玉龙式斑岩型铜(钼)矿床找矿方向研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本次研究工作通过参与西藏矿产资源潜力评价项目,在前期收集图区和图区周边与之有关的区调资料及科研成果并预研究基础上,编制昌都县幅(区)的实际材料图和建造构造图。在编制建造构造图的过程中,厘定图区地层系统,确定各时代岩石地层单位和各岩石地层单位的岩石组合,在全面研究综合分析已有地层资料的基础上,综合图幅中的自然岩石组合单位归并上升为建造类型,划分各岩石地层单位的沉积建造,并分析各沉积建造形成时所处的沉积环境。通过区域对比和岩石化学,地球化学分析,总结图区侵入岩时空分布特征,确定了各时代侵入岩的岩石类型,归纳侵入岩构造组合和大地构造属性。填写了西藏自治区昌都县幅图层数据表,为以后该区的地质研究提供了便利,并为以后地质数据库建设提供了背景资料。
     西藏玉龙铜(钼)矿床是我国三江地区最大的斑岩型铜矿床,它位于特提斯构造域东段的三江构造带内,构造格局十分复杂,所属的玉龙斑岩铜(钼)矿带不仅是我国重要的铜矿成矿远景区带,也是我国铜资源最为丰富的地区之一,因此选择西藏玉龙斑岩铜(钼)矿床作为典型矿床。遵循野外调查与室内综合分析相结合的原则,重点对西藏玉龙铜(钼)典型矿床开展地质调查研究,针对典型矿床的成矿地质背景和矿床特征两方面的主要特征,将相关岩石地层、岩石组合、矿区构造、构造背景、成矿时代、围岩蚀变、矿物成分、矿体形态与产状等成矿条件进行分析,确定了玉龙式斑岩型铜(钼)矿床的成矿地质条件和找矿标志,建立了区域成矿模式。以昌都县幅建造构造图为底图,确定并提取预测要素,结合研究区的构造纲要图、矿点分布位置、元素异常图及重砂异常图,依据预测要素的叠加分布,圈定了三个远景区:1、甲加洞铜铅锌金银多金属找矿远景区;2、玉龙-多霞松多铜钼金银多金属找矿远郊区;3、夏日多铜钼金多金属找矿远景区。其中甲加洞铜铅锌金银多金属找矿远景区位于妥坝南西的巴贡地垒中轴部,与原玉龙铜(钼)成矿带基本平行,具有较大的找矿前景。
     经过玉龙外围的野外勘察,重新认识了与玉龙铜(钼)成矿带有着密切联系的温泉断裂,认为它形成于两个不同期次,中生带陆内裂谷时期西倾正滑;喜马拉雅期由于印藏板块强烈碰撞作用,表层形态向东反转,导致奥陶系逆冲推覆于陆内裂谷沉积岩系之上,并使得靠近温泉断裂的陆内裂谷沉积岩系发育褶皱变形,在随后的地幔主动上涌、表壳被动伸展的过程中,这些褶皱体系构成了岩浆活动的导岩(导矿)运配通道。最终导致了玉龙喜马拉雅期斑岩的广泛发育。
The research by participating in mineral resource potential assessment project in Tibet,On the basis of collection of areal survey information and scientific research,establishing the data map and the structural map of Qamdo.In the process of maping,determining the stratigraphic system of the structural map,determining the rock stratigraphic units and rock assemblage of rock stratigraphic units.Based on the comprehensive analysis of existing data of formation, Integrated the rock association unit in Qamdo area, t he conflation rock association unit to the formation of combination type,Categorized the sedimentary formation by the lithostratigraphic units,And analysis of the depositional environment, Through regional comparison and petrochemistry,Geochemical analysis, Geochemical analysis,determining the type of intrusive rocks which in different geologic eras,summing up tectonic fabrics and geotectonic unit of intrusive rocks,filling out the Layer data form in Qamdo of Tibet,and it will be benefit to geological research in this area,it provided a good background information for future similar projects and Geological Database building.
     Select A typical deposit,And analyzed:Tibet Yulong Copper (Molybdenum) deposit,the largest of China Sanjiang porphyry copper deposit,It located in the Sanjiang Tethys tectonic belt in eastern,Complex tectonic framework,It Belongs to the Yulong porphyry copper (molybdenum) ore belt,and it not only is an important copper metallogenic zone,but also one of the most abundant copper resources in China,Therefore we chose the Yulong porphyry copper (molybdenum) deposit,as a typical deposit,This thesis based on the accumulated knowledge in The processes of mapping,following the principle of combining field investigations with indoor synthetic analysis Focus on carrying out geological investigate and research in Tibet Yulong Copper (Molybdenum) deposit, metallogenic geological background and the deposit features are discussed aiming at this typical deposit ,rock stratigraphic units、r ock association、local structure、structural setting、minerogenetic epoch、wall rock alteration、mineralogical composition、the shape of metal ore、The occurrence of ore body and other factors were analyzed in classification statistically.sums up the mineralization Elements of this typical deposit.typical mineral deposits forming essential factors is further divided into two aspects:geological environment of regional metallogenesis、r egional geologic feature,And the ultimate regional forecast elements are summarized and converted with region. The geological conditions and the ore-prospecting indicators are determined.metallogenic model of ore deposits and regional metallogenic model are established. based on the structural map of Qamdo, determinating and Extracting prediction elements. combining the Structural outline map、elementary anomaly map and placer mineral anomalies map in this area,based on several prediction elements superimposition. Finally, three far-seeing zones of geothermal exploration are submitted in this area: 1.JiaJiaDong prospecting areas for Cu、P b、Z n、Au、A g ; 2.Yulong-Duoxiasongduo prospecting areas for Cu、Mo、A u、Ag; 3.Xiariduo prospecting areas for Cu、M o、A g. Among them,JiaJiaDong prospecting areas located on the Bagong horst axis that in in southwestern Tuoba. nearly parrallel to the Yulong copper Belt.have good prospecting potential.
     after a geological survey around Yulong copper deposit. re-cogitating Wenquan fault that closely tied with Copper Belt, Wenquan fault should be separated in to two different periods. A west dipping and normal-strike-slip fault in the Mesozoic; Because of the continuing collision between India and Asia during Himalaya epoch, Wenquan fault changed into thrust nappe fault. as a result, Yulong Porphyry is widely developed in Himalaya epoch,
引文
[1]白文吉,杨经绥.青藏高原隆升的主因-大陆板块内的盆-山碰撞作用[J].长春地质学院学报, 1987,17(2):131-142.
    [2]陈炳蔚,王铠元,刘万熹,等.怒江-澜沧江-金沙江地区大地构造[M].北京:地质出版社,1987.
    [3]陈炳蔚,等.三江地区主要大地构造问题及其与成矿的关系[M].北京:地质出版社, 1991.
    [4]陈福忠,等.藏东花岗岩类及铜锡金成矿作用[M].北京:地质出版社,1994.
    [5]陈建平,等.玉龙铜矿带北段遥感地质综合研究[A].第11届全国遥感技术学术讨论会论文集. 1999.
    [6]陈建平,等.西藏玉龙上三叠统甲丕拉组沉积特征及铜矿质的初步富集[J].沉积学报, 1997,Vol.15,No.1:111-117.
    [7]陈建平,王成善,唐菊兴,等.西藏玉龙铜矿床次生氧化富集作用机制[J].地质学报, 1998,Vol.72,No.2:513-161.
    [8]陈建平,唐菊兴,钟康惠等,西南三江中段成矿规律与成矿预测研究[M].三江中北段系列丛书.
    [9]陈文明.斑岩铜矿与杂色砂页岩型层状铜矿内在联系的初步探讨[J].地质论评,1980, Vol.26, No.6.
    [10]陈文明.论斑岩铜矿的成因[J].现代地质,2002,Vol.16,No.1:1-8.
    [11]陈文明.论玉龙斑岩铜矿与砂页岩型铜矿的内在联系及其成矿规律与找矿标志[A].青藏高原地质文集(13).北京:地质出版社,1983
    [12]崔文军等.青藏高原岩石圈变形及其动力学[M].北京:地质出版社,1992.
    [13]地矿部“三江”专著编委会.怒江、澜沧江、金沙江地质矿产志,1984.
    [14]郭衍游.基于GIS的西南三江北段成矿规律研究[D].成都,成都理工大学,2003.
    [15]侯增谦,莫宣学,等.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩-以西藏和智利斑岩铜矿为例[J].矿床地质,2003,Vol.22(1):1-12.
    [16]侯增谦,曲晓明,等.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄-成矿作用时限与动力学背景应用[J].中国科学,2003,Vol.33,No.7:610-617.
    [17]胡明铭、唐菊兴、陈建平.藏东玉龙铜矿似层状矿体表生氧化成矿作用[J].矿物岩石, 1998,Vol.18,No.2:78-84.
    [18]胡明铭、郑明华、陈建平.藏东玉龙铜矿床似层状矿体成矿物质来源[J].矿物岩石,1999,Vol.19,No.3:73-76.
    [19]黄卫、唐菊兴、李保华、陈建平.西藏玉龙铜矿床氧化带地球化学特征[C].四川省地球化学专委会学术讨论会论文集.1997
    [20]黄朋,顾雪祥,等.西藏玉龙斑岩铜(钼)矿床物质来源研究[J].大地构造与成矿学,2002, V26(4):429-435.
    [21]黄朋,顾雪祥,唐菊兴.西藏玉龙斑岩铜(钼)矿金属迁移、沉积机制探讨[J].四川地质学报,2000(1),Vol.61(1):57-62.
    [22]李兴振,刘文均,王义昭,等.1999.西南三江地区特提斯构造演化与成矿[M].北京:地质出版社,1-276.
    [23]李兴振,等.1999.西南三江地区特提斯构造演化与成矿(总论)[M].地质出版社,1999.
    [24]梁定益,葛梦春,张保民.三江地区中段构造变形与成矿背景研究(地矿部95-01-003-10研究报告)1995梁华英,莫济海,孙卫东,等.
    [25]藏东玉龙超大型斑岩铜矿床成岩成矿系统时间跨度分析[J].岩石学报,2008,024(10),2352-2358.
    [26]刘朝基,刁志忠,张正贵,等.怒江-澜沧江-金沙江地区大地构造[M].成都:西南交通大学出版社,1996.
    [27]刘增乾,李兴振,叶同庆,等.三江地区构造岩浆带的划分与矿产分布规律[M].北京:地质出版社,1993.
    [28]刘增乾,徐宪,潘桂棠,等.怒江-澜沧江-金沙江地区大地构造[M].北京:地质出版社,1990.
    [29]刘增乾等.三江地区构造岩浆带的划分与矿产分布规律[M].地质出版社,1993.
    [30]刘肇昌.板块构造学[M].四川科技出版社,1985.
    [31]刘肇昌等.昌都县幅实际材料图?建造构造图编图说明书[R].2009.
    [32]陆彦.特提斯斑岩铜矿成矿域及其成矿大地构造背景[J].西藏地质,2002,(1):61-68.
    [33]罗建宁,张正贵,陈明,等.三江特提斯沉积地质与成矿[M].北京:地质出版社,1992.
    [34]马鸿文.西藏玉龙斑岩铜矿带花岗岩类与成矿[M].武汉:中国地质大学出版社,1990.
    [35]马鸿文.论藏东玉龙斑岩铜矿带岩浆活动的构造环境[J].岩石学报,1989,No.1:1-11.
    [36]马鸿文.论藏东玉龙斑岩铜矿带岩浆侵入时代[J].地球化学,1989,No.3,211-216.
    [37]南京大学地质学系岩矿教研室.结晶学与矿物学[M].北京:地质出版社,1978.
    [38]潘桂棠,陈智梁,李兴振,等.东特提斯地质构造形成演化[M].北京,地质出版社,1997.
    [39]芮宗瑶,等.中国斑岩铜(钼)矿床[M].北京:地质出版社,1984.
    [40]四川省地矿局区调队.1:20万类乌齐、拉多幅区域地质调查报告[R].四川省地矿局,1993.
    [41]四川省地质局第三区域地质测量队.1:100万昌都幅区域地质调查报告[R].四川省地质局,1974.
    [42]唐仁鲤,罗怀松,等.西藏玉龙斑岩铜(钼)矿带地质[M].北京:地质出版社,1995.
    [43]唐菊兴,西藏玉龙斑岩铜(钼)矿成矿作用与矿床定位预测研究[D].成都,成都理工大学,2003.
    [44]唐菊兴等,西藏玉龙铜矿床-鼻状构造圈闭控制的特大型矿床[J].矿床地质,2006,25(6),652~662.
    [45]唐菊兴等,西藏玉龙铜矿成矿体系各矿体存在形式及其定位预测[J].矿床学理论与实践,2004,北京,科学出版社,282-292.
    [46]西藏自治区地质调查院,囊谦县幅、昌都县幅、江达县幅1:25万区域地质调查报告[R], 2007.
    [47]西藏自治区地质矿产厅第六地质大队,西藏自治区江达县玉龙铜(钼)矿床南段普查地质报告[R].1998.
    [48]西藏自治区地质矿产勘查开发局第六地质大队,西藏玉龙斑岩铜矿床似层状矿体成矿作用与矿床的定位预测[R].成都理工大学,2001.
    [49]西藏玉龙铜业股份有限公司,西藏自治区江达县玉龙矿区铜矿勘探报告[M],2009.
    [50]西藏自治区地质矿产局,西藏自治区区域矿产总结[M],1994.
    [51]冶金工业部地质研究所.中国斑岩铜矿[M].北京:科学出版社,1984.
    [52]余光明,王成善,张哨楠,等.西藏特提斯沉积地质[M].北京:地质出版社,1990.
    [53]翟裕生等.大型构造与超大型矿床[M].北京:地质出版社,1997.
    [54]翟裕生等.区域成矿学[M].北京:地质出版社,1999.
    [55]张旗,王强,等.埃达克岩与斑岩铜矿.华南地质与矿产[J],2002(3):85-90.
    [56]张玉泉,谢应雯,邱华宁,等.钾玄岩系列:藏东玉龙铜矿带含矿斑岩元素地球化学特征[J].地球科学,1998,23:557-560.
    [57]张玉泉,谢应雯,梁华英,等.藏东玉龙铜矿带含矿斑岩及成岩系列[J].地球化学,1998,Vol.27,No.3:236-243.
    [58]郑明华.现代成矿学导论[M]重庆:重庆大学出版社,1988.
    [59]周宜吉.玉龙矿带中斑岩铜矿的控矿因素及其成因探讨[J].地质论评,1980,Vol.26(4).
    [60]周宜吉.试论玉龙斑岩铜矿带内矿床的蚀变和矿化分带[J].矿床地质,1985,Vol.4,No.2:23-30.
    [61] Borden,Richard K.Environmental geochemistry of the Bingham Canyon porphyry copper deposit.Utah[J].Environmental Geology (Berlin),2003,Vol.43,No.7,pp.752-758.
    [62] Bouzari,Farhad,Clark,Alan H. Anatomy, evolution,and metallogenic significance of the supergene orebody of the Cerro Colorado porphyry copper deposit.northern Chile[J]. Economic Geology and the Bulletin of the Society of Economic Geologists,2002,Vol.97, No.8, pp.1701-1740.
    [63] Brent I.A. Mcinnes, Kenneth A. Farley, Richard H. Sillitoe, and Barry P. Kohn. Application of Apatite (U-Th) / He Thermochronometry to The determination of The Sense and Amount of Vertical Fault Displacement at The Chuquicamata Porphyry Copper Deposit,Chile[J]. Economic Geology, 1999, 94: 937-948.
    [64] Brimhall G. H. Jr. Lithologic determination of mass transfer mechanisms of multiple-stage porphyry copper mineralization at Butte, Montana: vein formation by hypogene leaching and enrichment of potassium-silicate protore[J]. Econ Geol.,1979,Vol.74, pp.556-589.
    [65] Brimhall G. H. Jr., Deep hypogene oxidation of porphyry copper potassium-silicate protore at Butte, Montana: a theoretical evaluation of the copper remobilization hypothesis[J].Econ. Geo.1980,Vol.75,pp.384-409.
    [66] Campos E, Touret JLR, Nikogosian I, Delgado J. Overheated, Cu-bearing magmas in the Zaldivar porphyry-Cu deposit.northern Chilegeodynamic consequences[J].Tectonophysics, 2002,Vol.345,No.1-4, pp.229-251.
    [67] Candela P. A. and Holland H. D.. A masstransfer model for copper and molybdenum in magmatic hydrothermal systems: the origin of porphyry-typr ore deposits[J].Econ.Geol,1986, Vol.81.
    [68] Chesley, John T, Ruiz, Joaquin. Preliminary Re-Os dating on molybdenite mineralization from the Bingham Canyon porphyry copper deposit Utah[M].Guidebook Series-Society of Economic Geologists,1997,Vol.29,pp.165-169.
    [69] Cuadra C, Patricio, Rojas S, Gonzalo. Oxide mineralization at the Radomiro Tomic porphyry copper deposit, northern Chile[J].Economic Geology,2001,Vol.96,No.2, pp.387-400.
    [70] Garza, Ruben A Padilla,Titley, et al. Geology of the Escondida porphyry copper deposit, Antofagasta region, Chile[J]. Economic Geology,2001,Vol.96,No.2, pp.307-324.
    [71] James R Lang and Spencer R Trrley. Isotopic and Geochemical Characteristics of Laramide Magmatic Systems in Arizona and Implications for the Genesis of Porphyry Copper Deposits[J]. Economic Geology,1998,93:138-170.
    [72] Jeremy P Richiards, Stephen R Noble and Macolm S Pringle. A Revised Late Eocene Age for Porphyry Cu Magmatism in the Escondida Area, Northern Chile[J].Economic Geology,1999, 94:1231-1248.
    [73] Jeffrey W Hedenquist, Antonio Arribas JR, and T James Reynolds. Evolution of an Intrusion- Centered Hydrothermal System: Far Southeast-lepanto Porphyry and Epithermal Cu-Au Deposits Philippines[J].Economic Geology,1977,98:373-404.
    [74] Jensen, Paul W, Titley, S R. Wrench fault control of porphyry emplacement at the Sierrita porphyry copper deposit, Arizona[J].Abstracts with Programs-Geological Society of America, 1998, Vol.30, No.7, pp.367
    [75] Kendrick, M A, Burgess R, Pattrick, R A D, Turner G. Halogen and Ar–Ar age determinations of inclusions within quartz veins from porphyry copper deposits using complementary noble gas extraction techniques[J],Chemical Geology,2001,Vol.177, pp.351-370.
    [76] Lewis M H. Characterization of primary sulphide assemblages at the Chuquicamata porphyry copper deposit, Chile[J], section 4500N. Atlantic Geology,1996,Vol.32,No.1,pp.79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700