电站锅炉煤粉燃烧过程及其NO_x生成的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤粉锅炉是火力发电厂的重要设备之一,它的安全性和经济性对生产十分重要。提高锅炉效率、减少超温爆管、降低污染物的排放等对国民经济的发展有重要意义。而这些都必须深入详细地研究炉膛内煤粉的燃烧过程及其产生的温度场、速度场等。
    而在过去几十年中,煤粉燃烧技术的发展主要是基于电厂锅炉运行所积累的经验及一些小规模试验装置所测得的数据,这些经验和数据会局限燃烧技术的应用。随着电子计算机技术的不断发展,燃烧过程的数值模拟已经成为燃烧理论研究和燃烧装置设计的重要手段,它能够详细地模拟炉内燃烧所产生的温度场、速度场,压力场以及各种组分的分布和污染物的产生等。
    本文以太原第二热电厂四期扩建200MW机组7#炉为研究对象,在CFD软件FLUENT原有燃烧综合模型的基础上,通过该软件提供的用户接口函数udf,对其中的挥发份析出模型进行了改进,采用了比较先进的活化能分布模型即DAEM模型,再对7#炉的燃烧过程和污染物的生成进行数值模拟。得出了炉内C(S)、CH4、NO等组分的分布,从而指导实际锅炉运行及进行污染物的控制。
    本文深入讨论了国内外对煤粉燃烧各个过程所采用的子模型,比较其优缺点。在计算时,不仅考虑了采用模型的先进性,而且还考虑了各个子模型之间的相互协调及一个合理的计算时间的问题。
Boiler is one of the main equipments in the power plant, and it's security and economy are very important. To increase the efficiency of the boiler, decrease the occurring of the blowout of the pipes, and reduce the let of the pollutant and so on, we need to analysis the process of the combustion of pulverized coal in the boiler and it's temperature distributions, pressure distribution, velocity, and so forth.
    However, development of coal combustion technology in the past was largely empirical in nature, being based primarily on years of accumulated experience in operations of utility furnaces and on data obtained from sub-scale test facilities. Empirically based experience and data have limited applicability. With the fast development of computer, the numerical simulation of combustion has been a important means of the combustion theory research and combustion device design, and can accurately predict the temperature distributions, gas composition, velocity, NOx formation and so on.
    In this paper, by using the user defined functions of the CFD software FLUENT, I introduced the more advanced devolatilization model DAEM into the software instead of the original devolatilization models. So on the basis of the other submodels of the comprehensive combustion models in the software, the numerical simulation of the process of the combustion pulverized coal and the formation of NOx of the seventh boiler of the 200MW set of the Tai Yuan Second Thermal Power Plant is done, and the distribution of C(S), CH4 and NO can be seen, and this will help the control of pollutant and running of the boiler.
    The submodels used in the process of the pulverized coal combustion are discussed in this paper,. a comprehensive model must balance submodels sophistication with computational practicality. In other words, a
    
    comprehensive model must incorporate submodels that not only simulate the phenomena of interest, but do so in a way that can be coupled with the other submodels and solved in a reasonable amount of time.
引文
(1) A.M.Eaton et al., Components, formulations, solutions, evaluation, and application of comprehensive combustion models, Progress in Energy and Combustion Science 25 (1999) 387-436
    (2) Annual Energy Review 1997. DOE/EIA-0384(97), US Department of Energy, Energy Information Agency, Washington, DC, 1998
    (3) 陶文铨 计算传热学的近代进展 科学出版社 2000.6
    (4) Liu Xuguang. The Analysis of Distributed Activation Energy Model for Coal Pyrolysis and the Simulation of Pressurized Gasification of Coal in Fixed-bed Gasifier
    (5) Smith KL, Smoot LD, Fletcher TH, Pugmire RJ. The structure and reactions of coal. New York: Plenum Press,1984
    (6) G.G.De Sote. Overall Reaction Rates of NO and N2 Formation from Fuel Nitrogen. Fifteenth symposium(International) on Combustion, The Combustion Institute,1975.p.1093
    (7) Bird RB, Stewart WE, Lightfoot EN, Transport phenomena, New York: Wiley, 1960
    (8) Hoffman KA, Chiang ST, Siddiqui S, Papadakis M, Fundamental equations of fluid mechanics, Witchita, KS: Engineering Education System, 1996
    (9) Crowe CT, Smoot LD, Chap 11, In: Smoot LD, Pratt DT, editors. Pulverized coal combustion and gasification, New York: Plenum Press, 1979,p.15
    (10) Gorner K, Zinser W, Predictions of three-dimensional flows in utility boiler furnaces and comparison with experiments, The Annual ASME Conference, San Diego, CA,1987
    (11) Rodi W, Turbulence models and their application in hydraulics, Institute for Hydromechanics, University of Karlsruhe, Karlsruhe, Federal Republic of Germany, 1984
    (12) Wilox DC, Turbulence modeling for CFD, La Canada, CA: DCW Industries, Inc., 1998
    (13) Sloan DG, Smith PJ, Smoot LD, Prog. Energy Combustion Sci., 1986;12:163
    (14) Bousinessq TV, Mem Pres Acad Sci 1877; 23:46, 3rd ed, Paris
    (15) Harlow FH, Nakayama PI, Transport of turbulence energy decay rate,Los Alamos National Laboratory Report No. LA-3854, Los Alamos, NM, 1968
    (16) Jones WP, Launder BE, Int J Heat Mass Transfer 1972;15:301
    
    
    (17) Launder BE, Spalding DB, Lectures in mathematical models of tuebulence, New York: Academic Press, 1972
    (18) Speziale CG, On nonlinear k-1 and k-ε models of turbulence, J Fluid Mech 1987; 178:459
    (19) Yakhot V, Orszag SA, J Sci Comput 1986; 1:1
    (20) Yakhot SA, Orszag S, Thangam S, Gatski TB, Speziale CG, Phys Fluids 1992;16:189
    (21) Djilali N, Gartshore I, Salcudean M, Numer Heat Transfer, Part A 1989; 16:189
    (22) Smoot LD,Smith PJ, Coal combustion and gasification, New York: Plenum Press, 1985
    (23) Magnussen BF, Hjertager BH, Sixteenth Symposium ( International) on Combustion, The Combustion Institute, 1976, p. 719
    (24) Spalding DB, Thirteenth Symposium (International) on Combustion, The Combustion Institute, 1970, p.649
    (25) Weber R, Peters AAF, Breithaupt PP, Combustion modeling cofiring and NOx control, In: Gupta AK, Metha A, Moussa NA, Presser C, Rini MJ, Saltiel C, Warchol J, Whaley H, editors, FACT, 17, ASME Book No, H000827, 1993
    (26) Kent JH, Bilger RW, Sixteenth Symposium (International) on Combustion, The Combustion Institute, 1977, p.1643
    (27) Kuo, KKY, Principles of combustion, New York: Wiley, 1986
    (28) Lockwood FC, Naguib AS, Combust Flame 1975; 24:109
    (29) Pope SB, Prog. Energy Combust Sci 1985; 11:119
    (30) Correa SM, Pope SB, Tweenty-fourth Symposium (International) on Combustion, The Combustion Institute, 1992,p.279
    (31) F.A.Williams Progress in knowledge of flamelet structure and extinction, Progress in Energy and Combustion Science 26 (2000) 657-682
    (32) N. Peters. Laminar diffusion flamelet models in non-premixed turbulent combustion, Progress in Energy and Combustion Science 10(1984) 319-339
    (33)N. Peters. Laminar flamelet concepts in turbulent combustion, Twenty-first Symposium (International) on Combustion, The Combustion Institute, 1986, p 1231-1250
    (34) Menguc PP, Webb BW. Radiative heat transfer. In: Smoot LD, editor. Fundamentals of coal combustion for clean and efficient use. Amsterdam: Elsevier, 1993. p.375 [chapter 5]
    
    
    (35)Viskanta R, Menguc MP. Prog Energy Combust Sci. 1987;10:97
    (36)Taniguchi H, Funazu M. Bull JSME 1970;13:458
    (37)Xu XC. Eighteenth Symposium(International) on Combustion, The Combustion Institute, 1981.p.1919
    (38)Gupta RP, Wall TF, Truelove JS. Int J Heat Mass Transfer 1983;26:1649
    (39)Hottel HC, Sarofim AF. Radiative transfer. New York: McGraw-Hill,1959
    (40)Hottel HC, Cohen ES. AICHE J 1958;4:3
    (41)Noble JJ. Int J Heat Mass Transfer 1975;18:261
    (42)Smith TF, Byun KH, Ford MJ. In: Tien CL, Carey VP, Ferrell JK, editors. Heat transfer-1986.p.803
    (43)Fiveland WA. J Heat Transfer 1984;106:699
    (44)Chandrasekhar S. Radiative transfer. London: Oxford University Press, 1950[also New York: Dover,1960]
    (45)Carlson BG, Lathrop KD. In: Greenspan H, Kelber C, Okrent D, editors. Transport theory-the method of discrete-ordinates in computing methods in reactor physics. New York: Gordon and Breach,1968
    (46)Lewis EE, Miller Jr WF. Computational methods of neutron transport. New York: Wiley, 1984
    (47)Fiveland WA. ASME Paper No. HT-20,1982
    (48)Fiveland WA. J Thermophys Heat Transfer 1988;2:309
    (49)Chai JC, Lee HS, Patankar SV. J Thermophys Heat Transfer 1994;8:421
    (50)DeMarco AG, Lockwood FC. La Rivista dei Combustible 1975;22:184
    (51)Lockwood FC, Shah NG. Heat transfer-1978,2. Washington, DC: Hemisphere, 1978.p.33
    (52)Higenyi J, Bayazitoglu Y. J Heat Transfer 1980;102:719
    (53)Ratzel III AC, Howell JR. J Heat Transfer 1983;105:333
    (54)Fiveland WA, Wessel RA. ASME Paper No. 86-HT-35. ASME, New York, 1986
    (55)Gosman AD, Lockwood FC, Megahed IEA, Shah NG. J Energy 1982; 6:353
    (56)A.M Eaton et al. Progress in Energy and Combustion Science 25 (1999) 387-436
    (57)Faeth GM. Prog Energy Combust Sci 1987;13:293
    (58)Sirignano WA. In: Chung TJ, editor. Numerical modeling in combustion. Washington DC:
    
    Taylor and Francis, 1993.p.457
    (59)Elghobashi S, Abou-Arab T, Rizk M, Mostafa A. Int J Multiphase Flow 1984;10:697
    (60)Crowe CT, Sharma MP, Stock DE. J Fluids Engng 1977;99:325
    (61)Boysan F, Ayers WH, Swithenbank J. Trans Inst Chem Engng 1982;60:222
    (62)Melville WK, Bray KNC. Int J Heat Transfer 1979;22:647
    (63)Shuen JS, Chen LD, Faeth GM. AIChE J 1983;29:167
    (64)Gosman AD, Ioannides E. AIAA 19th Aerospace Science Meeting, 81-0323, 1981
    (65)Baxter LL, Smith PJ. Energy and Fuels 1993;7:852
    (66)Serio et al. Kinetics of coal pyrolysis, Energy and Fuels, Vol.1, No.2,1987
    (67)Gavalas GR. Coal pyrolysis. New York: Elsevier, 1982
    (68)Solomon PR. In: Schlosberg RH, editor. Chemistry of coal conversion. New York: Plenum, 1985.p.121
    (69)Grant DM, Pugmire RJ, Fletcher TH, Kerstein AR. Energy and Fuels 1989;3:175
    (70)Solomon PR, Hamblen DG, Carangelo RM, Serio MA, Deshpande GV. Fuel 1986;65:182
    (71)Truelove JS, Jamaluddin AS. Combust Flame 1986;64:369
    (72)Kobayashi H, Howard JB, Sarofim AF. Sixteenth Symposium (International) on Combustion, The Combustion Institute, 1976.p.411
    (73)Ubhayakar SK, Stichkler DB, von Rosenberg CW, Gannon RE. Sixteenth Symposium (International) on Combustion, The Combustion Institute, 1976.p.427
    (74)Solomon PR, Serio MA, Hamblen DG, Yu ZZ, Charpenay S. Pre-print. Chem Soc, Fuel Chem 1990;35:479
    (75)Solomon Pr, Serio MA, Suuberg EM. Prog Energy Combust Sci 1992;18:133
    (76)Niksa S, Kerstein AR. Energy and Fuels 1991;5:647
    (77)Niksa S. Energy and Fuels 1991;5:665
    (78)Niksa S. Energy and Fuels 1991;5:673
    (79)Grant DM,Pugmire RJ, Fletcher TH, Kerstein AK. Energy and Fuels 1989;3:175
    (80)Fletcher TH, Kerstein AR, Pugmire RJ, Grant DM. Energy and Fuels 1990;4:54
    (81)Fletcher TH, Kerstein AR, Pugmire RJ, Grant DM. Energy and Fuels 1992;6:414
    (82)Hobbs M.L, Radulovic P.T, Smoot F.G. Modeling fixed-bed coal gasifiers, AIChE J.,
    
    1992,38(5):681-702
    (83)Solomon P.R, Hamblen D.G, Carangelo R>M. General model for coal devolatilization, Energy and Fuels, 1988, 2:405-422
    (84)Niksa S, Kerstein A.R. FLASHCHAIN theory for rapid coal devolatilization kinetics. 2. Impact of operation conditions, Energy and Fuels, 1991,5:673-683
    (85)Vand V. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum, Proc. Phys. Soc. (London), 1942, A55,p222
    (86)Anthony D. B, Howard J. B, Hottel H. C. Rapid devolatilization of pulverized coal, in the proceeding of 15th symp on combustion, The Combustion Institute, Pittsburgh,1975,p1303
    (87)Mitchell RE. Twenty-second symposium( International) on Combustion, The Combustion Institute, 1988.p.69
    (88)Hurt RH, Mitchell RE. Twenty-fourth symposium( International) on Combustion, The Combustion Institute, 1992.p.1243
    (89)Hecker WC, McDonald KM, Reade W, Swensen MR, Cope RF. Twenty-fourth symposium( International) on Combustion, The Combustion Institute, 1992.p.1225
    (90)Hurt R. Combust Flame 1998;113:181
    (91)Reade WC, Morris K, Hecker WC. In: Pajares JA, Tascon JMD,editors. Proceedings of the 8th International Conference on Coal Science, Amsterdam: Elsevier, 1995
    (92)Reade WC, Hecker WC. Paper No.94-05, Western States Section, The Combustion Institute,1995
    (93)Mescher AM, Essenhigh RH. Twenty-sixth symposium( International) on Combustion, The Combustion Institute, 1996.p.3085
    (94)Boardman RD, Smoot LD. Pollutant formation and control. In: Smoot LD, editor. Fundamentals of coal combustion for clean and efficient use. Amsterdam: Elsevier,1993.p.433
    (95)Hill SC, Smoot LD. Prog Energy Combust Sci, 1999. Submitted for publication
    (96)Zel'dovich YB, Sadovnikov PY, Frank-Kamentskii DA. Translated by Shelef. Oxidation of nitrogen in combustion. Moscow: Academy of Sciences of USSR, 1947
    (97)Lavoie GA, Heywood JB, Keck JC. Combust Sci Tech 1970;1:313
    (98)Hanson RK, Saliman S. In: Gardiner WC, editor. Combustion chemistry.1984.p.361
    
    
    (99)Westenberg AA. Combust Sci Tech 1971;9:59
    (100)M. Missaghi, M.Pourkashanian, A.Williams, and L.Yap. In Proceedings of American Flame Days Conference, USA, 1990
    (101)N.Peters. Eighteenth symposium( International) on Combustion, The Combustion Institute, 1981.p.33
    (102)D. L. Baulch et al. Evaluated Kinetic Data for Combustion Modelling. J. Physical and Chemical Reference Data, 21(3),1992
    (103)C. Westbrook and F. Dryer. Chemical Kinetic Modelling of Hydrocarbon Combustion. Prog Energy Comb Sci, page 1,1984
    (104)A.A. Westenberg. Comb Sci Tech, 4:59, 1971
    (105)R.W.Schefer, M.Namazian, J.Kelly. Combustion Research Facility News, volume3,number 4. Sandia,1991
    (106) F. Backmier, K.H. Eberius, T. Just. Comb Sci Tech,1973;7:77
    (107) V. Dupont, M.Porkashanian, A. Williams, R. Woolley. Reduction of NOx formation in natural gas burner flames. Fuel, 72(4): 497-503, Apr. 1993
    (108) T. J. Houser, M. Hull, R. Always, T. Biftu. Int Journal of Chem Kinet, 1980;12:579
    (109) L. D. Smoot, P.J. Smith. NOx Pollutant Formation in a Turbulent Coal System. Coal Combustion and Gasification, page 373, Plenum, Plenum, NY, 1985
    (110) F. C. Lockwood, C. A. Romo-Millanes. Mathematical Modelling of Fuel - NO Emissions From PF Burners. J. Int. Energy, 65:144-152,September 1992
    (111) J. M. Levy, L. K. Chen, A. F. Sarofim, J. M. Beer. NO/Char Reactions at Pulverized Coal Flame Conditions. Eighteenth symposium( International) on Combustion, The Combustion Institute, 1981
    (112) Chen W, Smoot LD, Fletcher TH, Boardman RD. Energy and Fuels 1996; 10:1036
    (113) Chen W, Smoot LD, Hill SC, Fletcher TH. Energy and Fuels 1996; 10:1046
    (114) Smoot LD, XU H, Hill SC. Prog Energy Combust Sci 1998;24:385

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700