基于水循环模拟的农田土壤水效用评价方法与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,随着经济社会的快速发展,人口的迅猛增长,农业生产的供用水矛盾日益凸显。长期以来,粮食高产的压力促使我国农田形成了复种指数高、套种间种等耕作制度复杂、人工干预行为频繁的特点,农田水循环系统的“自然-人工”二元特征日益显著。在二元水循环模式基本认知的基础上,认识现代农田水文循环,运用数学模型定量模拟农田土壤水循环过程,并以此为依据评价农田水分的有效利用程度对维持农业高产稳产、实现农业高效节水和应对水资源危机具有十分重要的意义。
     本文认为,缓解当前农业供用水矛盾,需要开源和节流措施并重。在开源措施方面,应该充分挖掘土壤水资源的潜力,利用作物根系活动层土壤水库的调蓄作用来改善区域农田可供水量的时间不均匀性,可以在一定程度上缓解作物干旱缺水的程度。在节流措施方面,应充分提高农业水资源的利用效率,通过对农田土壤水循环过程的模拟和计算,解析土壤水循环过程中水分蓄量和通量的变化规律,辨识低效水分耗散过程,以采取相应措施,发掘土壤水资源潜力,进而提高农田水分的有效利用程度。同时,在农田管理措施方面,应普及和推广土壤测墒管理技术,而土壤水循环过程的模拟计算是制定灌溉措施、进行田间管理的基础性工作,为科学制定灌溉措施,充分提高单位水资源的产出效益提供重要的参考依据。
     在理论上,论文参考了国内外大量的相关研究,提出了农田土壤水效用的概念,并构建了土壤水效用评价定量指标体系;在应用上,论文以我国华北平原旱作农田为研究对象,利用区域尺度农田水循环模拟与土壤水效用评价模型—MODCYCLE1.5,解析了半湿润半干旱地区农田水分循环过程,并对研究区土壤水的效用程度进行了定量评价。具体的研究内容包括以下几个方面:
     1、从农田土壤水循环角度解析水分的运动路径和耗散效率,提出了农田水分高效利用评价的新方法。文章充分查阅和参考了国内外的相关研究,从区域尺度审视农田的水分循环过程,目的是实现农田土壤水资源的高效利用,手段是以分布式水文模型为工具,建立一套基于土壤水循环过程模拟的土壤水高效利用评价的新思路。
     2、本文尝试利用分布式水文模型对农田土壤水循环过程进行模拟研究。研究结合我国华北地区旱作农田的水文过程特点,利用改进的分布式水文模型MODCYCLE1.5对邯郸市农田水循环过程进行了详细的模拟。改进的水文模型充分考虑了研究区农田耕作的基本特点,利用海河流域土壤岩性大面积采样实测数据建立了模型土壤属性数据库,模型其他参数也经过了充分有效的率定,确保了模型对研究区农田水循环过程模拟结果的可靠性。
     3、文章从水循环过程的水量平衡效果、区域出境流量的模拟结果、区域农田土壤湿度的模拟结果以及农田作物产量的模拟结果等4个方面对模型进行了全面的验证,模拟结果与实测结果吻合效果较好,模型对研究区农田水循环的模拟结果可靠有效。
     4、文章提出了农田土壤水效用的新概念,土壤水效用指土壤水在开发利用过程中各个环节的资源属性、时空位置属性以及功能属性所处的合理化状态。本文提出了土壤水效用表征指标体系,表征指标包括:1)作物根区土壤水库有效库容;2)作物根区土壤水库空库容变化指标,该指标包括土壤水库空库容年内均值和空库容年内变差2个二级指标;3)作物根区土壤水库供水与作物需水的时空匹配度指标,该指标包括土壤水库供水与作物需水的时间匹配指数和空间匹配指数2个二级指标;4)作物根区土壤水库的补给效率和有效利用效率指标。
     5、定量计算了不同水平年邯郸市以县级行政区为单位的农田土壤水效用的各项表征指标。结果表明,研究区东部平原区较西部山区的土壤储水能力大,但全区域农田土壤水库有效供水条件较差,作物缺水和受旱程度较高。从土壤水供需的时间匹配程度来看,研究区冬小麦分蘖期、拔节期以孕穗期的土壤水供应明显不足,灌溉补水十分重要;从土壤水供需的空间匹配程度来看,邯郸市东中部.农田水分供需矛盾较为突出。区域土壤水补给效率计算结果显示,邯郸市各行政区农田年均土壤水补给效率都很高,说明土壤水在补给环节中水量的无效损耗不大;区域土壤水有效利用效率分计算结果显示,邯郸市各行政区农田年均土壤水有效利用效率均不高。
     6、文章以邯郸市县级行政区为单位,对其农田土壤水效用程度进行了综合评价,结果显示,邯郸市东西部地区土壤水效用综合指标值较高,中部山前地区较小。本文最后针对邯郸市农田耕作管理的现状,提出从改善作物种植结构、提高耕作层土壤的储水能力、应用测墒灌溉技术方法以及普及农业节水措技术等4个方面对农田土壤水进行全时空调控的措施。
Currently, with the rapid development of social economy and growth of population, the contradiction between water supply and demand in agriculture has become a serious problem. For a long time, the pressure of food security has encouraged the farming practice in China with high multi-cropping index, complex rotation systems and strong human intervention. The characteristic of natural-artificial dualistic water cycle in farmland is becoming more and more significant. Based on the concept of dualistic water cycle, this paper analyzed water cycle of farmland influenced by modern agricultural technologies, and quantitatively simulated the movement of soil water in regional scale. Meanwhile, this paper also evaluated the soil water utility according to the evaluating index system. On a whole, the research in this paper plays an important role in maintaining high and stable yield in agriculture, popularizing water-saving technologies in agriculture and coping with agricultural water scarcity.
     In order to alleviate the conflict of between water supply and demand in agriculture, we should pay much attention to both increasing volume of available water and reducing water demand. In terms of increasing volume of available water, the potential of soil water in farmland should be fully developed. The storage in crop root zone can smooth the uneven temporal distribution of available water in farmland and alleviate agricultural drought and water shortage to some extent. In terms of reducing water demand, efficiency of agricultural water use should be fully improved. Through simulating and calculating soil water cycle process of farmland, the relationship between the volume of water stored in soil reservoir and water flux in soil layer could be analyzed, which could be the reference to take the relevant measures to exploit the potential of soil water, inhibit low-efficiency water flux and then improve the level of efficient utilization of agricultural water. Meanwhile, as to the farmland management measure, monitoring-soil-moisture-for-irrigation method should be popularized, in which, soil water simulation and calculation are of great importance.
     Based on extensive literature review, this study proposed the concept of water utility and the quantitative evaluation index system on farmland soil water use, and North China Plain was selected as the study area. The water cycle simulation and soil water utility evaluation model-MODCYCLE1.5was used to analyze water cycle process in the study areas, by which, the utility efficiency of soil water in the study areas was quantitatively evaluated. This paper mainly includes the following aspects:
     1) Based on the analysis of the motion path and exchange of soil water cycle in farmland, this paper put forward a new concept and new evaluation method of soil water utility in farmland. Through a thorough review of relevant researches, this article aimed to achieve efficient use of farmland soil water resources by inspecting the farmland water cycle on regional scale. And the distributed hydrological model was adopted as a tool to establish a new system for evaluation on efficient utility of soil water.
     2) Distributed hydrological model was used in this paper to simulate the soil water cycle in farmland. Combined with the characteristics of the hydrological cycle of farmland in North China Plain, the hydrological model-MODCYCLE was modified and improved to be MODCYCLE1.5, by which, the farmland soil water cycle in Handan City was simulated and analyzed. MODCYCLE1.5considers the basic characteristics of the farmland in the study area, and creates the database of soil properties using the measured data of lithology of soil in Haihe River Basin. And the other parameters in MODCYCLE1.5were also effectively calibrated, improving the accuracy of the simulation and the calculation.
     3) The simulated results were sufficiently verified from the following aspects: simulated soil moisture in15soil moisture monitoring stations, yearly water balance in the entire area, yearly runoff running out of the area and the simulated yield of crop. The results show that there is a good agreement between the estimated values and the observed values, which indicate that the model is reliable.
     4) This paper gave a new concept about the soil water utility in farmland. It holds that the soil water utility refers to the rational state of the resource attribute, spatial-temporal distribution attribute and function attribute of soil water in its development and utilization. This paper also put forward the evaluation index system based on the new concept, which included:1) the effective storage of soil water reservoir in the crop root zone;2) the variation of the empty storage of soil water reservoir in the crop root zone, which includes2subindexes, the annual average value of the empty storage and the variation coefficient of the empty storage within one year;3) the spatial and temporal matching status between water supply of the soil water reservoir and water demand of the crop, which includes2subindexes, the spatial matching index and the temporal matching index;4) the recharge efficiency and discharge efficiency of the soil water reservoir in the crop root zone.
     5) This paper quantitatively analyzed the indexes of soil water utility in different hydrological level years of Handan City. The results show that the soil storage capacity in the eastern plain area is larger than that in the western mountainous areas. However, the condition of water supply in crop root zone of the study area is not good, and the crops seriously suffer from water deficiency and water stress. In terms of temporal matching status between soil water supply and crop water demand, water is severely deficient in the tillering stage, shooting stage and booting stage of winter wheat. Therefore, irrigation is important for wheat growth in the study area. In terms of spatial matching status between soil water supply and crop water demand, the agricultural water scarcity in the east and middle parts of Handan City is serious. According to the results, the efficiency of soil water recharge in Handan City is high, which indicates that inefficient water loss in the recharging process of the farmland is not large, while the efficiency of soil water discharge is much lower, indicating that a large amount of soil water can't be efficiently absorbed by crops.
     6) At last, the paper comprehensively evaluated the utility efficiency of soil water in different county districts. Results show that the comprehensive utility efficiency in the west mountainous part and the east plain part is higher than that in the middle part of Handan City. And this paper also proposed many measures to improve the utility efficiency of soil water based on the concept of temporal and spatial soil water management, which included changing planting structure, increasing the storage capacity in the crop root zone, applying monitoring-soil-moisture-for-irrigation method and popularizing water-saving technologies.
引文
[1]孙广忠.中国自然灾害灾情分析及减灾对策[J].中国科学院院刊,1990,3:202-209.
    [2]陈晓楠.农业干旱灾害风险管理理论与技术[D].西安:西安理工大学,2008.
    [3]中国人民共和国水利部.全国抗旱规划[R].北京,2011.
    [4]王凌河,赵志轩,黄站峰等.黄淮海地区农业水问题及保障性对策[J].生态学杂志,2009,28(10):2094-2101.
    [5]郑连生.广义水资源与适水发展[M].北京:中国水利水电出版社,2009.
    [6]沈振荣,于福亮,汪林.用好土壤水[J].当代生态农业,2001,(Z1):107-111.
    [7]沈振荣,苏人琼.中国农业水危机对策研究[M].北京:中国农业科技出版社,1998.
    [8]金凤君.华北平原城市用水问题研究[J].地理科学进展,2000,19(1):17-24.
    [9]刘琨.浅析邯郸市水资源现状及应对措施[J].城市建设理论研究(电子版),2012,13:1-4.
    [10]谷军方,李良县,杜富慧.华北地区区域用水负效应调查与分析方法-以邯郸地区为例[J].南水北调与水利科技,2010,8(2):61-65.
    [11]李然,姚洪敏.邯郸水资源对农业的影响及对策[J].水科学与工程技术,2010,1:22-24.
    [12]水循环的概念,http://en.wikipedia.org/wiki/Water_cycle.
    [13]叶守泽,詹道江.工程水文学[M].北京:中国水利水电出版社,2000.
    [14]尼罗河文明,]http.//baike.baidu. com/view/3123.htm.
    [15]王清.大禹治水的地理背景[J].中原文物,1999,1:34-42.
    [16]叶守泽,夏军.水文科学研究的世纪回眸与展望[J].水科学进展,2002,13(1):93-104.
    [17]吴持恭.水力学(第4版)[M].北京:高等教育出版社,2008.
    [18]闵骞.道尔顿公式的应用研究[J].水利水电科技进展,2005,25(1):17-20.
    [19]YAN Xiao-li, DENG Hui-lin. Analytical solutions to incompressible Navier-Stokes equations [J]. Journal of Jilin Normal University (Natural Science Edition),2010,1:71-76.
    [20]Mulvany, T. J. On the use of self-registering rain and flood gauges in making observations of the relations of rainfall and flood discharges in a given catchment [J]. Proceedings of the Institution of Civil Engineers of Ireland,1851,4:18-33.
    [21]张蔚榛.地下水与土壤水动力学[M].北京:中国水利水电出版社,1996.
    [22]章梓雄,董曾南.粘性流体力学(第二版)[M].北京:清华大学出版社,2011.
    [23]Richards, L. A. Capillary conduction of liquids through porous mediums [J]. Physics.,1931,1:318-333.
    [24]Sherman, L. K. Streamflow from rainfall by unit-graph method [J]. Engineering News Record,1932,108:501-505.
    [25]Penman, H. L. Natural evaporation from open water, bare and grass [J]. Proc. R. Soc. Lond., Ser. A,1948,193:120-145.
    [26]王浩,王建华.现代水文学发展趋势及其基本方法思考[J].中国科技论文在线,2007,2(9):617-620.
    [27]徐宗学等.水文模型[M].北京:科学出版社,2009.
    [28]徐宗学.水文模型:回顾与展望[J].北京师范大学学报(自然科学版),2010,46(3):278-289.
    [29]Sunil Thosaingge Dayaratne. Modelling of Urban Stormwater Drainage System Using ILSAX [D]. Australia:Victoria University of Technology,2000.
    [30]Nash, J.E. The form of the instantaneous unit hydrograph [J]. Int. Assoc. Sci. Hydrol.,45:114-121.
    [31]Rodriguez-Iturbe I, J B Valdes. The geomorphological structure of hydrological response [J]. Water Resour Res,1979,15(5):1409-1420.
    [32]Crawford N H, Linsley R K. Digital simulation in hydrology [R]. Standford, Department of Civil Engineering, University of California, Technical Report No. 39,1966.
    [33]Burnash R J C, Ferral R L, McGuire R A. A generalized streamflow simulation system-conceptual modeling for digital computers [R]. US Department of Commerce, National Weather Service and State of California,1973.
    [34]WMO. Intercomparison of conceptual models used in operational hydrological forcasting [R]. Operational Hydrology Report 7, WMO No.429, Geneva,1975.
    [35]袁作新.流域水文模型[M].北京:水利电力出版社,1990.
    [36]赵人俊.流域水文模拟-新安江模型和陕北模型[M].北京:水利电力出版社,1984.
    [37]刘家福,蒋卫国,占文凤等.SCS模型及其研究进展[J].水土保持研究,2010,17(2):120-124.
    [38]Neitsch, S L, Arnold, J G, Kiniry, J R, et al. Soil and water assessment tool theoretical documentation version 2000 [M]. College Station:Texas Water Resources Association,1998,34(1):73-89.
    [39]Freeze, R. A., Harlan, R. L. Blueprint for a physically-based digitally-simulated hydrologic response model. Journal of Hydrology,1969,9:237-258.
    [40]Abbott M B, Bathurst J C, Cunge J A. An introduction to the European Hydrological System-System Hydrologique European "SHE",1:history and philosophy of a physically-based distributed modeling system [J]. Journal of Hydrology,1986,87:45-59.
    [41]Abbott M B, Bathurst J C, Cunge J A. An introduction to the European Hydrological System-System Hydrologique European "SHE",2:structure of a physically-based distributed modeling system [J]. Journal of Hydrology,1986,87: 61-77.
    [42]Arnold, J.G., Allen, P.M.. Estimating hydrologic budgets for three Illinois watersheds [J]. J. Hydrol.,1996,176:57-77.
    [43]Arnold, J.G., Srinisvan, R., Muttiah, R.S., Williams, J.R.. Large area hydrologic modeling and assessment. Part I:model development [J]. J. AM. Water Resour. Assoc,1998,34(1):73-89.
    [44]庞靖鹏,徐宗学,刘昌明.SWAT模型研究应用进展[J].水土保持研究,2007,14(3):31-35.
    [45]仇亚琴.水资源综合评价及水资源演变规律研究[D].北京:中国水利水电科学研究院,2006.
    [46]沈晓东,王腊春,谢顺平.基于栅格数据的流域降雨径流模型[J].地理学报,1995,3:264-271.
    [47]郭生练,熊立华,杨井等.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学学报,2000,33(6):1-5.
    [48]贾仰文.WEP模型的开发与应用[J].水科学进展,2003,14(增刊12):50-56.
    [49]贾仰文,王浩,倪广恒等.分布式流域水文模型原理与实践[M].北京:中国水利水电出版社,2005.
    [50]王中根,刘昌明,黄友波.SWAT模型的原理、结构及应用研究[J].地理科学进展,2003,22(1):79-86.
    [51]Xuefeng Sang, Zuhao Zhou, Hao Wang, et al. Development of Soil and Water Assessment Tool on Human Water Use and Application in the Area of High Human Activities, Tianjin, China[J]. Journal of Irrigation and Drainage Engineering,2010,136(1):23-30.
    [52]代俊峰,崔远来.基于SWAT的灌区分布式水文模型-Ⅰ:模型构建的原理与方法[J].水利学报,2009(2):145-152.
    [53]代俊峰,崔远来.基于SWAT的灌区分布式水文模型-Ⅱ:模型应用[J].水利学报,2009(3):311-318.
    [54]陈晓宏,涂新军,谢平等.水文要素变异的人类活动影响研究进展[J].地球科学进展,2010(8):800-811.
    [55]孟祥琴,郭红霞,乔光建.人类活动影响下水文要素变化特征分析[J].水科学与工程技术,2012,6:9-12.
    [56]LIU Jiahong, QIN Dayong, WANG Hao, et al. Dualistic water cycle pattern and its evolution in Haihe River basin[J]. China Science Bulletin,55(16):1688-1697.
    [57]Wouter Buyteart, Rolando Celleri, Bert De Bievre, et al. Human impact on the hydrology of the Andean paramos [J]. Earth Science Reviews,2006,79:53-72.
    [58]E. Todni. Hydrological catchment modeling:past, present and future [J]. Hydrol. Earth Syst. Sci.,2007,11(1):468-482.
    [59]Nigel Arnell. Human influences on hydrological behavior:an international literature suvey [R]. United Nations educational scientific and cultural organization, Paris,1989.
    [60]黄锡荃等.水文学[M].北京:高等教育出版社,1985.
    [61]李洪建,王孟本,陈良富等.不同利用方式下土壤水分循环规律的比较研究[J].水土保持通报,1996,16(2):24-28.
    [62]王少丽,N. Randin.一种简单的年降雨-径流概念模型[J].水文,2011,21(5):20-23.
    [63]穆兴民,王文龙.黄土高塬沟壑区水土保持对小流域地表径流的影响[J].水利学报,1999,2:763-77.
    [64]徐建华.人类活动对自然环境演变的影响及其定量评估模型[J].兰州大学学报,1995,3:144-150.
    [65]仇亚琴.汾河流域水土保持措施水文水资源效应初析[J].自然资源学报,2006,1:24-30.
    [66]张俊娥,陆垂裕,秦大庸等.基于分布式水文模型的区域“四水”转化[J].水科学进展,2011,5:595-604.
    [67]王浩,陈敏建,秦大庸等.西北地区水资源合理配置和承载能力研究[M].郑州:黄河水利出版社,2003.
    [68]秦大庸,刘家宏,陆垂裕等.海河流域二元水循环研究进展[M].北京:科学出版社,2010.
    [69]王浩,王建华,秦大庸等.基于二元水循环模式的水资源评价理论方法[J].水利学报,2007,37(12):1496-1502.
    [70]王西琴,刘昌明,张远.基于二元水循环的河流生态需水水量与水质综合评价方法—以辽河流域为例[J].地理学报,2006,61(11):1132-1140.
    [71]贾仰文,王浩,王建华等.黄河流域分布式水文模型开发和验证[J].自然资源学报,2005,20(2):300-308.
    [72]贾仰文,王浩,周祖昊等.海河流域二元水循环模型开发及其应用-Ⅰ.模型开发与验证[J].水科学进展,2010,21(1):1-8.
    [73]贾仰文,王浩,甘泓等.海河流域二元水循环模型开发及其应用-Ⅱ.水资源管理战略研究应用[J].水科学进展,2010,21(1):9-15.
    [74]王振龙,高建峰.实用土壤墒情监测预报技术[M].北京:中国水利水电出版社,2006.
    [75]杨曙光.土壤墒情研究进展[J].山西水利,2007,1:106-109.
    [76]胡顺军,田长彦,周宏飞.中子仪土壤墒情监测方法研究[J].干旱地区农业研究,2000,18(2):70-75.
    [77]熊运章,林性粹,董家伦等.伽马透射法咋爱土壤水分动态研究中的应用及其改进[J].西北农林科技大学学报(自然科学版),1981,1:23-34.
    [78]高峰,胡继超,卞赞.国内外土壤水分研究进展[J].安徽农业科学,2007,35(34):11146-11148.
    [79]韩晨燕,封维忠,施山菁等.基于FDR原理的土壤湿度实时监控灌溉系统[J].节水灌溉,2012,2:75-77.
    [80]任守华,黄操军,周志胜.基于阻抗的土壤墒情检测传感器模型[J].农机化研究,2010(4):119-122.
    [81]杨子江,黄建国.高分子湿度传感器研究进展[M].中国新技术新产品,2010,24:12.
    [82]柳钦火,辛景峰,辛晓洲等.基于地表温度和植被指数的农业干旱遥感监测方法[J].科技导报,2007,25(6):12-18.
    [83]冉琼.全国土壤湿度及其变化的遥感反演与分析[D].北京:中国科学研究生院,2005.
    [84]余涛,田国良.基于热红外遥感技术的土壤含湿度热惯量法的研究[J].遥感学报,1997,1(1):24-31.
    [85]刘春国,卢晓峰,高晓峰.Lansat-7 ETM+热红外波段高低增益状态数据反演亮度温度比较研究[J].河南理工大学学报(自然科学版),2011,30(5):561-566.
    [86]Kahle A B. A simple thermal model of the Earth's surface for geologic mapping by remote sensing[J]. J. Geophys. Res,1977,82:1673-1680.
    [87]李亚春,王志华.我国干旱热红外遥感监测方法的研究进展[J].干旱地区农业研究,1999,17(2):98-102.
    [88]郭英,沈彦俊,赵超.主被动微波遥感在农区土壤水分监测中的应用初探[J].中国生态农业学报,2011,19(5):1162-1167.
    [89]Schmugge T J, O'Neill P E, Wang J R. Passive microwave soil moisture research. IEEE Trans Geosci Remote Sensing,1986,24:12-22.
    [90]刘万侠,王娟,刘凯等.植被覆盖地表主动微波遥感反演土壤水分算法研究[J].热带地理,2007,27(5):411-415.
    [91]高峰,王介民,孙成权等.微波遥感土壤湿度研究进展[J].遥感技术与应用,2001,16(2):97-102.
    [92]Fawwaz T. Ulaby, Pascale C. Dubois, Jakob van Zyl. Radar mapping of surface soil moisture[J]. Journal of Hydrology,1996,184(1-2):57-84.
    [93]张红梅,沙晋明.遥感监测土壤湿度方法综述[J].中国农学通报,2005,21(2):307-311.
    [94]侯宪东,汪志荣,张建丰.非饱和土壤水分运动数值模拟研究综述[J].水资源与水工程学报,2006,17(4):41-45,49.
    [95]尚松浩.土壤水分模拟与墒情预报模型研究进展[J].沈阳农业大学学报,2004,35(5-6):455-458.
    [96]Kemachandra Ranatunga, Eloise R. Nation, David G. Barratt. Review of soil water models and their applications in Australia [J]. Environmental Modelling and Software,2008,23(9):1182-1206.
    [97]李明星,马柱国,杜继稳.区域土壤湿度模拟检验与趋势分析[J].中国科学:地球科学,2010,40(3):363-379.
    [98]Fasinmirin JT, Olifayo AA, Oguntunde PG. Calibration and validation of a soil water simulation model (WaSim) for field grown Amaranthus cruentus[J]. International Journal of Plant Production,2008,2(3):269-278.
    [99]王润冬,陆垂裕,孙文怀等.基于MODCYCLE模型的农田降水入渗补给研究[J].人民黄河,2011,33(4):51-53.
    [100]汪薇,张瑛.陆面过程模式的研究进展简介[J].气象与减灾研究,2010,33(3):1-6.
    [101]孙淑芬.陆面过程的物理生化机理和参数化模[M].北京:气象出版社,2005.
    [102]易秀,李现勇.区域土壤水资源评价及其研究进展[J].水资源保护,2007,23(1):1-5.
    [103]Budagovskll A I, Busarova O E. Basis of methods to evaluate changes in soil water resources and river runoff for different climate change scenarios [J]. Water Resources,1991,4:28-32.
    [104]靳孟贵,张人权,方连玉等.土壤水资源评价研究[J].水利学报,1999,8:30-34.
    [105]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展,1999,10(3):311-318.
    [106]施成熙,粟宗嵩,曹万金.农业水文学[M].北京:农业出版社,1984.
    [107]刘昌明,任鸿遵.水量转换实验与计算分析[M].北京:科学出版社,1988.
    [108]冯谦诚,王焕榜.土壤水资源评价方法的探讨[J].水文,1990,4:28-32.
    [109]夏自强,李琼芳.土壤水资源及其评价方法研究[J].水科学进展,2001,12(4):535-540.
    [110]孟春红.土壤水资源评价的理论与方法研究[D].武汉:武汉大学,2005.
    [111]王浩,杨贵羽,贾仰文等.土壤水资源的内涵及评价指标体系[J].水利学报,2006,37(4):389-394.
    [112]沈荣开.土壤水资源及其计算方法浅议[J].水利学报,2008,39(12):1395-1400.
    [113][1] Budagovskll A I. Soil water resources and available water supply of vegetation cover[J]. Water Resources,1985,12(4):317-325.
    [114]刘昌明.中国水量平衡与水资源储量的分析[C].中国地理学会水文专业委员会.中国地理学会第三次全国水文学术会议论文集.北京:科学出版社,1986:113-118.
    [115]刘丽芳,许新宜,王会肖等.土壤水资源评价研究进展[J].北京师范大学学报(自然科学版),2009,Z1:621-625.
    [116]由懋正,王会肖.农田土壤水资源评价[M].北京:气象出版社,1996.
    [117]靳孟贵,张人权,方连玉等.土壤水资源评价研究[J].水利学报,1999,8:30-34.
    [118]Marinus G. Bos. Standards for irrigation efficiencies of ICID[J]. Journal of Irrigation and Drainage Division,1979,105(1):37-43.
    [119]Hart W E, Skogerboe G V, Peri Gideon. Irrigation performance:An evaluation [J]. Journal of Irrigation and Drainage Division,1979,105(3):275-288.
    [120]Molden D. Accoumting for water use and productivity [M]. Colombo, IWMI, Sri Lanka,1997.
    [121]陈皓锐,黄介生,吴靖伟等.灌溉用水效率尺度效应研究评述[J].水科学进展,2011,22(6):872-880.
    [122]Willardson L S, Allen R G, Frederiksen H, et al. Universal fractions and elimination of irrigation efficiencies [C]. Paper presented at the 13 th Technical Conference of the US Committee on Irrigation and Drainage. Denver:Colorado, 1994.
    [123]Chris Perry. Efficient irrigation, inefficient communication, flawed recommendations [J]. Irrigation and Drainage,2007,56(4):367-378.
    [124]李锡录.节水农业中土壤水研究有关问题的探讨[J].节水灌溉,1999,1:13-17.
    [125]才杰.春季只浇一次水亩产达400斤北农大攻下小麦节水高产技术[J].北京农业,1995,10:23-25.
    [126]Sonia I. Seneviratne, Thierry Corti, Edouard L. Davin, et al. Investigating soil moisture-climate interactions in a changing climate:A review[J]. Earth-Science Reviews,2010,99(3-4):125-161.
    [127]张明炷,黎庆淮,石秀兰等.土壤学与农作学(第三版)[M].北京:水利水电出版社,1994.
    [128]杨文志,邵明安.黄土高原土壤水分研究[M].北京:科学出版社,2000.
    [129]康绍忠.土壤水分动态随机模拟研究[J].土壤学报,1990(1):17-24.
    [130]申慧娟,严昌荣,戴亚萍.农田土壤水分预测模型的研究进展及应用[J].生态科学,2003,22(4):366-370.
    [131]Kemachandra Ranatunga, Eloise R. Nation, David G. Barratt. Review of soil water models and their applications in Australia[J]. Environmental Modelling and Software,2008,23(9):1182-1206.
    [132]Syukuro Manabe. Climate and ocean circulation:1. The atmospheric circulation and the hydrology of the earth's surface[J]. Monthly weather review, 1969,97(11):739-774.
    [133]Richard G. Allen, Luis S. Pereira, Dirk Raes, et al. Crop evapotranspiration: Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 [R]. Food and Agricultural Organization of the United Nations, Rome, 1998.
    [134]Green W H, Ampt G A. Studies on soil physics:1. Flow of air and water through soils [J]. J. Agric. Sci.,1911,4(1):1-24.
    [135]Horton R E. An approach toward a physical interpretation of infiltration capacity [J]. Soil Sci. Soc. Am. Proc,1940,3:399-417.
    [136]Philip J R. The theory of infiltration:1 the infiltration equation and its solution [J]. Soil Sci.,1957,83(5):345-357.
    [137]W. R. Gardner, C. F. Ehlig. The influence of soil water on transpiration by plants [J]. Journal of Geophysical Research,1963,68(20):5719-5724.
    [138]Gardner W R. Relation of root distribution to water uptake and availability [J]. Agronpmy Journal,1964,56(1):41-45.
    [139]Fred J. Molz. Models of water transport in a soil-plant system:A review [J]. Water Resour Res.,1981,17(5):1245-1260.
    [140]F. J. Molz, Irwin Remson. Extraction term models of soil moisture use by transpiring plants [J]. Water Resour. Res.,1970,6(5):1346-1356.
    [141]邵明安,杨文治,李玉山.植物根系吸收土壤水分的数学模型[J].土壤学报,1987,24(4):295-305.
    [142]郭庆荣,张秉刚.土壤水分有效性研究综述[J].土壤与环境,1995,2:119-124.
    [143]Raats P. A.C. Analytical solutions of a simplified flow equation of water in unsaturated soils [J]. Transactions of the ASAE,1976,19(4):683-689.
    [144]孟春红,夏军.“土壤水库”储水量研究[J].节水灌溉,2004,4:8-10.
    [145]王健.陕北黄土高原土壤水库动态特征的评价与模拟[D].西北农林科技大学,2008.
    [146]郭凤台.土壤水库及其调控[J].华北水利水电学院学报,1996,17(2):72-80.
    [147]张俊娥,陆垂裕,秦大庸.基于MODCYCLE分布式水文模型的区域产流规律[J].农业工程学报,2011,27(4):65-71.
    [148]秦大庸,刘家宏,陆垂裕等.海河流域二元水循环研究进展[M].科学出版社,2011.
    [149]张俊娥.强人类活动地区“四水”转化定量研究—以天津市为例[D].北京:中国水利水电科学研究院,2011.
    [150]邯郸市水利局.河北省邯郸市水资源评价[M].北京:学苑出版社,2008.
    [151]毕雪.变化环境下区域水循环响应定量研究—以邯郸地区为例[D].北京:中国水利水电科学研究院,2010.
    [152]王玉辉,李社芳.河北省粮食主产区农民增收途径调查与对策思考[J].经济与管理研究,2002,5:9-12.
    [153]曹升赓.土壤剖面[J].土壤,1980,3:112-116.
    [154]陈玉民,郭国双,王广兴等.中国主要作物需水量与灌溉[M].水利电力出版社,1995.
    [155]李博.多指标综合评价方法应用中存在的问题与对策[J].沈阳工程学院学报(社会科学版),2010,6(2):200-202,236.
    [156]邱东.多指标综合评价方法研究综述[J].统计研究,1990,6:43-51.
    [157]李鹏,俞国燕.多指标综合评价方法研究综述[J].机电产品开发与创新,2009,22(4):24-25,28.
    [158]虞晓芬,傅玳.多指标综合评价方法综述[J].统计与决策,2004,11:119-121.
    [159]姚凡凡,马亚龙,孙明.基于主客观组合赋权法的整体评估模型研究[C].2009全国仿真技术学术会议论文集,2009,205-207.
    [160]朱建军.层次分析法的若干问题研究及应用[D].沈阳:东北大学,2005.
    [161]Saaty Thomas L. Relative Measurement and its Generalization in Decision Making:Why Pairwise Comparisons are Central in Mathematics for the Measurement of Intangible Factors-The Analytic Hierarchy/Network Process [J]. Review of the Royal spanish Academy of Sciences, Series A, Mathematics,2008, 102 (2):251-318.
    [162]李美娟,陈国宏,陈衍泰.综合评价中指标标准化方法研究[J].中国管理科学,2004,12(Special issue),45-48.
    [163]焦立新.评价指标标准化处理方法的探讨[J].安徽农业技术师范学院学报,1999,13(3):7-10.
    [164]张振伟.河北省土壤水资源利用潜力分析与研究[D].保定:河北农业大学,2008.
    [165]靳孟贵,张人权,孙连发等.土壤水全时空调控的初步探讨[J].水文地质工程地质,1998,1:47-50.
    [166]靳孟贵,高云福,张人权等.田间土壤水全时空调控的试验研究[J].地球科学-中国地质大学学报,1997,22(6):656-659.
    [167]Menggui Jin, Renquan Zhang, Lianfa Sun, et al. Temporal and spatial soil water management:a case study in the Heilonggang region, PR China [J]. Agricultural Water Management,1999,42:173-187.
    [168]靳孟贵,方连育等.土壤水资源及其有效利用—以华北平原为例[M].北京:中国地质大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700