内蒙孪井灌区地下水补给的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
孪井滩位于内蒙古阿拉善盟南部,这里降水稀少且不均匀,蒸发强烈,为典型的生态脆弱区。1994年底孪井滩正式引黄河水灌溉,灌溉入渗成为该区地下水补给的主要来源。大水漫灌不仅会造成水资源的浪费,还会引起含水层矿化度的增加和地下水位的上升,引发灌区下游土壤次生盐渍化问题。
     选择可信度高的评价方法准确评价地下水的补给量,准确获取地下水补给信息并确定其在时间和空间上的变化性,可以为水资源规划和地下水可持续利用方案的制定提供科学依据。目前地下水补给评价方法很多,不同评价方法适用的时空尺度、范围以及可靠性不同,如何根据研究问题的需要,选择合适的方法进行地下水补给评价就显得特别重要。
     在孪井灌区深埋潜水区的典型地段,本文用土壤水均衡法、氯离子剖面法和地下水动态法对干旱区地下水补给进行了研究。首先,在灌区选取典型土壤剖面,用土壤水均衡法得出了不同地层结构主要作物的灌溉渗漏量,结果表明渗漏量与灌溉量、灌前土壤含水率、土壤岩性和种植作物密切相关。玉米在双层结构六次灌水的平均渗漏量为251 mm,油葵在多层结构的平均渗漏量为81.9 mm。同时,用氯离子剖面法估算了降水和长期灌溉地区的入渗补给量,降水对地下水的补给量还不到0.1 mm/a,补给甚微。而在长期灌溉的地区,多年灌溉平均补给量达231.5 mm/a,与水量均衡法得到的结果相吻合。地下水位观测结果表明,从2005年12月到2008年9月,灌区内地下水上升了近1m左右,反映了传统灌溉对地下水的影响。
     针对不同评价方法在孪井灌区的应用,本文对评价方法的精度、适用性和局限性还进行了探讨。土壤水均衡法和氯离子剖面法在灌区的适用性较好,而地下水动态法因该区地下水埋深较大、观测井的密度小及地下水径流等等影响,误差较大,该方法在灌区的精度较低。
     最后,针对灌区地下水位上升现状,提出地下水位控制措施措施。例如:调整灌溉定额,改进灌溉技术;优化种植结构,推行节水灌溉制度;加强工程水利措施和排水措施等等。
Luanjing, located in Inner Mongolia, northwest China, is an ecologically fragile area, characterized by low and irregular rainfall, high evaporation, and notable drought periods. Since the establishment of irrigation area in 1994, Water has been diverted from the Yellow River and irrigation water infiltration has been the primary source of groundwater recharge. There is misuse and wastage of water resources with traditional flooding irrigation. Excessive water may also produce high mineralization of aquifer and water table rising, leading to soil secondary salinization in low lands.
     It has a great theoretical and practical significance to choose the reliable method for evaluating groundwater recharge accurately and revealing the temporal and spatial change law of groundwater recharge, which is propitious to provide a scientific basis for water resources management and sustainable use. At present, there are many evaluation methods for groundwater recharge, and different evaluation methods are applicable to different spatial and temporal scales, scope and reliability. So it is very important to choose the appropriate method according to the research.
     The study was carried out in Luanjing basin, an arid area with deep aquifer, Inner Mongolia. In the research, soil water balance method, chloride profile method and groundwater level fluctuation method are used to describe the groundwater recharge in Luanjing Irrigation Area, where the utilization of irrigation water is very low. Leakage in different stratum and different crops are estimated by soil water balance method, which indicates that the irrigation leakage amount is contacted with the irrigation norm, soil moisture content before irrigation, soil texture and planting crops. For example, in the land cropped with corn, the average leakage for six irrigation times in dual-layer stratum is 251mm, which is larger than 81.9mm in the multi-layer stratum cropped with oil heliotrope. Chloride profile method is also applied to estimate the annual groundwater recharge in natural and long-term irrigation sites, showing that direct recharge by rainfall is less than 0.1 mm/a, and the irrigation infiltration recharge in long-term irrigation sites is 231.5mm/a, which is consistent with the results using soil water balance method. The water table observation data shows an about 1m increase of groundwater level from December 2005 to September 2008, which reflects the influence of traditional flooding irrigation on groundwater.
     By analyzing application of different methods in Luanjing Irrigation Area, the application condition, limitation and accuracy of each method are discussed. Recharge estimated by soil water balance method and chloride profile method are reliabe, and the accuracy of groundwater fluctuation method is low due to deep aquifer, small density of observation wells and groundwater runoff.
     Finally, the paper provides some control measures of groundwater levels in response to the local utilization situation of groundwater. Such as modifying irrigation norms and improving irrigation technique, optimizing plant structure and implementing water-saving irrigation system, strengthening the water conservancy project measures and agro-ecological measures, and so on.
引文
[1]孙广生,乔西现,孙寿生.黄河水资源管理.郑州:黄河水利出版社,2001:119~124
    [2]张会敏,王建中.黄河流域灌区面临的主要问题及对策.中国农村水利水电,1998,4:15~17
    [3] Pereira L.S., Goncalves J.M., Dong B., Mao Z., Fang S.X. Assessing basin irrigation and scheduling strategies for saving irrigation water and controlling salinity in the Upper Yellow River Basin. China. Agricultural Water Management 2007, 93 (3): 109~122
    [4] Goncalves J.M., Pereira L.S., Fang S.X., Dong B. Modelling and multicriteria analysis of water saving scenarios for an irrigation district in the upper Yellow River Basin. Agricultural Water Management, 2007, 94: 93~108
    [5] Fang S., Chen X. Rationally utilizing water resources to control soil salinity in irrigation districts. In: Stott, D.E., Mohtar, R.H., Steinhardt, G.C. (Eds.). Sustaining the Global Farm (Selected papers, International Meeting, Purdue, 1999). Purdue University, 2001. 1134~1138
    [6]樊自立,马英杰,马映军.中国西部地区的盐渍土及其改良利用.干旱区研究,2001,18 (3):1~6
    [7]桑以琳.内蒙古河套灌区碱化土壤的发生原因和特性.土壤学报,1996,33 (4):398~403
    [8]汪丙国.地下水补给评价方法研究-以华北平原为例:[博士学位论文].北京:中国地质大学,2008
    [9]冯功堂,由希尧,李大康,李丛林.干旱区潜水蒸发埋深及土质关系实验分析.干旱区研究,1995,12 (3):78 - 83
    [10]毛晓敏,李民,沈言俐.叶尔羌河流域潜水蒸发规律试验分析.干旱区地理,1998, 21(3):44~50
    [11]周旻,靳孟贵,魏秀琴,朱中道.利用地中渗透仪观测资料进行降雨入渗补给规律分析.地质科技情报,2002,21(1):37~40
    [12]朱秀珍,崔远来,李远华,张志川,冯耀华.豫东平原潜水蒸发试验研究.中国农村水利水电,2002,3:1~2
    [13] Wellings, S.R., Bell, J.P. Physical controls of water movement in unsaturated zone. Quarterly Journal of Engineering Geology, 1982, 15: 235~241
    [14] Richards L.A., Gardner W.R., Ogata G. Physical processes determining water loss from soil. Soil Science Society of America Journal, 1956, 20: 310~314
    [15] Sharma M.L., Bari M., Byrne J. Dynamics of seasonal recharge beneath a semiarid vegetation on the Gnangara Mound, Western Australia. Hydrological Processes, 1991, 5: 383~398
    [16]程辉,郭东屏.对零通量面法测算潜水入渗补给量和地表蒸发量的一点改进.西安工程学院学报,2000,22 (1):63~66
    [17]雷志栋,杨诗秀,谢森传.田间土壤水量平衡与定位通量法的应用.水利学报,1988,5:1~7
    [18] Enfield C.G., Hsieh J.J.C., Warrick A.W. Evaluation of water flux above a deep water table using thermocouple psychrometers. Soil Science Society of America, 1973, 37: 968~970
    [19] Steenhuis T.S., Jackson C.D., Kung S., Brutsaert W. Measurement of groundwater recharge in eastern Long Island, New York, USA. Journal of Hydrology, 1985, 79: 145~169;
    [20] Stephens D.B., Knowlton R.J. Soil water movement and recharge through sand at a semiarid site in New Mexico. Water Resources Research, 1986, 22(6): 881~889
    [21] Thornthwaite C.W., Mather J.R. The water balance. Climatology, 1955, 8 (1), 1~37
    [22] Schicht R.J., Walton W.C. Hydrologic budgets for three small watersheds in Illinois. Illinois State Water Survey Report of Investigation, 1961, 40: 40
    [23] Palmer W.C. Meteorological Drought, Research Paper No. 45. US Department of Commerce, Washington, DC, 1965, 58
    [24] Sophocleous M.A. Combining the soil-water balance and water-level fluctuation methods to estimate natural groundwater recharge: practical aspects. Journal of Hydrology, 1991, 124: 229~241
    [25] Kennet-Smith A., Cook P.G., Walker G.R. Factors affecting groundwater recharge following clearing in the southwestern Murray Basin. Journal of Hydrology, 1994, 154: 85~105
    [26] Taylor R.G., Howard K.W.F. Groundwater recharge in the Victoria Nile basin of east Africa: support for the soil moisture balance approach using stable isotope tracers and flow modeling. Journal of Hydrology, 1996, 180: 31~53
    [27] Finch J.W. Estimating direct groundwater recharge using a simple water balance model-sensitivity to land surface parameters. Journal of Hydrology, 1998, 211(1-4): 112~125
    [28] Kendy E., Gerard-Marchant P., Walter M.T., Zhang Y., Liu C. Steenhuis TS. Asoil-water-balance approach to quantify groundwater recharge from irrigated cropland in the North China Plain. Hydrological Processes, 2003, 17: 2011~2031
    [29] Wang X.P., Berndtsson R, Li X.R., Kang E.S. Water balance change for a re-vegetated xerophyte shrub area. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 2004a, 49: 283~295
    [30] Wang X.P., Brown-Mitic C.M., Kang E.S., Zhang J.G., Li X.R. Evapotranspiration of Caragana korshinskii communities in a revegetated desert area: Tengger Desert, China. Hydrological Processes, 2004b, 18: 3293~3303
    [31]靳孟贵等.华北平原水文地质参数调查研究.武汉:中国地质大学(武汉),2007
    [32] Theis C.V. Amount of ground-water recharge in the southern high plains. Transactions of the American Geophysical Union, 1937, 564~568
    [33] Baumann P. Ground water movement controlled through spreading. Transactions of the American Society of Civil Engineering, 1952, 117: 1024~1074
    [34] Rai S.N., Manglik A., Singh R.N. Water-table fluctuations in response to transient recharge from a rectangular basin. Water Resources Management, 1994, 8: 1~10
    [35] Rai S.N., Manglik, A. Modeling of water table variation in response to time-varying recharge from multiple basins using the linearised Boussinesq equation. Journal of Hydrology, 1999, 220: 141~148
    [36] Manglik A., Rai S.N., Singh V.S. Modeling of aquifer response to time-varying recharge and pumping from multiple basins and wells. Journal of Hydrology, 2004, 292: 23~29
    [37] Moon S.K., Woo N.C., Lee K.S. Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge. Journal of Hydrology, 2004, 292: 198~209
    [38] Selaolo, E.T. Tracer studies and groundwater recharge assessment in the eastern fringe of the Botswana Kalahari. PhD Thesis. Amsterdam: Vrjie University, 1998
    [39] Allison G.B., Hughes M.W. The use of environmental chloride and tritium to estimate total local recharge to an unconfined aquifer. Australia Journal of Soil Research, 1978, 16: 181~195
    [40] Gaye C.B., Edmunds W.M. Inter comparison between physical, geochemical and isotopic methods for estimating groundwater recharge in north western Senegal. Environmental geology, 1996, 27: 246~251
    [41]黄天明,庞忠和.应用环境示踪剂探讨巴丹吉林沙漠及古日乃绿洲地下水补给.现代地质,2007,21(4):624~631
    [42] Zhu, G.F., Li, Z.Z., Su, Y.H., Ma, J.Z. & Zhang, Y.Y. Hydrogeochemical and isotope evidence of groundwater evolution and recharge in Minqin Basin, Northwest China. Journal of Hydrology, 2007, 333: 239~251
    [43] Cook P.G., Edmunds W.M., Gaye C.B. Estimating paleorecharge and paleoclimate from unsaturated zone profiles. Water Resource Research, 1992, 28: 2721~2731
    [44] Phillips F.M. Environmental tracers for water movement in desert soils of the American southwest. Soil Science Society of America Journal, 1994, 58: 15~24
    [45]汪丙国,靳孟贵,王文峰,杨磊.氯离子示踪法在河北平原地下水垂向入渗补给量评价中的应用.节水灌溉,2006,3:16~20
    [46] Eriksson E., Khunakasem V. Chloride concentrations in groundwater recharge rate and rate of deposition of chloride in the Israel coastal plain. Journal of Hydrology, 1969, 7: 178~197
    [47] Eriksson E. The distribution of salinity in groundwater in the Delhi region and recharge rates of groundwater. In: Interpretation of environmental and isotopic hydrochemical data in groundwater hydrology. Vienna: International Atomic Energy Agency, 1976. 171~178
    [48] Allison G.B., Hughes M.W. The use of environmental chloride and tritium to estimate total recharge to an unconfined aquifer. Australia Journal of Soil Research, 1978, 16: 181~195
    [49] Edmunds W.M., Walton N.R.G. A geochemical and isotopic approach to recharge evaluation in semi-arid zones, past and present. In: Arid Zone Hydrology, Investigations with Isotope Techniques. International Atomic Energy Agency, Vienna. 1980. 47~68
    [50] Allison, G.B., Stone, W.J., Hughes, M.W. Recharge in karst and dune elements of a semi-arid landscape as indicated by natural isotopes and chloride. Journal of Hydrology, 1985, 76: 1~25
    [51] Allison G.B., Cook P.G., Barnett S.R., Walker G.R., Jolly I.D., Hughes M.W. Land clearance and river salinisation in the western Murray Basin, Australia. Journal of Hydrology, 1990, 119: 1~20
    [52] Leaney F.W., Allison G.B. Carbon-14 and stable isotope data for an area in the Murray Basin: its use in estimating recharge. Journal of Hydrology, 1986, 88: 129~145
    [53] Barnett SR. The effect of land clearance in the Mallee region on River Murray salinity andland salinisation. Journal of Australian Geology and Geophysics, 1989, 11: 205~208
    [54] Cook P.G., Walker G.R., Jolly I.D. Spatial variability of groundwater recharge in a semiarid region. Journal of Hydrology, 1989, 111: 195~212
    [55] Salama R., Farrington P., Bartle G., Watson G. Salinity trends in the wheatbelt of Western Australia: results of water and salt balance studies from Cuballing catchment. Journal of Hydrology, 1993, 145: 41~63
    [56] Edmunds W.M., Gaye C.B. Estimating the variability of groundwater recharge in the Sahel using chloride. Journal of Hydrology, 1994, 156: 47~59
    [57] Bromley, J., Edmunds, W.M., Fellman, E., Brouwer, J., Gaze, S.R., Sudlow, J., Taupin, J.D. Estimation of rainfall inputs and direct recharge to the deep unsaturated zone of southern Niger using the chloride profile method. Journal of Hydrology, 1997, 188: 139~154
    [58] Anderholm S.K. Mountain-front recharge along the eastern side of the Middle Rio Grande Basin, Central New Mexico. USGS Water Resources Investigations Report 00–4010, 2001, 36
    [59] Sanford W.E., Plummer L.N., McAda D.P., Bexfield L.M., Anderholm S.K. Hydrochemical tracers in the Middle Rio Grande Basin, USA: 2. Calibration of a ground-water flow model. Hydrogeology Journal, 2004, 12: 389~407
    [60] Flint A.L., Flint L.E., Kwicklis E.M., Fabryka-Martin J.M., Bodvarsson G.S. Estimating recharge at Yucca Mountain, Nevada, USA: comparison of methods. Hydrogeology Journal, 2002, 10: 180~204
    [61] Heilweil V.M., Solomon D.K. Millimeter- to kilometer-scale variations in vadose-zone bedrock solutes: implications for estimating recharge in arid settings. In Groundwater Recharge in a Desert Environment: The Southwestern United States, Hogan J.F., Phillips F.M., Scanlon B.R.(eds). American Geophysical Union: Washington, DC, 2004, 235~254
    [62] Heilweil V.M., Solomon D.K., Gardner P.M. Borehole environmental tracers for evaluating net infiltration and recharge through desert bedrock. Vadose Zone Journal, 2006, 5: 98~120
    [63] Bazuhair A.S., Wood W.W. Chloride mass-balance method for estimating ground water recharge in arid areas: examples from western Saudi Arabia. Journal of Hydrology, 1996, 186: 153~159
    [64] Sharda V.N., Kurothe R.S., Sena D.R., Pande V.C., Tiwari S.P. Estimation of groundwaterrecharge from water storage structures in a semi-arid climate of India. Journal of Hydrology, 2006, 329:224~ 243
    [65]马金珠,李丁,李相虎,Edmunds W.M.巴丹吉林沙漠包气带Cl-示踪与气候记录研究.中国沙漠,2004,24(6):674~679
    [66]陈宗宇,毕二平,聂振龙,叶浩,南云驹.包气带剖面中古水文-气候信息的初步研究.地球学报,2001,22(4) :335~339
    [67] Chapman T.G., Malone R.W. Comparison of models for estimation of groundwater recharge: using data from a deep weighing lysimeter. Mathematics and Computers in Simulation, 2002, 59: 3~17
    [68] Gogolev M. Assessing groundwater recharge with two unsaturated zone modeling techniques. Environmental Geology, 2002, 42, 248~258
    [69]孟江丽,董新光,周金龙,李金莉.HYDRUS模型在干旱区灌溉与土壤盐化关系研究中的应用.新疆农业大学学报,2004,27(1):45~49
    [70] Stothoff S.A. Sensitivity of long-term bare soil infi1tration simulations to hydraulic properties in an arid environment. Water Resources Research, 1997, 33: 547~558
    [71] Bates P.D., Stewart M.D., Desitter A., Anderson M.G., Renaud J.-P., Smith J.A. Numerical simulation of floodplain hydrology. Water Resources Research, 2000, 36 (9), 2517–2529
    [72] Simunek J., Huang K., van Genuchten M.T. The SWMS_3D code for simulating water flow and solute transport in three dimensional variably-saturated media. U.S. Salinity Laboratory Agricultural Research Service, U.S. Department of Agriculture Riverside, California, 1995, 155
    [73]刘贯群,朱新军,王淑英,陈浩,韩曼.孪井灌区主要作物节水灌溉模式的研究.中国海洋大学学报,2006,36(5):809-816
    [74] Keese K.E., Scanlon B.R., Reedy R.C. Assessing controls on diffuse groundwater recharge using unsaturated flow modeling. Water Resources Research, 2005, 41 (6), W06010. doi:10.1029/2004WR003841
    [75] Ragab R., Finch J., Harding R. Estimation of groundwater recharge to chalk and sandstone aquifers using simple soil model. Journal of Hydrology, 1997, 190, 19~41
    [76] Finch J.W. Estimating direct groundwater recharge using a simple water balance model- sensitivity to land surface parameters. Journal of Hydrology, 1998, 211, 112~125
    [77] Fazal M.A., Imaizumi M., Ishida S., Kawachi T., Tsuchihara T. Estimating groundwater recharge using the SMAR conceptual model calibrated by genetic algorithm. Journal of Hydrology, 2005, 303, 56~78
    [78]张蔚榛,张瑜芳.对灌区水盐平衡和控制土壤盐渍化的一些认识.中国农村水利水电,2003,8:13-18
    [79]詹世坦.半干旱灌溉地区采用地下排水控制土地盐化的效果评价.中国水利,2005,20:55-58
    [80]田园,刘钰.宁蒙黄河灌区节水规划应注意的问题及改进方向.中国水利,2005,3:39-41
    [81]刘贯群.内蒙孪井灌区地下水数值模拟及土壤盐渍化预报:[博士学位论文].青岛:青岛海洋大学,2002
    [82]朱新军.内蒙古孪井灌区土壤水分运移及节水灌溉模式的研究:[硕士学位论文].青岛:中国海洋大学,2004
    [83]宋涛.内蒙孪井灌区土壤水盐运移规律研究:[硕士学位论文].青岛:中国海洋大学,2008
    [84] Herczeg, A.L., Dogramaci, S.S. & Leaney, F.W.J. Origin of dissolved salts in a large semi-arid groundwater system: Murray Basin, Australia. Marine and Freshwater Research, 2001, 52, 41~52
    [85] Ma, J.Z., Ding, Z., Gates, J.B. & Su, Y. Chloride and the environmental isotopes as the indicators of the groundwater recharge in the Gobi Desert, northwest China. Environmental Geology, 2008, 55: 1407~1419
    [86]阿拉善左旗孪井滩水文地质勘察报告.1:50000,内蒙古农牧学院农牧业水利工程系,1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700