内蒙孪井灌区土壤盐分淋洗规律的研究及预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
孪井滩位于内蒙古阿拉善盟南部,这里降水稀少,蒸发强烈,年均蒸发量是降雨量的19倍,为典型的干旱地区。该区的农业发展主要依靠灌溉。1994年底孪井滩正式引黄灌溉,灌溉方式以大水漫灌为主且只灌不排。灌期,灌溉水与土壤相互作用,并在向下渗漏的过程中带走部分可溶盐,携带着大量盐分的渗漏水使地下水位持续抬高,从而可能诱发土壤次生盐渍化。
     本论文在分析总结前人研究成果的基础上,采取野外与室内实验相结合的方法,对孪井灌区漫灌条件下典型岩性结构及典型土质进行了盐分运移规律研究。利用室内实验数据拟合出了累积淋滤液体积和与之相对应的盐浓度问的关系曲线,结合野外灌溉水渗漏量计算结果,对灌溉渗漏液的盐浓度进行预测。
     首先,收集了研究区水文地质资料,分析了包气带的结构和物质组成,在此基础上选取典型的土壤剖面,分别采集不同深度的土样及土壤溶液进行化学成分分析,研究它们的盐分动态变化特征。结果表明:引黄灌溉是使土壤脱盐的过程。灌前土壤含盐量较高,灌溉初期,盐分淋洗速度非常快,洗盐量较大。随着灌溉次数的增加,洗盐量逐渐减少,盐分剖面基本趋于稳定。土壤盐分组成逐渐由原来的以Cl--Na+为主转变为以HC03--Ca2+为主。每次灌溉后土壤溶液浓度随深度的增加而增加,且随着灌溉次数的增加,同一深度的土壤溶液浓度逐渐降低。灌溉洗盐作用与土壤初始含盐量、灌水量以及包气带岩性结构有关。土壤初始含盐量越大,灌溉量越大,土壤洗盐量就越大,双层结构地层较多层结构地层易脱盐。
     第二,在坑1附近未进行灌溉、岩性结构与坑1一致的天然荒地处取土样,。在室内进行土柱淋洗实验,模拟灌溉对土壤盐分的淋洗过程。取样点上层为砂壤土下层为砂土,实验将二者分开进行淋洗,以利于研究土质对土壤脱盐过程的影响。结果表明,土壤脱盐率与土质以及初始盐分组成有关。整个实验过程砂壤土的累积收集淋滤液体积为7.05PV(孔隙体积),脱盐率为71%,砂土的累积收集淋滤液体积较砂壤土小,为7.01PV,而脱盐率却较砂壤土大,为84%,显而易见,砂土较砂壤土易脱盐。二者主要可溶盐离子的脱除率排序也不同,砂壤土的阳离子排序为Na+>K+>Mg2+>Ca2+,而砂土为Na+>Mg2+>Ca2+>K+,这与它们的初始阳离子构成差异有关。二者的阴离子排序则均为Cl->SO42->HCO3-同—土质不同土层间的土壤脱盐率也有所差别。当相邻土层间的盐分含量差距较大时,初始含盐量越大,脱盐率越大,而当二者盐分含量接近时,往往是上层脱盐率大于下层。砂壤土与砂土的土壤淋滤液盐浓度均随累积渗滤液体积的增加呈幂函数降低,这种变化趋势与野外土壤含盐量的动态变化规律相对应。淋滤液pH则呈现先上升后下降的趋势。
     第三,由于室内实验取样剖面位于坑1附近,假设取样剖面在野外进行同坑1灌溉条件相同的灌溉过程,对取样剖面的野外灌溉渗漏液浓度进行预测。由于取样剖面的岩性结构、土质分界线、盐分脱除规律与坑1均相同,视它们的野外次灌溉渗流量也相同。运用水量均衡法计算出坑1在野外状况下的灌溉水分渗漏量。野外灌溉渗漏液相当于室内土柱实验的淋滤液。利用室内实验数据拟合出的累积淋滤液体积与相应的淋滤液浓度关系式,即可得到取样剖面在野外灌溉过程中对应于任意累积灌溉渗流量的渗漏液浓度。其中室内拟合出的累积淋滤液体积与相应的淋滤液浓度关系式,R2在0.98以上,相关程度良好,可用该式进行预测。
     最后,针对灌区现状,提出土壤盐渍化防治措施。例如:调整灌溉定额,改进灌溉技术;优化种植结构,推行节水灌溉制度;加强排水措施等等。
Luanjing, located in the south of a la shan meng area, Inner Mongolia, is a typical arid area, characterized by low and irregular rainfall, high evaporation. The average annual evaporation is 19 times higher than annual precipitation. The agricultural development here must depend on irrigation. Since the establishment of irrigation area in 1994, irrigation water has been diverted from the Yellow River and the main irrigation mode is free flooding irrigation without drainage system. During irrigation period, irrigation water interacts with soil and leaks downward with some salt. The leachate will uplift the level of groundwater continuously and may induce soil secondary salinization.
     Based on analysis and summary of previous research works, this paper combined field with indoor experiment,studies on the soil salt movements of typical lithologic structure and soil texture with free flooding irrigation. The correlation curve between the accumulation leachate volume and the corresponding salt concentration was determined by fitting experimental data. Combined the fitting results with leachate volume during each irrigation, the paper predicts the leachate concentration.
     Firstly, the paper collects the hydrogeological data of study areas and analyses construction and material constitution of unsaturated zone, and then selects typical soil sections to collect soil and soil solution samples at different depth, studies their respective salt dynamic variation. The consequence indicates that:The soil is desalting during irrigation with the yellow river. Before irrigation, the soil salt content is high, during early irrigation phrase, salt leaching rate is fast and the leaching amount is large. With increase of irrigation times, salt leaching amount gradually decrease, salt profile basically tends to be stable. The main composition of soil salt transforms from Cl-—Na+gradually to HCO3-—Ca2+. After each irrigation, soil solution concentration increases with depth. And with increase of irrigation times, soil solution concentration of same depth decreases gradually. Irrigation desalting relates to soil original salinity, irrigation amount and lithologic structure of unsaturated zone. The larger the soil original salinity and irrigation amount are, the larger the irrigation desalination is. Double layer structure is much easily desalting than multilayer structure.
     Secondly, the paper collects soil samples from the place nearby hole 1 and without irrigation. The upper layer of the sampling point is sandy loam, and the lower is sand. In order to study the impact of soil texture on soil salt movement, they are leachinged indoors respectively. The consequence indicates that:The soil desalting ratio relates to soil texture, original salinity and salt composition. During the whole experiment, the accumulative leachate volume of sandy loam is 7.05 PV(pore volume) and its desalting ratio is 71%, while the accumulative leachate volume of sand is 7.01 PV and its desalting ratio is 84%. This show that desalination in sand is easier than that in sandy loam. The desalting ratio sort of their main soluble salt ions are also different. Cationic sort of sandy loam is Na+>K >Mg2+>Ca2+, while that of sand is Na+> Mg2+>Ca2+>K+. This kind of difference causes by their different original cationic composition. Their anionic desalting ratio sort are same, and that is Cl->SO42-> HCO3-. The soil in different layer but belongs to the same texture also has different desalting ratio. When the gap in original salinity between adjacent layers is big, the more salinity is, the larger desalting ration is. When the gap in original salinity between adjacent layers is small, the soil desalting ratio of upper layer is lager than the lower. The salt concentration of their leachate decreases by power function with the increasing of accumulative leachate volume. This tend is coincided with dynamic variation rule of field soil salt. The pH of leachate rised first and then dropped.
     Thirdly, because the sampling profile of indoor experiment collected nearby hole 1, supposes irrigating it in field as hole 1, and predict its leackage concentration. As they are same at lithologic structure, texture boundary and salt leaching rules, their leackage volume during each irrigation approximately are same. This paper does soil water equilibrium test of hole 1 and obtains the leachate volume during each irrigation. The field irrigation leachate is equivalent to leachate generated during indoor experiment. The correlation curve between the accumulation leachate volume and the corresponding salt concentration was determined by fitting experimental data. Using this curve, we can calculate the leachate concentration of sampling profile corresponding to each accumulation leachate volume. The relation coefficient of each soil are all greater than 0.98, this show that the correlation degree between the accumulation leachate volume and the corresponding salt concentration is high.
     Finally, the paper provides some control measures of soil salinzation in response to the local utilization situation. Such as modifying irrigation norms and improving irrigation technique, optimizing plant structure and implementing water-saving irrigation system, strengthening the water conservancy project measures and agro-ecological measures, and so on.
引文
[1]王遵亲,祝寿泉,俞仁培等.中国盐渍土.北京:科学出版社,1993
    [2]刘贯群.内蒙孪井灌区地下水数值模拟及土壤盐渍化预报:[博士学位论文].青岛:青岛海洋大学,2002
    [3]石玉林.西北地区土地荒漠化与水土资源利用研究.北京:科学出版社,2004
    [4]王茜,田军仓.土壤水-热-盐运移规律的研究现状.宁夏工程技术,2005,4(02):113~115
    [5]王秉忱,刘贯群,邱汉学,穆来旺,张国平.引黄灌溉对孪井包气带盐分的淋洗.工程勘察,2003,(03):19~23转31
    [6]Pereira L S, Goncalves J M, Dong B, et al. Assessing basin irrigation and scheduling strategies for saving irrigation water and controlling salinity in the Upper Yellow River Basin. Agricultural Water Management,2007,93:109~122
    [7]汪林,甘泓,汪珊等.宁夏引黄灌区水盐循环演化与调控.北京:中国水利水电出版社,2003
    [8]张蔚椽,张瑜芳.对灌区水盐平衡和控制土壤盐渍化的一些认识.中国农村水利水电,2003,(8):13~18
    [9]张书兵,王俊,姜卉芳,肖俊.干旱内陆河灌区灌溉条件下土壤水盐运移规律分析.水土保持研究,2008,15(4):151~153
    [10]McLay, C.D.A., K.C. Cameron, and R.G. McLaren, Influence of soil structure on sulfate leaching from a silt loam. Aust. J. Soil Res.,1992,30:43~55
    [11]Tanton, T.W., D.W. Rycroft, and M. Hashimi, Leaching of salt from a heavy clay subsoil under simulated rainfall conditions. Agricultural Water Management,1995.27(3-4):321~329
    [12]Sharma, S.K. and H.R. Manchanda, Influence of leaching with different amounts of water on desalinization and permeability behaviour of chloride and sulphate-dominated saline soils. Agricultural Water Management,1996.31(3):225~235
    [13]Anunez-Delgado, E. Lopez-Periago, and F. Diaz-Fierros-Viqueira, Breakthrough of inorganic ions present in cattle slurry:Soil column trials. Water Research,1997.31(11):2892~2898
    [14]Armstrong, A.S.B., T.W. Tanton, and D.W. Rycroft, The effect of ped size, simulated rainfall duration and frequency on the leaching of salts from clay topsoils. Agricultural Water Management,1998.37(2):133~143
    [15]Kolahchi,Z. and M. Jalali, Effect of water quality on the leaching of potassium from sandy soil. Journal of Arid Environments,2007.68(4):624~639
    [16]冯永军,陈为峰,张蕾娜,张红.滨海盐渍土水盐运动室内实验研究及治理对策.农业工程学报,2000,16(03):38~42
    [17]尹建道,姜志林,曹斌,杨勇,生原喜久.滨海盐渍土脱盐动态规律及其效果评价——野外灌水脱盐模拟实验研究.南京林业大学学报(自然科学版),2002,26(04):15~18
    [18]赵耕毛,刘兆普,陈铭达,邓力群,吴家梅.海水灌溉滨海盐渍土的水盐运动模拟研究.中国农业科学,2003,36(06):676~680
    [19]赵成,姜才文.河西走廊昌马灌区土壤水盐动态及脱盐过程.中国地质灾害与防治学报,2004,15(01):129~133
    [20]陈冰,蒋平安.不同灌水量对碱化土的影响.干旱区地理,2005,28(01):103~106
    [21]肖娟,雷廷武,江培福,于颖.水质对饱和土壤盐分淋洗效率的影响.太原理工大学学报,2006,37(06):642~645
    [22]Li, Zhigang, Liu Xiaojing, Zhang Xiumei, Li Weiqiang. Infiltration of melting saline ice water in soil columns:Consequences on soil moisture and salt content. Agricultural Water Management, 2008.95(4):498~502
    [23]Scofield, C.S., Salt balance in irrigated areas. Journal of Agricultural Research,1940,61:17~39
    [24]胡顺军,艾尼瓦·吾买尔,田长彦,周宏飞,宋郁东,王永平,蒋庆华,艾则孜,黄文山,吐尔逊.渭干河平原绿洲灌区合理灌比探讨.水土保持学报,2001,15(01):23~26
    [25]沈万斌,董德明,包国章,俞穆清,田卫,孙道玮.农灌区土壤次生盐渍化的防治方法及实例分析.吉林大学自然科学学报,2001,(01):99~102
    [26]龚元石,李保国.应用农田水量平衡模型估算土壤水渗漏量.水科学进展,1995,6(01):16~21
    [27]尚松浩.士壤水分模拟与墒情预报模型研究进展.沈阳农业大学学报,2004,35(5~6):455~458
    [28]程伍群,绳莉丽,郑秀萍,吴现兵.平原区土壤水资源量计算模型的研究.河北农业大学学报,2008,31(04):107~111
    [29]吕岁菊,李春光.:土壤水-盐运移规律数值模拟研究综述.农业科学研究,2005,26(01):80~84
    [30]Hanks R J, Bowers S B. Numerical solutions of the diffusion equation for the movement of water in soils. Soil Science Socioty of American Journal,1962,26:530~535
    [31]Van Genuchen M Th. Numerical solutions of the one dimensional saturated unsaturated flow equations.Research Report No.782WR209 Princeton University
    [32]Hwang, J.C., et al., Finite analytic numerical solution for two-dimensional groundwater solute transport. Water Resource,1985,21(9):1354~1360
    [33]Bersler E. Saline and sodic soil. Advanced Serioes in Agricultural Science,1982(10):66~71
    [34]雷志栋,杨诗秀.非饱和土壤水一维流动的数值计算.土壤学报,1982,19(02):141~142
    [35]余艳玲,熊耀湘.降雨条件下旱地土壤水分运动的数值模拟.中国农村水利水电,2003,(11): 19~21
    [36]姚良德,朱进生,谢正桐等.土壤水盐运动模式研究及其在干旱地区农田的应用.中国沙漠,2001,3(21):286~290
    [37]木拉提·胡塞因.土壤水分运动数学模型的建立及应用.新疆农业大学学报,2002,25(01):60~62
    [38]李晓勇,邵龙潭.吸灌条件下土壤水分运动数值模拟.大连理工大学学报,2003,43(04):484~487
    [39]王福利.用数值模拟方法研究土壤盐分动态规律.水利学报,1991,(01):1~8
    [40]王福利.降雨淋洗条件下溶质在土壤中运移的初步研究.土壤学报,1992,(04):20~24
    [41]徐力刚,杨劲松,张妙仙.士壤水盐运移的简化数学模型在水盐动态预报上的应用研究.土壤通报,2004,35(01):8~11
    [42]徐力刚,杨劲松,张妙仙.种植作物条件下粉砂壤质土壤水盐运移的数值模拟研究.土壤学报,2004,41(01):50~55
    [43]陈启生,戚隆溪.有植被覆盖条件下土壤水盐运动规律研究.水利学报,1996,(01):38~45
    [44]程先军,许迪.地下灌土壤水运动和溶质运移的数学模型及验证.农业工程学报,2001,17(06):1~4
    [45]李光永,郑耀泉,曾德超.地埋点源非饱和土壤水运动的数值模拟.水利学报,1996,(11):47~51
    [46]王言思.内蒙孪井灌区地下水补给的研究:[硕士学位论文].青岛:中国海洋大学, 2009
    [47]吕刚,吴祥云.土壤入渗特性影响因素研究综述.中国农学通报,2008,24 (07):494~499
    [48]李铎,宋雪琳,张燕君.傍河地下水水源地污染模式研究.地球学报-中国地质科学院院报,2000,21(02):202~206
    [49]鲍士旦.土壤农化分析.北京:中国农业出版社,2008
    [50]方生,陈秀玲.华北平原大气降水对土壤淋洗脱盐的影响.土壤学报,2005,42 (05):730~736
    [51]黄翠. 滨海地下咸水分布动态特征与治理可行性研究:[硕十学位论文].青岛:中国海洋大学,2009
    [52]马东豪,王全九,苏莹,史晓楠.微咸水入渗土壤水盐运移特征分析.灌溉排水学报,2006,25(1):62~66
    [53]俞仁培,杨道平.土壤碱化过程和碱化实质的研究.北京: 科学出版社,1987
    [54]B.A.柯夫达.盐渍土的发生和演变.北京:科学出版社,1957
    [55]陈巍,陈邦本,沈其荣.滨海盐土脱盐过程中pH变化及碱化问题研究.土壤学报,2000,37(04): 521~528
    [56]朱新军.内蒙古孪井灌区土壤水分运移及节水灌溉模式的研究:[硕士学位论文].青岛:中国海洋大学,2004
    [57]宋涛.内蒙孪井灌区土壤水盐运移规律研究:[硕士学位论文].青岛:中国海洋大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700