进途径和方法。
     论文第一部分是针对不同工作压力下(200、250、300、350kPa)全射流喷头及摇臂式喷头的水力性能进行测试及对比分析,研究喷头旋转一周四个象限内喷头转速对喷灌强度的影响。结果表明:各象限间喷头旋转时间稍有不同,且趋势不一。各象限的喷头旋转时间偏差(标准差)越大,喷灌强度越低。对四条甚至更多的射线上的水量分布进行平均,且每个象限内至少有一条射线包括在内,得到的喷头水量分布比只考虑其中一条射线上水量分布更准确,组合喷灌均匀性比非组合喷灌均匀性更高。喷头同一组合方式下组合喷灌强度也会稍有差异。适宜的喷头间距是减小喷头转速的非均匀性对喷灌强度及水量分布影响的重要因素。
     论文第二部分,采用MATLAB软件建立了以均匀性为目标的喷头间距计算模型。该方法将单喷头试验得到的水量分布数据作为一个多维向量。为计算方便,在行、列两个方向上对水量未喷洒到的区域以零向量补充,从而对原始数据进行修正。不同喷头间距下的组合喷灌水量分布通过将原始数据与组合时对应区域的水量分布叠加得到。该计算模型可以得出方形、矩形、三角形布置时的喷头水量分布。四个组合喷头的均匀性由室外低风速、相同工作压力下单喷头的水量分布数据换算得到,误差仅为1.60%。该模型可以对单喷头水量喷洒图形、组合喷灌三维水量分布图、喷灌强度等进行估计,以便于喷头的选择及为布置方式或运行条件的改善提供建议。该模型可以作为喷头布置方式的决策模型,以保证最优的喷头间距及布置方式,从而使喷灌均匀性较高。
     第三部分主要研究在受风速影响下的全射流喷头,包括单喷头和固定式模式两种。通过捕捉确定水的应用率可以通过在不同风速条件和运行压力的实验来实现。通过对量雨筒内水量的测量来计算均匀系数。应用Excel和MATLAB进行方差分析、统计检验、回归、相关分析来分别统计分析、数据插值和3D显示。结果表明,当风速超过2.3m/s时喷灌强度达到峰值。随着风速的增加,湿润面积显著减少,当风速小于3.5m/s时,其范围在1.8%到25%。在强风条件下,减小喷头间距不能提高喷洒均匀性。在间距为16x18且顺行风速大于3.5m/s时,CU值的范围低于58.8%。当风速小于1.5m/s,间距为16x16时,CU值高达89%。灌溉时风速小于3.5m/s时,一般采用平均均匀性系数值。
     在第四部分研究中,应用了一个模型来定量描述飞行水滴动态风漂移。修正后的指数模型用来模拟水滴大小分布。该研究还提出了一个计算水滴漂流总量的公式。这个公式基于这样一个假设:超出水滴特征湿润半径的水滴飞行被认为是通过风速影响下喷头的漂移损失。灵敏度分析表明,水滴的漂移对液滴尺寸最敏感,其次是水滴的初始速度及风速,对喷嘴高度的敏感性最小。比起大水滴,小直径水滴漂移很大,但在大多数情况下不会损失于风漂移。风速方向对范围缩短及风漂移的影响通过模拟顺风和逆风两种状况来描述。我们发现顺风时润湿半径增加,但逆风时减少的比例很小。值得注意的是,与直径为0.5至4.5mm之间的水滴相比,直径在0.05至0.2mmm之间的水滴大部分产生了漂移。例如:当工作压力为300kPa,风速为2.5m/s时的条件下,水滴直径在0.5至3.94mm之间的水滴并没有导致风漂移损失,尽管它们产生了漂移。只有水滴直径为4.45mm,占水滴总数的0.92%,和水滴直径小于0.2mm,占水滴总数小于3%的的水滴漂移超出它们的特征距离,因此被认为是由于风漂移损失了。其余的水滴主要使水量分布形状产生变形。
     本文的主要创新点如下:采用覆盖面积减少百分比的概念,分析了风速风向对水量分布变化的影响。在一条射线射程的末端横截面上,建立了水滴漂移模型公式,该模型可准确地模拟喷头的间距、布置方式和水滴的飞行距离。
This research was supported by the Program for National Hi-tech Research and Development (863program, No.2011AA100506) and Program No.2011GB2C100015of China. Sprinkler irrigation stands out as one of the most versatile methods of irrigation that has enhanced the expansion of irrigation even onto lands categorized as unsuitable for surface irrigation. Several countries, including China, are investing into the development of sprinkler irrigation systems. The complete fluidic sprinkler is a relatively new type of rotating sprinkler head invented in China. It has the prospects of being easy to construct, low-loss of energy and low price. Several theoretical, numerical and indoor studies have been conducted which have helped to improve upon the structural and hydraulic performance of the fluidic sprinkler. However, the assessment of the fluidic sprinkler's performance on the field under the influence of wind is limited. This study therefore sought to investigate the performance of the fluidic sprinkler on the field, under windy conditions with the goal to give recommendations for improving upon its operational performance. The performance characteristics of the fluidic sprinkler under some performance indicators and factors form the major focus of this research.
     In the first study, indoor catch-can experiments were performed at varied operating pressures (200,250,300and350kPa) using the fluidic sprinkler and the well-known impact sprinkler (for the purpose of comparative analysis). The goal was to investigate the extent and effect of variation in sprinkler rotation speed on water application intensity in the four quadrants of rotation. The results showed slight variation in rotation time from quadrant to quadrant, albeit, not in constant trend through the quadrants. An inverse relationship between water application intensity and relative standard deviation in rotation time was observed. Among others, the results also showed that averaging four or more radial water distribution profiles, with at least one profile from each of the four quadrants, gives a better approximation of the real situation than using only one radial leg to characterize the distribution pattern for the fluidic sprinkler and for that matter most sprinkler. Overlapped quadrants improved coefficient of uniformity over non-overlapped quadrants. However, slight differences between CU values of overlapped adjacent quadrants were observed for the same configuration of the sprinkler. Proper sprinkler spacing is highly essential to minimize the effect of rotation speed variation on water application.
     In the second study, a computational model for simulation of sprinkler spacing for optimum uniformity was formulated using MATLAB (Matrix Laboratory). The approach used considers the observation pattern from a single leg sprinkler system as a multidimensional array. Necessary zero arrays are inserted in rows and columns where no water was applied. This leads to a modified array of data which contains the original data set. Overlapped pattern elements are computed by adding corresponding elements of the same or different distribution pattern for desirable sprinkler spacing. The computational model extends application to square, rectangular and triangular layouts of sprinklers. Coefficients of uniformity of four overlapped sprinklers using12different sprinkler spacing's, simulated by the model were compared with that from measured field data under low wind conditions and same operating conditions. They gave a mean absolute error of1.60%. The model is capable of estimating sprinkler pattern profiles,3D plots of water distribution patterns and sprinkler irrigation performance indices for sprinkler selection and evaluation for improvement. The computational model can serve as a decision support model for sprinkler irrigation layout design to ascertain optimum spacing and layout type for uniform water distribution pattern.
     The third study focused on the field performance characteristics of the fluidic sprinkler under the influence of wind in both single sprinkler and solid set modes. Water application rates determined through catch-can experiments under different wind speed conditions and operating pressures for both set ups concurrently by means of graduated measuring cylinders were used to calculate the coefficient of uniformity. Statistical analysis, data interpolation and representation in3-D were performed using the ANOVA statistical test, regression, correlation analysis tools in Excel and MATLAB, respectively. Results showed that water application intensities peaked as wind speed exceeded2.3m/s. Wetted surface area reduced significantly with increasing wind speed, ranging from1.8%to25%for wind speeds less than3.5m/s. Under high wind conditions, decreasing sprinkler spacing could not significantly improve uniformity. The CU values ranged from as low as58.8%for the16x18spacing under prevailing wind conditions of above3.5m/s to as high as89%for the 16x16spacing under prevailing wind condition of less than1.5m/s, respectively. The average coefficient of uniformity values for the irrigation events under wind speed less than3.5m/s were, however, encouraging.
     In the fourth study, a model to quantify and describe the dynamics of wind drift of in-flight droplets was investigated. The modified exponential model for droplet size distribution was used during the simulation. A formulation for calculating the total volume of water drifted in the droplet distribution is reported. The formulation is based on the hypothesis that droplets which travel beyond their characteristic wetted radius are lost to wind drift for a sprinkler under the influence of wind. The sensitivity analysis performed showed that droplet drift was most sensitive to droplet size, followed by initial velocity of projected droplets, wind speed and least sensitive to nozzle height. Smaller diameter droplets drifted greatly, but were in most cases not lost to wind drift compared to the larger droplets. Both down and upwind conditions were simulated to describe the effect of wind direction on range shortening and wind drift. We found out that droplet travel distance increased downwind, but in lesser proportions compared to upwind decrease. It is worthy of note that droplets of smaller diameter (0.05to0.2mm) were extensively drifted compared to the larger droplets (0.5to4.5mm). For example, when the condition was300kPa and2.5m/s, droplets sizes between0.5mm and3.94mm did not travel beyond the characteristic wetted radius even though they were drifted. Only droplets of diameter4.45mm, representing a frequency of0.92%and droplets of diameter less than0.2mm representing a frequency of less than3%of the total number of droplets traveled beyond the wetted radius. The remaining droplets have a higher probability of contributing to distortion of the distribution pattern.
     Among other things, the main innovations in this dissertation are as followings:Analysis of the wind distortion of the distribution pattern due to wind drift using the percentage coverage area reduction concept. Formulation of the percentage droplet volume drifted beyond the wetted radius for the single leg radial transects. The development of formula and codes for the simulation of sprinkler spacing, layout and droplet travel distance.
引文
[1]Abo-Ghobar H M (1994). Effect of riser height and nozzle size on evaporation and drift losses under arid conditions. Journal of King Saud University. Vol.6, Agric. Sci. (2):191-202.
    [2]Addink J W; Keller J; Pair C H; et al. (1980). Design and operation of sprinkler systems. Design and Operation of Farm Irrigation Systems. Chapter 8:621-660.
    [3]Ascough G W; Kiker G A (2002). The effect of irrigation uniformity on irrigation water requirements. Water SA Vol.28(2):235-242.
    [4]Bahceci t; Aydin S (2008). Determination of some performance parameters in set move sprinkler irrigation systems in Kiziltepe Plain of Mardin. Journal of the Faculty of Agriculture of Harran University,32:435-449.
    [5]Barbosa Filho M P; Silva O D (1994). Agro-economic aspects of liming and fertilization of sprinkler irrigated rice and bean crop. Pesquisa Agropecuaria Brasileira,42:491-499.
    [6]Beale J G; Howell D T (1966). Relationship between sprinkler uniformity measures. Journal of Irrigation and Drainage Engineering-ASCE,92:41-48.
    [7]Benami A; Hore F R (1964). A new irrigation sprinkler distribution coefficient. Transaction of ASCE, 7:157-158.
    [8]Branscheid V O; Hart W E (1968). Predicting field distributions of sprinkler systems. Transactions of the American Society of Agricultural Engineers. Vol.11 (6) 801-803,808.
    [9]Bruinsma J (2003). World agriculture:towards 2015/2030; An FAO perspective:Earth scan.
    [10]Carrion P; Tarjuelo J M; Montero J (2001). SIRIAS:a simulation model for sprinkler irrigation. Irrigation Science,20:73-84.
    [11]Christiansen J E (1942). Irrigation by sprinkling. California Agriculture Experiment Station Bulletin, No. 670.
    [12]DeBoer D W; Monnens M J; Kincaid D C (2000). Rotating-plate sprinkler spacing on continuous-move irrigation laterals. National irrigation symposium. Proceedings of the 4th Decennial Symposium, Phoenix, Arizona, USA..115-122.
    [13]Dechmi F; Playa'n E; Cavero J; et al. (2004a). A coupled crop and solid set sprinkler simulation model:I. Model development. J. Irrig. Drain. Eng, ASCE 130 (6),499-510.
    [14]Dechmi F; Playa'n E; Cavero J; et al. (2004b). A coupled crop and solid set sprinkler simulation model: II. Model application. J. Irrig. Drain. Eng., ASCE 130 (6),511-519.
    [15]Dechmi F; Playan E; Faci J M; et al. (2003a). Analysis of an irrigation district in northeastern Spain:I: Characterization and water use assessment. Agric. Water Manage.61, pp.75-92.
    [16]Dechmi F; Playan E; Faci J M; et al. (2003b). Analysis of an irrigation district in northeastern Spain:II. Irrigation evaluation, simulation and scheduling. Agricultural Water Management,61 (2),93-109.
    [17]Dukes M D; Bjorneberg D L; Klocke N L (2012). Advances in irrigation:select works from 2010 Decennial Irrigation Symposium. Transactions of the ASABE,55 (2),477-482.
    [18]ERS (1997). Economic Research Service. Agricultural resources and environmental indicators,1996-1997. Agric. Handb.712. USDA-ERS, Washington, DC.
    [19]Fukui Y; Nakanishi K.; Okamura S (1980). Computer evaluation of sprinkler irrigation uniformity. Irrigation Science,2 (1),23-32.
    [20]Gilley J R; Watts D G (1977). Possible energy saving in irrigation. Journal of Irrigation and Drainage Division of ASCE 103 (IR4):445-455.
    [21]Hathoot H M; Abo-Ghobar H M; Al-Amoud A I; et al., (1994). Analysis and design of sprinkler irrigation laterals. Journal of Irrigation and Drainage Engineering,120 (3),534-549.
    [22]Heermann D F; Hein P R (1968). Performance characteristics of self propelled center-pivot sprinkler irrigation system. Transactions of the ASAE,11,11-15.
    [23]Hills D J; Gun Y (1989). Sprinkler volume droplet diameter as a function of pressure. Transactions of the ASAE, volume 32:471-476.
    [24]Honson B R; Schulbach H; Meyer J L (1983). Evaluating low pressure systems. California Agriculture 37:10-12.
    [25]Howell T A (2001). Enhancing water use efficiency in irrigated agriculture. Agronomy Journal,93 (2), 281-289.
    [26]Karmeli D (1978). Estimating sprinkler distribution pattern using linear regression. Transaction of ASAE: 682-686.
    [27]Kincaid D C (1996). Spray drop kinetic energy from irrigation sprinklers. Trans ASAE 39 (3):847-853.
    [28]Kyei-Baffour N; Ofori E (2006). Irrigation development and management in Ghana:prospects and challenges. Journal of Science and Technology (Ghana) 26 (2):pp.148-159.
    [29]Li Hong (2007). Theoretical and Experimental Study on the Fluidic Sprinkler Controlled by Clearance. Doctoral Dissertation. Jiangsu University, China.
    [30]Li Jiusheng (2000). Sprinkler Irrigation Hydraulic Performance and Crop yield. China Agricultural Scientech Press. ISBN 7-80119-888-3. Chapter 1:pp.148-159.
    [31]Lorenzini G; De Wrachien, D. (2005). Performance assessment of sprinkler irrigation systems:a new indicator for spray evaporation losses. Irrigation and Drainage,54 (3),295-305.
    [32]Mohammed D; Kohl R A (1986). Infiltration response to kinetic energy. Transactions of the ASABE.30 (1):0108-0111.
    [33]Namara R E; Horowitz L; Nyamadi B et al. (2011). Irrigation development in Ghana:Past experiences, emerging opportunities, and future directions. Water International,38(6):827-839.
    [34]Rao P S (1993). Review of selected literature on indicators of irrigation performance. IIMS research paper, Colombo, Sri Lanka.
    [35]Smith R J; Gillies M H; Newell G; et al. (2008). A decision support model for travelling gun irrigation machines. Biosystems Engineering 100:126-136.
    [36]Stillmunks R T; James L G (1982). Impact energy of water droplets from irrigation sprinklers. Transactions of the ASAE, vol.25, pp.130-133.
    [37]Thompson A L; Martin D L; Norman J M; et al. (1997). Testing of a water loss distribution model for moving sprinkler systems. Transactions of ASAE.40(1):81-88.
    [38]Thooyamani K P; Norum D I; Dubetz S (1984). Spray patterns shape and application rate patterns under low pressure sprinklers. ASAE paper No.84-2588. St Joseph, Mich.:ASAE.
    [39]USDA-NASS (2012). Farm and ranch irrigation survey. Washington, D.C.:USDA National Agricultural Statistics Service. Available at:www.agcensus.usda.gov. Accessed 11, January 2012.
    [40]Wilcox J C; Swailes G E (1947). Uniformity of water distribution by some under tree orchard sprinklers. Sci Agric 127:565-583.
    [41]Xing Qingjiang (2008). Study on hydraulic characteristics of Coanda effect in fluidic sprinkler. Doctoral Dissertation. Jiangsu University, China.
    [42]Yuan S; Zhu X; Li H; Ren Z (2006). Effect of complete fluidic sprinkler on the hydraulic characteristics based on some important geometrical parameters. Trans CSAE 22(10):113-116.
    [43]Zhu X; Yuan S; Li H; Liu J (2009). Orthogonal tests and precipitation estimates for the outside signal fluidic sprinkler. Irrigation and Drainage Systems 23(4),163-172.
    [44]Zhu X; Yuan S; Liu J (2012). Effect of sprinkler head geometrical parameters on hydraulic performance of fluidic sprinkler. Journal of Irrigation and Drainage Engineering,138 (11),1019-1026.
    [45]Zhu Xingye (2009). Theory and Precise Sprinkling Irrigation for the Complete Fluidic Sprinkler. Doctoral Dissertation. Jiangsu University, China.
    [1]Abo-Ghobar H M; Al-Amoud A I (1993). Center pivot water application uniformity relative to travel speed and direction. Alex. J. Agric.38 (1):1-18.
    [2]Abo-Ghobar, H. M. (1994). Effect of riser height and nozzle size on evaporation and drift losses under arid conditions. Journal of King Saud University.Vol.6, Agric. Sci. (2):191-202.
    [3]Addink J W; Keller J; Pair C H; et al. (1980). Design and operation of sprinkler systems. Design and Operation of Farm Irrigation Systems.621-660.
    [4]Al-Ghobari H M (2006). Effect of maintenance on the performance of sprinkler irrigation systems and irrigation water conservation. Food Science & Agricultural Research Center, Research Bulletin,141:1-6
    [5]ASAE (1985). American Society of Agricultural Engineers. Procedure for sprinkler testing and performance reporting. In:ASAE Standards. ASAE, St. Joseph, MI
    [6]ASAE (2001). American Society of Agricultural Engineers. Test procedure for determining the uniformity of water distribution of center pivot and lateral move irrigation machines equipped with spray or sprinkler nozzles. ASAE Standards, ANSI/ASAE S436.1 MAR01
    [7]Ascough GW; GA Kiker (2002).The effect of irrigation uniformity on irrigation water requirements. Water SA Vol.28(2):235-242
    [8]Bahceci, I.; Aydin, S. (2008). Determination of some performance parameters in set move sprinkler irrigation systems in Kiziltepe Plain of Mardin. Journal of the Faculty of Agriculture of Harran University,12.
    [9]Barbosa Filho, M. P., Silva, O. D. (1994). Agro-economic aspects of liming and fertilization of sprinkler irrigated rice and bean crop. Pesquisa Agropecuaria Brasileira,29.
    [10]Beale J G; Howell D T (1966). Relationship among sprinkler uniformity measures. Journal of Irrigation and Drainage Engineering-ASCE,92:41-48
    [11]Benami A; Hore F R (1964). A new irrigation sprinkler distribution coefficient. Transaction of ASCE, 7:157-158
    [12]Bezdek J C; Solomon K H (1983). Upper limit lognormal distribution for drop size data. J. Irrig.& Drain. Div. ASCE 109 (1):72-88
    [13]Branscheid V O; Hart W E (1968). Predicting field distributions of sprinkler systems. Transactions of the ASABE.11 (6):0801-0803.
    [14]Brennan D (2008). Factors affecting the economic benefits of sprinkler uniformity and their implications for irrigation water use. Irrigation Science,26 (2),109-119.
    [15]Brito R A J; Willardson L S (1982). Sprinkler irrigation uniformity requirements for the elimination of leaching. Transactions of the ASAE,25,1258-1261
    [16]Bruinsma, J. (2003). World agriculture:towards 2015/2030; An FAO perspective:Earth scan.
    [17]Chawla J K; Narda N K (1995). Sprinkler pattern parameters as influenced by climatic and operating conditions. J. Res. Punjab Agric. Univ.,32:426-438
    [18]Chen D; Wallander W W (1985). Droplet sized distribution and water application with low-pressure sprinklers. Transactions of the ASAE, volume 28:511-516
    [19]Chi Daochi (2010). Irrigation and Drainage. Chapter 3 Irrigation Techniques.41-65. ISBN 978-7-5084-7279-9
    [20]Christiansen J E (1942). Irrigation by Sprinkling. California Agriculture Experiment Station Bulletin, No. 670.
    [21]Clark R. N; Finley W W (1975). Sprinkler evaporation losses in the Southern Plains. ASAE Paper No. 75-2573,5p, St Joseph, MI
    [22]Criddle W D; Davis S; Pair C H; et al., (1956). Methods of evaluating irrigation systems. Agriculture Handbook No.82, Soil Conservation Service, USDA, Washington, D. C.
    [23]DeBoer, D. W., Monnens, M. J., Kincaid, D. C. (2000). Rotating-plate sprinkler spacing on continuous- move irrigation laterals. National irrigation symposium. Proceedings of the 4th Decennial Symposium, USA 115-122.
    [24]Dechmi F; Playa'n E; Cavero J; et al., (2004a). A coupled crop and solid set sprinkler simulation model: I. Model development. J. Irrig. Drain. Eng, ASCE 130 (6),499-510.
    [25]Dechmi F; Playa'n E; Cavero J; et al., (2004b). A coupled crop and solid set sprinkler simulation model: II. Model application. J. Irrig. Drain. Eng., ASCE 130 (6),511-519.
    [26]Dogan E; Kirnak H; Dogan Z (2008). Effect of varying the distance of collectors below a sprinkler head and travel speed on measurements of mean water depth and uniformity for a linear move irrigation sprinkler system. Biosystems Engineering,99(2),190-195.
    [27]Edling R J; Chowdhury P K (1984). Kinetic energy evaporation and wind drift of droplets from low pressure irrigation nozzles, ASAE paper No.842084.
    [28]Eigel J D; Moore I D (1983). A simplified technique for measuring raindrop size and distribution. Transactions of the ASAE, Volume 26:1790-1804.
    [29]Evans R; Han G S; Kroeger M W (1995). Spatial distribution and uniformity evaluations for chemigation with center pivots. Transactions of the ASAE,38(1),85-92.
    [30]Faci J; Bercero A (1989). Measurement of sprinkler irrigation uniformity under different working pressure, and conditions and by different systems. Invest. Agr. Prod. Prot. Veg.4:1-1.
    [31]FAO Corporate Document Repository (1988). Irrigation Water Management:Irrigation methods. Chapter 5. Sprinkler Irrigation. Job Number:S8684; ISSN:1020-4261 Source: http://www.fao.org/docrep/s8684e/s8684e06.htm.
    [32]Friso D; Bortolini L (2010). Calculation of sprinkler droplet-size spectrum from water distribution radial curve. Int. J. Energy Technol,24,1-11.
    [33]Fukui Y; Nakanishi K.; Okamura S (1980). Computer evaluation of sprinkler irrigation uniformity. Irrigation Science,2 (1),23-32.
    [34]Gilley J R; Watts D G (1977). Possible energy saving in irrigation. Journal of irrigation and drainage Division of ASCE 103 (IR4):445-455
    [35]Giulio Lorenzini; Daniele de Wrachien (2005) Performance assessment of sprinkler irrigation systems:A new indicator for spray evaporation losses. Irrig. and Drain.54:295-305
    [36]Goering C E; Smith D B (1978). Equations for droplet size distributions in sprays. Transactions of the ASAE,21.
    [37]Guy O W (1959). Sprinkler irrigation. Chapter 6:Sprinkler Patterns, Spacing and Selection pp:162-182
    [38]Han W T; Fen H; Wu P T; et al., (2007). Evaluation of sprinkler irrigation uniformity by double interpolation using cubic splines. Effective Utilization of Agricultural Soil & Water Resources and Protection of Environment,250-255.
    [39]Hart W E; Reynolds W N (1965). Analytical design of sprinkler systems. Transactions of the American Society of Agricultural Engineers 8(1):83-85,89
    [40]Hathoot, H. M., Abo-Ghobar H. M., Al-Amoud, et al., (1994). Analysis and design of sprinkler irrigation laterals. Journal of irrigation and drainage engineering,120(3),534-549.
    [41]Heermann D F; Hein P R (1968). Performance characteristics of self propelled center-pivot sprinkler irrigation system. Transactions of the ASAE,11,11-15
    [42]Heermann D F; Stahl K M (2006). CPED:Center Pivot Evaluation and Design. Available at: www.ars.usda.gov/Services/docs.htm?docid=8118.
    [43]HGIC (2008). Landscape Irrigation Equipment Part 1:Sprinklers & Spray Heads-HGIC @ Clemson University. Hgic.clemson.edu. Retrieved 2008-12-28
    [44]Hills D J; Gun Y (1989). Sprinkler volume droplet diameter as a function of pressure. Transactions of the ASAE, volume 32:471-476
    [45]Hussein M Abo-Ghobar (1994). The effect of riser height and nozzle size on evaporation and drift losses under arid conditions. J. King Saud Univ., Agric. Sci. (2), Vol.6. pp.191-202
    [46]Jensen, M. E. (1980). Design and operation of farm irrigation systems. Monograph Series-American Society of Agricultural Engineers (USA), (3).
    [47]Kara T; Ekrnekci E; Apan M (2008). Determining the uniformity coefficient and water distribution characteristics of some sprinklers. Pak. J. Biol. Sci.,11:214-219
    [48]Karmeli D (1978). Estimating sprinkler distribution pattern using linear regression. Transaction of ASAE: 682-686
    [49]Kay M (1988). Sprinkler Irrigation Equipment and Practice, p 120, B. T. Batsford Limited, London.
    [50]Keller J; Bliesner R D (1990). Sprinkle and Trickle Irrigation New York, N.Y.:Van Nostrand Reinhold
    [51]Kincaid D C (1982). Sprinkler pattern radius. Transaction of the ASAE,25(6),1668-1672.
    [52]Kincaid D C (1996). Spray drop kinetic energy from irrigation sprinklers. Trans ASAE 39(3):847-853
    [53]Kincaid D C; Solomon K H; Oliphant J C (1996). Drop size distributions for irrigation sprinklers. Trains. ASAE 39 (3):839-845
    [54]King B A; Winward T W; Bjorneberg D L (2010). Laser precipitation monitor for measurement of drop size and velocity of moving spray-plate sprinklers. Applied Engineering in Agriculture 26(2):263-271.
    [55]Kohl R A (1974). Drop size distribution from medium-sized agricultural sprinklers. Transactions of the ASAE, Volume 17:690-693
    [56]Kohl R A.; von Bernuth R D; Heubner G (1985). Drop size distribution measurement problems using a laser unit. Transaction of the ASAE, Vol.28, PP.190-192
    [57]Kohl R A; DeBoer D W (1983). Drop size distributions for a low pressure spray type agricultural sprinkler. ASAE Paper 83-2019, St. Joseph, MI
    [58]Kohl, R.A., R. D. von Bernuth, and G. Heubner. (1985). Drop size distribution measurement problems using a laser unit. Trans ASAE 28 (1):190-192.
    [59]Lander John David (2001). Glendora California. Charleston, SC:Arcadia Publishing. pp.62-64. ISBN 978-0-7385-0826-9.
    [60]Larson D L; Fangmeier D D (1978). Energy in irrigated crop production. Transactions of the ASAE,21 (6),1075-1080.
    [61]Li Hong (2007). Theoretical and Experimental Study on the Fluidic Sprinkler Controlled by Clearance. Doctoral Dissertation. Jiangsu University, China
    [62]Li J; Kawano H (1998). Sprinkler performance as affected by the nozzle inner contraction angle. Irrigation Science,18 (2),63-66.
    [63]Li J; Kawano H; Yu K (1994). Droplet size distribution from the different shaped sprinkler nozzle. Transactions of the ASAE, volume 37:1871-1878
    [64]Li Jiusheng (2000). Sprinkler Irrigation Hydraulic Performance and Crop yield. China Agricultural Scientech Press. ISBN 7-80119-888-3. Chapter 1:pp.148-159.
    [65]Lorenzini G; De Wrachien, D. (2005). Performance assessment of sprinkler irrigation systems:a new indicator for spray evaporation losses. Irrigation and drainage,54 (3),295-305.
    [66]Marek T H; Schneider A D; Baker S M; Popham T W (1985). Accuracy of three sprinkler collectors. Transactions of the ASAE-American Society of Agricultural Engineers,28 (4),1191-1195.
    [67]Maroufpoor E; Faryabi A; Ghamarnia H; Moshrefi G Y (2010). Evaluation of uniformity coefficients for sprinkler irrigation systems under different field conditions in Kurdistan Province (northwest of Iran). Soil and Water Research,5 (4),139-145.
    [68]Mateos L (1998). Assessing whole field uniformity of stationary sprinkler irrigation systems. Irrigation Sci.18:73-81
    [69]Merriam J L; Keller J (1978). Farm irrigation system evaluation. A guide for management. Utah State University, Logan
    [70]Mohammed D; Kohl R A (1986). Infiltration response to kinetic energy. American Society of Agricultural Engineers. Microfiche collection.
    [71]Molle B (2002). Characterizing droplet distribution of an irrigation sprinkler water application. In Food production, poverty alleviation and environmental challenges as influenced by limited water resources and population growth. Volume 1A.18th International Congress on Irrigation and Drainage, Montreal, Canada,2002.1-19.
    [72]Montero J; Tarjuelo J M; Carrion P (2001). SIRIAS:a simulation model for sprinkler irrigation. II. Calibration and validation of the model. Irrig. Sci.,20,85-98
    [73]Mugele R A; Evans H D (1951). Droplet size distribution in sprays. Industrial & Engineering Chemistry,43 (6),1317-1324.
    [74]Nir D; Fangmeier D D; Flug M (1980). Very-low-pressure center-pivot irrigation. ASAE Paper, (80-2556).
    [75]Pair CH (1968) Water distribution under sprinkler irrigation. Trans ASAE 11:314-315
    [76]Rain Bird Spring 2001:Sprinkler Spacing and Design. Newsletter.
    [77]Rao P S (1993). Review of selected literature on indicators of irrigation performance. IIMS research paper, Colombo, Sri Lanka.
    [78]Reaction Drive SprinklersUS4498626. http://www.google.com/patents/US4498626
    [79]Seginer I; Kantz D; Nir D; Bernuth R V (1992). Indoor measurement of single-radius sprinkler patterns. Transactions of the ASAE,35.
    [80]Seginer I; Konstrinsky M (1975). Wind, sprinkler patterns and system design. Journal of Irrigation and Drainage Division ASCE,101 (IR4),251-264
    [81]Seginer I; Nir D; Bernuth R V (1991). Simulation of wind-distorted sprinkler patterns. Journal of Irrigation and Drainage Engineering,117 (2),285-306.
    [82]Seginer Ido; Kantz D; Dov Nir; et al., (1990). An automated indoor apparatus for the determination of single-radius sprinkler water distribution patterns. BARD Project No. US-1001-85:The effect of wind on sprinkler distribution patterns, Final report.
    [83]Seginer, I., Kantz, D., Nir, D. (1991). The distortion by wind of the distribution patterns of single sprinklers. Agricultural water management,19(4),341-359.
    [84]Sepaskhah A R.; Ghahraman B (2004). The effects of irrigation efficiency and uniformity coefficient on relative yield and profit for deficit irrigation. Biosystems engineering,87(4),495-507.
    [85]Smajstrla, A.G., Boman, B.J., Haman, D.Z., et al. (2006) Basic irrigation scheduling in Florida (Florida Coop. Ext. Serv., Inst. Food Agr. Sci., Univ. Florida, Bul.249),.
    [86]Smith R J; Gillies M H; Newell G; et al., (2008). A decision support model for travelling gun irrigation machines. Biosystems Engineering 100:126-136)
    [87]Soares A A; Willardson L S; Keller J (1991). Surface-slope effects on sprinkler uniformity. Journal of Irrigation and Drainage Engineering, Vol.117, No.6,870-880
    [88]Solomon K (1979). Variability of sprinkler coefficient of uniformity test results. Transactions of the ASAE,22:1078-1086
    [89]Solomon K H (1990). Sprinkler Irrigation Uniformity. Center for Irrigation Technology. Irrigation Notes. California State University, Fresno, California 93740-0018.
    [90]Solomon K H; Kincaid D C; Bezdek J C (1985). Drop size distributions for irrigation spray nozzles. Trans. ASAE 28(6):1966-1974.
    [91]Solomon K H; Zoldoske D F; Oliphant J C (1991). Laser optical measurement of sprinkler drop sizes.1-12.
    [92]Solomon K H; Zoldoske D F; Oliphant J C (1996). Center for irrigation Technology, Standard Notes, Laser optical measurement of sprinkler drop sizes. CATI Publication #961101. Available at: http://cati.csufresno.edu/cit/rese/96/96101/inex.html.
    [93]Solomon K; Bezdek J C (1980). Characterizing sprinkler distribution patterns with a clustering algorithm. Transactions of the ASAE,23(4),899-906.
    [94]Stillmunks R T; James L G (1982). Impact energy of water droplets from irrigation sprinklers. Transactions of the ASAE, vol.25, pp.130-133
    [95]Svubure Oniward; Mbavarira Hardlee; Mutengu Sherman (2010). An investigation on the energy saving potential of mini- sprinkler irrigation systems. International Journal of science and Technology.2(7), 3287-3296.
    [96]Tarjuelo J M (1995). El Riego por Aspersion y su Teenologia (sprinkler irrigation and its technology). Madrid, Spain:Mundi-Prensa S. A
    [97]Tarjuelo J M; Montero J; Carrion P A; et al., (1999). Irrigation uniformity with medium size sprinklers Part II:Influence of wind and other factors on water distribution. Transactions of the ASAE. Vol. 42(3):677-689
    [98]Tarjuelo J M; Valiente M; Lozoya J (1992). Working conditions of a sprinkler to optimize the application of water. Journal of Irrigation and Drainage Engineering 118 (6):895-913
    [99]Tarjuelo, J. M., Carrion, P., Valiente, M. (1994). Simulation de la distribution del riego por aspersi6n en condiciones de viento. Investigation Agraria:Production e Protection Vegetal,9,255-271.
    [100]Tekin Kara; Emine Ekmekci; Mehmet Apan (2008). Determining the uniformity coefficient and water distribution characteristics of some sprinklers. Pakistan Journal of Biological Sciences 11(2):214-219
    [101]Thompson A L; Gilley J R; Norman J M (1993). A sprinkler water droplet evaporation and plant canopy model. II. Model application. Transactions of the ASAE,36.
    [102]Thooyamani K P; Norum D I; Dubetz S (1984). Spray patterns shape and application rate patterns under low pressure sprinklers. ASAE paper No.84-2588. St Joseph, Mich.:ASAE.
    [103]USDA-NASS (2012). Farm and ranch irrigation survey. Washington, D.C.:USDA National Agricultural Statistics Service. Available at:www.agcensus.usda.gov. Accessed 11, January 2012.
    [104]Vlotman W F; Fangmeier D D (1983). Evaluation of low-pressure moving irrigation systems in Arizona. Microfiche collection.
    [105]Vories E D; Bernuth R D; Mickelson R H (1987). Simulating sprinkler performance in wind. Journal of Irrigation and Drainage Engineering. ASCE,113:119-130.
    [106]Vories E D; von Bernuth R D (1986). Single nozzle sprinkler performance in wind. Transactions of the ASAE 29 (5):1325-1330.
    [107]Wilcox J C; Swailes G E (1947). Uniformity of water distribution by some under tree orchard sprinklers. Sci Agric 127:565-583.
    [108]Xing Qingjiang (2008). Study on Hydraulic Characteristics of Coanda Effect in Fluidic Sprinkler. Doctoral Dissertation. Jiangsu University, China.
    [109]Yan H; Ou Y; Nakano K; Xu C (2009). Numerical and experimental investigations on internal flow characteristic in the impact sprinkler. Irrigation and Drainage systems,23 (1),11-23.
    [110]Yuan S; Zhu X; Li H; Ren Z (2006). Effect of complete fluidic sprinkler on the hydraulic characteristics based on some important geometrical parameters. Trans CSAE 22(10):113-116.
    [111]Zhu X; Yuan S; Li H; et al., (2009). Orthogonal tests and precipitation estimates for the outside signal fluidic sprinkler. Irrig. Drain. Syst.23(4),163-172.
    [112]Zhu X; Yuan S; Liu J (2012). Effect of sprinkler head geometrical parameters on hydraulic performance of fluidic sprinkler. Journal of Irrigation and Drainage Engineering,138(11),1019-1026.
    [113]Zhu Xingye (2009). Theory and precise sprinkling irrigation for the complete fluidic sprinkler. Doctoral Dissertation. Jiangsu University, China.
    [1]ASABE (American Society of Agricultural and Biological Engineers) S398.1 MAR1985 (R2007) Procedure for sprinkler Testing and Performance Reporting.
    [2]Chen D; Wallender W (1985). Droplet size distribution and water application with low-pressure sprinklers. Transactions of the ASAE,28,511-916.
    [3]Chinese National Standard, GB 5670.2-85 (1985). Rotating sprinklers-Technical requirements. Beijing, China.
    [4]Coanda H (1936). Device for deflecting a stream of elastic fluid projected into an elastic fluid. U.S. Patent No.2052869
    [5]DeBoer D W; Monnens M J; Kincaid D C (2001). Measurement of sprinkler drop size. Applied Engineering in Agriculture 17 (1),11-15.
    [6]Dogan E; Clark G A; Rogers D H; et al. (2003). Evaluation of collector size for the measurement of irrigation depths. ASAE Paper No.03-2007. American Society of Agricultural Engineers, St. Joseph, MI.
    [7]Dogan E; Kirnak H; Dogan Z (2008). Effect of varying the distance of collectors below a sprinkler head and travel speed on measurements of mean water depth and uniformity for a linear move irrigation sprinkler system. Biosystems Engineering,99(2),190-195.
    [8]Edling R J (1985). Kinetic energy, evaporation and wind drift of droplets from low pressure irrigation nozzles. Transactions of the ASAE,28(5),1543-1550.
    [9]Evans R; Han G S; Kroeger M W (1995). Spatial distribution and uniformity evaluations for Chemigation with center pivots. Transactions of the ASAE,38(1).85-92.
    [10]Heermann D F; Duke H R; Serafim A M; et al. (1992). Distribution functions to represent center- pivot water distribution. Transactions of the ASAE,35(5),1465-1472.
    [11]Keller J; Bliesner R D (1990). Sprinkler and Trickle irrigation. An Avi Book, p 651 Van Nostrand Reinhold Pun, New York.
    [12]Li J. (2000). Sprinkler irrigation hydraulic performance and crop yield. Thesis Report. ISBN 7-80119-888-3. Chapter 6:pp.75-85. Kagawa University, Japan.
    [13]Seginer, I; Kantz D; Nir D; et al. (1992). Indoor measurement of single-radius sprinkler patterns. Transaction of the ASAE,35(2),523-533.
    [14]Solomon K H (1979) Variability of sprinkler coefficient of uniformity test results. Transaction of the ASAE 22:1078-1080,1086.
    [15]Solomon K H (1987). Sprinkler irrigation uniformity. Extension Bulletin No.247. ASPAC, Taiwan.
    [16]Sourell H; Faci J M; Playan E (2003). Performance of rotating spray plate sprinklers indoor experiments. Journal of Irrigation and Drainage Engineering,129(5),376-380.
    [17]Strong W C (1966). Rapid assessment of sprinkler performance. Journal of Irrigation and Drainage Engineering,73-74.
    [18]Tarjuelo J M; Montero J; Carrion P A; et al. (1999). Irrigation uniformity with medium size sprinkler, part I:Characterization of water distribution in no-wind conditions. Transactions of the ASAE,42(3), 677-689.
    [19]Vories E D; Von Bernuth R D (1986). Single nozzle sprinkler performance in wind. Transactions of ASAE,29(5),1325-1330.
    [20]Zhu X; Yuan S; Liu J (2012). Effect of sprinkler head geometrical parameters on hydraulic performance of fluidic sprinkler. Journal of Irrigation and Drainage Engineering,138(11),1019-1026.
    [1]DeBoer, D. W., Monnens, M. J., Kincaid, D. C. (2000). Rotating-plate sprinkler spacing on continuous-move irrigation laterals. National irrigation symposium. Proceedings of the 4th Decennial Symposium, Phoenix, Arizona, USA..115-122.
    [2]Dingre Sachin (2007). Computation of overlapping from generated multiple sprinkler observation patterns. Agricultural Engineering Today. Vol.31(3&4):34-38.
    [3]Han Wenting, Fen Hao, Wu Pute, et al. (2007). Evaluation of sprinkler irrigation uniformity by double interpolation using cubic splines. ASABE Meeting Presentation:072281.
    [4]Hart, W.E. (1963). Sprinkler distribution analysis with a digital computer. Transaction of ASAE 6(3):206-208.
    [5]Keller J. and R.D. Bliesner (1990). Sprinkler and trickle irrigation New York, Van Nostrand Reinhold.
    [6]Mike Huck (1997).Irrigation design, rocket science and the SPACE program. Center for Irrigation Technology,1-4.
    [7]Oliphant, J.C. (1999) SPACE PROTM Sprinkler profile and coverage evaluation manual, California Agricultural Technology Institute, Publication No.991003.
    [8]Richards P J; Weatherhead E K (1993). Prediction of rain gun application patterns in windy conditions. Journal of Agricultural Engineering Research,54,281-291.
    [9]Seginer, I. Nir D., R.D. von Bernuth (1991). Simulation of wind distorted sprinkler pattern. Journal of Irrigation and Drainage Engineering Vol.117, No.2 285-305.
    [10]Smith R J; Gillies M H; Newell G; et al. (2008). A decision support model for travelling gun irrigation machines. Biosystems Engineering100:126-136.
    [11]Tarjuelo, J.M., M. Valiente and J. Lozoya (1992). Working conditions of a sprinkler to optimize the application of water. Journal of Irrigation and Drainage Engineering.118 (6):895-913.
    [12]Vories, E.D., von Bernuth, R.D., Mickelson, R.H. (1987). Simulating sprinkler performance in wind. Journal of Irrigation and Drainage Engineering. ASCE,113(1),119-130.
    [1]Al-Naeem, M. A. H. (1993). Optimization of hose reel rain gun irrigation systems in wind; simulation of the effect of wind; simulation of the effect of trajectory angle, sector angle, sector position and lane spacing on water distribution and crop yield. PhD Dissertation, Cranfield University.
    [2]American Society of Agricultural Engineers (ASAE). (1985). Procedure for sprinkler distribution testing for research purposes. ASAE S330.1, St Joseph, MI
    [3]American Society of Agricultural Engineers (ASAE). (1985). Procedure for sprinkler testing and performance reporting. ASAE S398.1, St Joseph, MI
    [4]Branscheid, V.O., Hart, W. E. (1968).Predicting field distribution of sprinkler systems. Trans. ASAE, 11(6),801-803,808.
    [5]Carrion, P., Tarjuelo, J. M., Montero, J. (2001). SIRIAS:a simulation model for sprinkler irrigation:I Description of the model. Irrig. Sci.,20,73-84.
    [6]Christensen, J. E. (1942). Irrigation by sprinkler. California Agricultural Experimental Station, Berkeley. Res. Bull.670,123.
    [7]Cogels, O.G. (1983). An irrigation system uniformity function relating the effective uniformity of water application to the scale of influence of the plant root zones. Irrig. Sci.4,289-299.
    [8]Dagan, G., Bresler, E. (1988). Variability of yield of an irrigated crop and its causes; numerical simulation and field results. Water Res.24,395-401.
    [9]Dechmi, F., Playan, E., Faci, J.M., et al. (2003a). Analysis of an irrigation district in northeastern Spain. Ⅱ. Irrigation evaluation, simulation and scheduling. Agric. Water Manage.61,93-109
    [10]Dechmi, R, Playan, E., Faci, J. M., et al. (2003b). Wind effects on solid set sprinkler irrigation depth and yield of maize. Irrig. Sci.22,67-77.
    [11]Faci, J.M., Bercero, A. (1991). Efecto del viento en la uniformidad y enlas perdidas por evaporacion y arrastre en el riego por aspersion. Inv. Agra. Prod.Prot. Veg.6 (2),97-117.
    [12]Kara, T., Ekmekci, E., Apan, M. (2008). Determining the uniformity coefficient and water distribution characteristics of some sprinklers. Pak. J. Bio. Sci.,11(2),214-219
    [13]Keller, J., Bliesner, R. D. (1990). Sprinkler and trickle irrigation. An Avi Book, Van Nostrand Reinhold Pun, New York,651.
    [14]Kincaid, D. C., Solomon, K. H., Oliphant. J. C. (1996). Drop size distributions for irrigation sprinklers. Trans. ASAE,39,839-845.
    [15]Li H., Yuan S., Xiang Q. (2011). Theoretical and experimental study on water offset flow in fluidic component of fluidic sprinklers. J. Irrig. Drain. Eng,137(4),234-243.
    [16]Li, H. (2007). Theoretical and Experimental Study on the Fluidic Sprinkler Controlled by Clearance. Ph.D. Dissertation. Jiangsu University, China.
    [17]Li, J., Kawano, H. (1996). Sprinkler rotation non uniformity and water distribution. Trans. ASAE,39(6), 2027-2031.
    [18]Merriam, J. L., Keller, J. (1978). Farm irrigation system evaluation:A Guide for Management. Department of Agricultural and Irrigation Engineering, Utah State University, Logan.
    [19]National Standard of Peoples Republic of China (NSPRC). (2008). Rotating Sprinklers-KS 65.060.35, B91; GB/T2299-2008.
    [20]Richards, P. J., Weatherhead, E. K. (1993). Prediction of rain gun application patterns in windy conditions. J. Agric. Eng Res,54,281-291.
    [21]Seginer I., Nir, D., von Bernuth, R. D. (1991). Simulation of wind-distorted sprinkler patterns. J. Irrig. Drain. Eng., ASCE,117(2),285-306.
    [22]Solomon, K. H. (1987). Variability of sprinkler coefficient of uniformity test results. Trans. ASAE,22, 1078-1086.
    [23]Soropa, G., Pandasvika, E., Svubure, O., et al. (2011). Performance of 4 mm impact sprinklers at different spacing within acceptable pressure range. Int. J. of Eng. Sci. and Tech.,3 (3),1858-1863.
    [24]Tarjuelo, J. M., Carrion, P., Valiente, M., (1994). Simulation de la distribution del riego por aspersion en condiciones de viento. Inv. Agra. Prod. Prot. Veg.9 (2),255-271.
    [25]Tarjuelo, J. M., Montero, J., Carrion, P. A., et al. (1999). Irrigation uniformity with medium size sprinkler, part Ⅱ:Influence of wind and other factors on water distribution. Trans. ASAE,42(3),677-689.
    [26]Topak, R., Suheri, S., Ciftci, N., et al. (2005). Performance evaluation of sprinkler irrigation in a semi-arid area. Pak. J. Bio. Sci.,8,97-103.
    [27]Vories, E. D., von Bernuth, R. D. (1986). Single nozzle sprinkler performance in wind. Trans. ASAE, 29(5),1325-1330.
    [28]Wang, C. (2010). Hydraulic Characteristics Research on the Fluidic Element of the Fluidic Sprinkler Controlled by Clearance. Jiangsu University, China.
    [29]Wilcox, J. C, Swailes, G.E. (1947). Uniformity of water distribution by some under tree orchard sprinklers. Sci. Agric.127,565-583.
    [30]Zhu, X. Y., Yuan, S. Q., Liu, J. P. (2012). Effect of sprinkler head geometrical parameters on hydraulic performance of fluidic sprinkler J. Irrig. Drain. Eng.:1019-1026.
    [31]Zhu, X. Y., Yuan, S. Q., Li, H., et al. (2009). Orthogonal tests and precipitation estimates for the outside signal fluidic sprinkler. Irrig. Drain. Syst.23(4),163-172.
    [1]Al-Naeem M. (1993). A hose reel rain gun irrigation system computer simulation to predict water distribution and crop yield:optimizing trajectory angle, sector angle, sector position and lane spacing in different wind conditions. PhD thesis. Cranfield University (UK).
    [2]Bernuth, R.D. von; Gilley, J.R. (1984). Sprinkler droplet size distribution estimation from single leg test data. Trans. ASAE,27,1435-1441.
    [3]Dadio C., Wallender W. (1985). Droplet size distribution and water application with low-pressure sprinkler. Trans. ASAE,28,511-516.
    [4]De Wrachien, D., Lorenzini G. (2006). Modeling jet flow and losses in sprinkler irrigation:overview and perspective of a new approach, Biosys. Eng.94 (2),297-309.
    [5]Derrel L. Martin, Dennis C. Kincaid, et al. (2007). Chapter 16:Design and Operation of sprinkler systems in Design and Operation of Farm Irrigation Systems,2nd Edition.
    [6]Edling R. J. (1985). Kinetic energy, evaporation and wind drift of droplets from low pressure irrigation nozzles, Trans. ASAE,28 (5),1543-1550.
    [7]Fukui Y., Nakanishi K., Okamura S., (1980). Computer evaluation of sprinkler irrigation uniformity. Irrig. Sci,2,23-32.
    [8]Heermann D. F; Kohl R. A. (1981). Fluid dynamics of sprinkler systems. In:Jensen ME (ed.) Design and operation of farm irrigation system. ASAE, St Joseph, Mich, pp 58 618
    [9]Holterman H. J. (2003). Kinetics and evaporation of water drops in air. IMAG report 2003-12. Wageningen UR July 2003.
    [10]Kincaid D. C., Longley T. S. (1989). A water droplet evaporation and temperature model. Trans. ASAE, 32 (2),57-463.
    [11]Kincaid D. C., Solomon K. H., Oliphant J. C. (1996). Drop size distribution for irrigation sprinklers, Trans. ASAE,39 (3),839-845.
    [12]Kohl K. D., Kohl R. A., De Boer D. W. (1987). Measurement of low pressure sprinkler evaporation loss. Trans. ASAE,30,1071-1074.
    [13]Kohl, R. A. (1974). Drop size distribution from medium-sized agricultural sprinklers. Trans. ASAE, 17(4),690-693.
    [14]Li, J.; Kawano, H.; Yu, K. (1994). Droplet size distributions from different shaped sprinkler nozzles. Trans. ASAE,37,1871-1878.
    [15]Longley, T. S. (1984). Evaporation and wind drift from reduced pressure sprinklers. PhD Diss. Univ. of Idaho.
    [16]Martin C. F., Newman J. (1991). Analytical model of water loss in sprinkler irrigation. Applied Maths and Comp.43:19-41.
    [17]McLean R. K., Sri Ranjan R., Klassen G. (2000). Spray evaporation losses from sprinkler irrigation systems, Canadian Agric. Eng.42 (1).
    [18]Molle B., Tomas S., Hendawi M., et al. (2012). Evaporation and wind drift losses during sprinkler irrigation influenced by droplet size distribution. Irrig. and Drain.61:240-250.
    [19]Okaruma S., Nakanishi K. (1969). Theoretical study on sprinkler sprays (Part four) geometric pattern form of single sprayer under wind conditions. Trans. Jpn. Soc. Irrig. Drain. Reclam. Eng.29:35-43.
    [20]Seginer I., Kantz D., Nir D. (1991). The distortion by wind of the distribution patterns of single sprinklers. Agric Water Manage 19:314-359.
    [21]Silva W. L. C., Larry G. J. (1988). Modeling evaporation and microclimate change in sprinkler irrigation I. Model formulation and calibration. Trans. ASAE,31(5),1481-1486.
    [22]Solomon K. H., Zoldoske D. F., Oliphant J. C. (1996). Laser Optical Measurement of Sprinkler Drop Sizes. Center for Irrigation Technology. Standards Notes.
    [23]Solomon K.H., Kincaid D. C., Bezdek J.C. (1985). Drop size distribution for irrigation spray nozzles. Trans. ASAE,28(6),1966-1974.
    [24]Thompson A. L., Gilley J. R., Norman J. M. (1993). A sprinkler water droplet evaporation and plant canopy model:Ⅱ. Model application, Trans. ASAE,36(3),743-750.
    [25]Uddin, J., Smith, R., Hancock, N., et al. (2010). Droplet evaporation losses during sprinkler Irrigation:an overview. Presented at:Australian Irrigation Conference and Exhibition'One Water Many Features', Sydney, Australia,8-10.
    [26]Vories, E. D., Von Bernuth, R. D., Mickelson, R. H. (1987). Simulating sprinkler performance in wind. J. Irrig. Drain. Eng.,113(1),119-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700