西昆仑阿克塔什、萨落依VMS矿床地质特征及成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿克塔什、萨落依VMS矿床位于西昆仑造山带北带,萨落依铜矿产于下石炭统乌鲁阿特组中-基性火山岩岩层中,阿克塔什VMS产于上石炭统克孜里奇曼组酸性火山岩中,它们属于VMS类型矿床,结合前人研究成果,研究认为这两个矿床所在的昆盖山北坡石炭纪火山岩生成环境为洋壳,下石炭统萨落依地区玄武岩即表现出MORB特征,又在一些方面显示出岛弧火山岩的特征;而上石炭统阿克塔什地区亏损不相容元素的中酸性火山岩很可能是亏损不相容元素的源区部分熔融形成的,昆盖山北坡石炭纪火山岩很可能是昆北带石炭纪弧后盆地发展到不同阶段的产物,其性质和昆北带的蛇绿岩非常类似,很可能为昆北蛇绿岩带中石炭纪蛇绿岩的北沿部分。
     通过岩矿鉴定、岩石微量元素分析、流体包裹体测试等方法手段,对矿石矿物特征、成矿地质、物理化学条件等进行了分析研究,探讨了矿床地质特征、成矿物质来源、成矿流体条件以及成矿机制。研究认为阿克塔什-萨落依的成矿流体主体为海水,在火山活动提供的热场驱动下,循环水可以从围岩中提取成矿物质,载矿流体喷入海水环境后,由于物化条件的变化,导致混合流体在适当的位置卸载成矿物质,形成层状矿体和热水沉积岩,另一部分的矿化发生在通道相中,形成脉状矿化。另外,一些间接的证据表明,Cu也有可能来源于岩体并可能有岩浆流体带入最终的成矿流体系统。
Western Kunlun Orogenic Belt locates in the northwestern part of China.As a result of natural conditions in the West Kunlun, the relative lack of basic geological data, Also Aktash and Saluoyi (SLY) deposits are relative lack of research, and make the ore genesis of these two deposits there is a dispute,besides the unclear of deposits geological information, the key problems led to this situation is the lack of study of tecotonic elvolution of Kungaishan mountain area,.
     According to the main stratigraphy and regional structure of the West Kunlun, it is usually divided into three zone,namely the North Zone,the Middle Zone and the South Zone. There are a series of ophiolites locates in the North Zone, from west to east, distribute the Oytag, the Kudi and the Subasi ophiolite respectively. The Lower Carboniferous volcanic rocks of the Wuluate formation is mainly composed of tholeiites which associated with intermediate volcanic rocks are spilite - keratophyre series, The Keziliqima formation which host Akatsh VMS is composed of a group Upper Carboniferous volcanic rocks (spilite - keratophyre - quartz keratophyre) and marine sedimentary rocks.
     According to geochemisitry study of Lower Carboniferous basalt of this aera ,the mafic volcano of Saluoyi shown geochemistry of MORB+OIB, Chondrite-normalized rare earth-element patterns for the tholeiite associations from the SLY is similar to MORB’s, and the distribution of trace elements show the characteristics of island arc basalt. Nb*2 vs. Zr vs.4-Y discrimination diagram show that it formed in the E-MORB or N-MORB background, TiO2 vs. Zr show that it formed in the MORB background, Hf/3 vs.Th vs.Ta discrimination diagram show it formed in MORB background too, however, crystallization differentiation of homologous basaltic andesite and andesite basalt is in the region of island-arc environment. Geochemical natures of those are similar to the tholeiite of the Oytag-Kudi-Subasi ophiolite. Therefore the Kungaishan volcanic rocks is likely to a part of ophiolite of the North Zone. The Upper Carboniferous volcanic rocks are characterized by its incompatible elements are depleted, It can be derived from a source region which is relative loss the incompatible elements, the geochemical characteristics of volcanic rocks indicate that this is the generation of oceanic-crust environment. Geochemistry of the basalt of SLY have complex geochemical features of mixed MORB and island arc basalt features , It is worth mentioning that the basalt of SLY show accordance with the performance of the E-MORB + IAT characteristic, Shichito modern back-arc basin that show the feature similar to that (Yasuo Ikeda and Makoto Yuasa, 1989), suggesting that the Lower Carboniferous and Upper Carboniferous volcanic rocks of the Kungaishan mountain is likely to be the product of back-arc basin in different stages.
     SLY VMS hosted in the Lower Carboniferous volcanic rocks of Wuluate formation, mineralization often associated with the fractionated surrounding rock,ore types of No.ⅠandⅡore boby are mainly briquette-like type , disseminated type or stockwork type, Alteration of wall rocks associated with mineralization are chloritization, silicification, epidotization, carbonation. Ore-types of No.Ⅲore body of SLY is massive type, banded type . Ore body is composed of two parts, the upper exhalative rock, the thickness of about 3m; the lower ore body is composed of the massive, banded type ore, mainly by chalcopyrite and associated with a small amount of pyrite, sphalerite, magnetite etc., the thickness of about 2m. According to mineral assemblage, the combination of primary sulfide ores can be divided into three main types: pyrite ore, pyrite - chalcopyrite type and pyrite-chalcopyrite-sphalerite ore. According to structure of ore, it can be divided into three main types: massive, banded ore and disseminated- stockwork type.
     Aktash VMS hosted in the acidic end-member of the Upper Carboniferous volcanic rocks, which is depleted LILS and HFSE. Ore body is layered or plate-like between the tuff and the rhyolite which Metamorphosed to quartz schist or quartz-mica schist already. Ore body is composed of two parts, the upper massive, banded ore, and the lower disseminated- stockwork ore.
     Metal minerals mainly pyrite, a small amount of chalcopyrite, sphalerite and trace tennantite, such as the composition of the main gangue mineral is quartz, a small amount of sericite, muscovite and calcite, etc..
     The fluid in the fluid inclusions of epidote-quartz rock of SLY can be divided into two groups: a group of about 4% salinity, the other group without salinity (salinity may too low to detect), two types of packages with the similar gas-liquid ratio, and estimated the ore-forming temperature range of 167.4℃-217℃by limit the pressure of fluid.
     Comparison of modern seaftoor polymetallic massive sulfides hydrothermal system, combined with the ore-forming geological characteristics and the tectonic setting of SLY and Aktash VMS deposits, SLY is the Cyprus-type VMS; Aktash is similar to the product of the modern LAU back-arc basin "chimneys" ,and its geological features are similar to the Noranda-type VMS except ore-forming age. The geological features of Aktshi and SLY VMS show that the Pb, Zn are most likely to come from the surrounding rock.Some indirect evidence suggesting that Cu may also be derived from igneous rock by magmatic fluid and added into the hydrothermal system eventually .
引文
[1] Baker,J.H.,de Groot,P.A.,Proterozoic seawater-felsic volcanics interaction W. Bergslagen,Sweden. Evidence for high REE mobility and implications for 1.8 Ga seawater compositions. Contrib. Mineral. Petrol.,1983,82:119-130.
    [2] Bakker,R.J.,Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modeling bulk fluid properties. Chemical Geology,2003,194: 3–23.
    [3] Barrie,C.T.,and Hannington,M.D.,Introduction: Classification of VMS deposits based on host rock composition,in Barrie,C.T.,and Hannington,M.D.,eds.,Volcanic-Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings. Reviews in Economic Geology,1999,8:2-10.
    [4] Barrett,T.J.,and MacLean,W.H.,Volcanic sequences,lithogeochemistry,and hydrothermal alteration in some bimodal volcanic-associated massive sulfide systems: Reviews in Economic Geology,1999,8:101–131.
    [5] Berger,B.R. and Bethke,P.M. (Editors),Geology and Geochemistry of Epitbermal Systems. Reviews in Economic Geology,1985,p.2-298.
    [6] Bin Lin,Manuel O. K.,A noble gas technique for the identification of mantle and crustal materials and its application to the Kuroko deposits. Geochemical Journal,1994,28 : 47-69.
    [7] Binns,R.A. and Scott,S.D.,Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus Back Arc Basin,Papua New Guinea. Economic Geology,1993. 88:2226–2236.
    [8] Bodnar,R.J.,Vityk,M.O.,Interpretation of microthermometric data for H2O–NaCl fluid inclusions. In: de Vivo,B.,Frezzotti,M.L. (Eds.),Fluid Inclusions in Minerals: Methods and Applications. Short Course IMA,1994,p. 117–130.
    [9] Cameron WE,Petrology and origin of primitive lavas from the Troodos ophiolite,Cyprus. Contrib Mineral Petrol,1985,89:239–255.
    [10]Campbell,I.H.,Lesher,C.M.,Coad,P.,Franklin,J.M.,Gorton,M.P.,Thurston,P.C.: Rare-earth element mobility in alteration pipes below massive Cu-Zn sulfide deposits. Chem. Geol.,1984,45:181-202.
    [11]Crawford AJ,Beccaluva L,Serri G,Tectono-magmatic evolution of the West Philippine-Mariana region and the origin of boninites. Earth Planet Sci Lett,1981,54:346-356.
    [12]Deffeyes,K.S.,The axial valley: a steady state feature of the terrain,in Megatectonics of continents and oceans,New Brunswick,Rutgers U. Press,1970.
    [13]Fouquet et al.,1993 Y. Fouquet,U. von Stackelberg,J.L. Charlou,J. Erzinger,P.M. Herzig,R. Mühe and M. Wiedicke,Hydrothermal activity in back-arc environments: the Lau Basin example,Economic Geology 1993,88:2154–2181.
    [14]Finlow-Bates,T.,and Stumpfl,E.F.,The behaviour of so-called immobile elements in hydrothermally altered rocks associated with volcanogenic submarine-exhalative ore deposits: Mineralium Deposita,1981,16:319-328.
    [15] Franklin JM,Lydon JW,Sangster DF,Volcanic associated massive sulphide deposits.1981,Econ. Geol. 75th Anniv Vol:485–627.
    [16]Franklin,J.M.,Gibson,H.L.,Jonasson,I.R.,and Galley,A.G.,Volcanogenic Massive Sulfide Deposits,in Hedenquist,J.W.,Thompson,J.F.H.,Goldfarb,R.J.,and Richards,J.P.,eds.,Economic Geology 100th Anniversary Volume: The Economic Geology Publishing Company,2005,p.523-560.
    [17]Galley,A.G.,Semi-conformable alteration zones in volcanogenic massive sulphide districts.Journal of Geochemical Exploration,1993,48:175-200.
    [18]Galley,A.G.,Hannington,M.D.,and Jonasson,I.R.,Volcanogenic massive sulphide deposits,in Goodfellow,W.,ed.,Mineral deposits of Canada: A synthesis of major deposit types,district metallogeny,and the evolution of geological provinces,and exploration methods,5: St. Johns,Geological Association of Canada,Mineral Deposits Division,Special Publication 5,2007,p.141–161.
    [19]Gass,I.G. and Smewing,J.D.,Intrusion,extrusion,and metamorphism at constructive margins evidence from the Troodos massif,Cyprus,Nature 1973,242: 26–29.
    [20]Gill,J. B.,Early geochemical evolution of an oceanic island arc and backarc: Fiji and the south Fiji Basin. Journal of Geology,1987,95:589-615.
    [21]Goldberg,E.D.,Koide,M.,Schmitt,R.A.,Smith,R.H.: Rare earth distributions in the marine environment. J. Geophys. Rès.,1963,68:4209-4217.
    [22]Graf,J.L.: Rare earth elements as hydrothermal tracers during the formation of massive sulfide deposits in volcanic rocks. Econ. Geol.,1977,72:527-548.
    [23]Green GB,Solomon M,Walshe JL,The formation of the volcanic-hosted massive sulfide ore deposit at Rosebery,Tasmania. Economic Geology,1981,76:304–338.
    [24]Groves,D.I.,Goldfarb,R.J.,Gebre-Mariam,H.,Hagemann,S.G.,and Robert,F.,Orogenic gold deposits - a proposed classification in the context of their crustal distribution and relationship to other gold deposit types.Ore Geology Reviews,1998,13:7-27.
    [25]Halbach,P.,Nakamura,K.,Wahsner,M.,Lange,J.,Sakai,H.,K?selitz,L.,Hansen,R.-D.,Yamano,M.,Post,J.,Prause,B.,Seifert,R.,Michaelis,W.,Teichmann,F.,Kinoshita,M.,M?rten,A.,Ishibashi,J.,Czerwinski,S. and Blum,N.,Probable modern analogue of Kuroko-type massive sulphide deposits in the Okinawa Trough back-arc basin. Nature,1989,338:496–499.
    [26]Hannington,M.D. and Herzig,P.M.,Shallow submarine hydrothermal systems in modem island arc settings. Geol. Assoc. Can.,Progr. Abstr.,1993,19:A40.
    [27]Hart,T.R.,Gibson,H.L.,and Lesher,C.M.,Trace element geochemistry and petrogenesis of felsic volcanic rocks associated with volcanogenic massive Cu-Zn-Pb sulfide deposits. EconomicGeology,2004,99:1003–1013.
    [28]Hawkesworth,C.J.,O'Nions,R.K.,Pankhurst,R.J.,Hamilton,P.J.,Evensen,N.M.: A geochemical study of island-arc and back-arc tholeiites from the Scotia Sea. Earth Planet. Sci. Lett.,1977,36:253–262.
    [29]Hawkins JW,Melchior JT,Petrology of Mariana Trough and Lau basin basalts.J Geophys Res,1985,90:11431-11468.
    [30]Herzig,P.,Hannington,M.,McInnes,B.,Stoffers,P.,Villinger,H.,Seifert,R.,Binns,R.,Liehe,T. and Scientific Party,Submarine volcanism and hydrothermal venting studied in Papua,New Guinea. EOS,Trans. Am. Geophys. Union,1994.75:513-516.
    [31]Herzig,P.and Hannington,M.D.,Polymetallic massive sulfides at the modern seafloor: A review: Ore Geology Reviews,1996,10:95–115.
    [32]Hogdahl,O.T.,Melsom,S.,Bowen,V.T.: Neutron activation analysis of lanthanide elements in sea water. Adv. Chem. Series,1968,73:308-325.
    [33]Hsü,K.J. and Jenkyns,H.C. Pelagic Sediments: on Land and under the Sea. Int. Assoc. Sedimentol. Spec. Publ.,1974.
    [34]Hutchinson,R.W.,Volcanogenic sulfide deposits and their metallogenic siginificance. Economic Geology,1973,68:1223–1246.
    [35]Hynes,A.,Carbonatization and mobility of Ti,Y,and Zr in Ascot Formation metabasalts,SE Quebec: Contributions to Mineralogy and Petrology,1980,75:79–87.
    [36]Kamenetsky,V.S.,Binns,R.A.,Gemmell,J.B.,Crawford,A.J.,Mernagh,T.P.,Maas,R.,and Steele,D.,Parental basaltic melts and fluids in eastern Manus backarc basin; implications for hydrothermal mineralization,Earth and Planetary Science Letters,2001,184:685?702.
    [37]Knight,C.L.,Bodnar,R.J.,Synthetic fluid inclusions: IX. Critical PVTX properties of NaCl–H2O solutions. Geochim. Cosmochim. Acta.,1989,53:3-8.
    [38]Large,R.R.,Australian volcanic-hosted massive sulfide deposits: Features,styles,and genetic models: Economic Geology,1992,87:471–510.
    [39]Lentz,D.R.,Petrology,geochemistry,and oxygen isotope interpretation of felsic volcanic and related rocks hosting the Brunswick 6 and 12 massive sulfide deposits (Brunswick belt),Bathurst mining camp,New Brunswick,Canada: Economic Geology,1999,94:57–86.
    [40]MacLean,W.H.,Mass change calculations in altered rock series: Mineralium Deposita,1990,25:44–49.
    [41]Mattern F,Schneider W,Li Y,Li X,A traverse through the western Kunlun (Xinjiang,China): tentative geodynamic implications for the Paleozoic and Mesozoic. Geol Rundsch,1996,85:705–722.
    [42]Michard,A.,Albarède,F.: The REE content of some hydrothermal fluids. Chem. Geol.,1986,55:51-60.
    [43]Michard,A.,Albarède,F.,Michard,G.,Minster,J.F.,Charlou,J.L.: Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13N).Nature,1983:303:795-797.
    [44]Miyashiro A,Subduction-zone ophiolites and island-arc ophiolites. In: Saxena SK and Bhattacharji (eds) Energetics of Geological Processes .1977,188–213.
    [45]Naden,J,Killias,SP,Darbyshire,Active geothermal system with entrained seawater as modern analogs for transitional volcanic-hosted massive sulfide and continental magmato-hydrothermal mineralisation: the example of Milos Island,Greece. Geology,2005,33:541-544.
    [46]Ohmoto H. and Rye R.O.,Isotopes of sulfur and carbon. In: H.L. Barnes,Editor,Geochemistry of Hydrothermal Ore Deposits,John Wiley,New York,1979,p. 509–565.
    [47]Ohmoto,H. and Rye,R.O.,Hydrogen and oxygen isotopic compositions of fluid inclusions in the Kuroko deposits,Japan. Economic Geology,1974,69:947–953.
    [48] Ohmoto,H. and Skinner,B.J.,1983. The Kuroko and related volcanogenic massive sulfide deposits: Introduction and summary of new findings. In: The Kuroko and Related Volcanogenic Massive Sulfide Deposits,Ohmoto,H. and Skinner,B.J.,Editors,Econ. Geol.,Monogr. 1983,5:1–8.
    [49]Pearce,J.A.,Lippard S.J. and Roberts,S.,Characteristics and tectonic significance of supra-subduction zone ophiolites,in: B.P. Kokelaar and M. Howells (Eds.),Marginal Basin Geology,Geological Society Spec. Pub. 1984,16:77–94.
    [50]Pearce,J.A.,Basalt geochemistry used to investigate past tectonic environment on Cyprus. Tectonophysics,1975,25:41–67.
    [51]Pineau F,Javoy M,Hawkins JW,Craig H,Oxygen isotopic variations in marginal basin and ocean-ridge basalts. Earth Planet Sci Letters,1976,28:299–307.
    [52]Ramsay,A.T.S.,ed.,Oceanic Micropaleontology,Vol.2,Academic Press,New York,1977.
    [53]Rollison H R.岩石地球化学.见:杨学明,杨晓勇,陈双喜,译.合肥:中国科学技术大学出版社,2000. 1-275.
    [54] Rona PA,Scott SD,A special issue on sea-floor hydrothemal mineralization: new perspectives. Econ Geol,1993,88:1935–1976.
    [55]Sangster,D.F.,Scott,S.D.: Precambrian stratabound massive Cu-Zn-Pb sulfide ores of North American. In: Wolf,K.H. (ed) Handbook of stratabound and stratiform deposits Elsevier,Amsterdam,1976,6:21–78.
    [56]Saunders AD,Tarney J (1979) The geochemistry of basalts from a back-arc spreading centre in the East Scotia Sea. Geochim Cosmochim Acta 43: 555±572
    [57]Sawkins,F.J.,Massive sulfide deposits in relation to geotectonics. Geological Association of Canada,Special Publication,1976,14: 221-240.
    [58]Sawkins,F.J.,Metal deposits in relation to plate tectonics: Berlin,Springer-Verlag . 1984.
    [59]Shervais,J.W.,Birth,death,and resurrection: The life cycle of suprasubduction zone ophiolites. Geochemistry,Geophysics,Geosystems 2,2001,paper number 2000GC000080.
    [60]Sillitoe RH,Environments of formation of volcanogenic massive sulfide deposits. Econ Geol 1973,68:1321–1336.
    [61]Spooner,E. T. C.,Fyfe,W. S.: Sub-sea-floor metamorphism,heat and mass transfer. Contrib. Mineral. Petrol. 1973,42:287–304.
    [62]Solomon,M.,‘Volcanic’massive sulphide deposits and their host rocks—A review and an explanation,in Wolf,K.,ed.,Handbook of stratabound and stratiform ore deposits,Amsterdam,Elsevier,1976,6:21–54.
    [63]Stanton RL,Stratiform ores and geological processes,R Soc New South Wales 1985,118:77–100.
    [64]Stanton RL,Magmatic evolution and the ore type-lava type affiliations of volcanic exhalative ores. Aust Inst Mineral Metall Monogr,1990,15:101–107.
    [65]Stolz,J.,and Large,R.R.,Evaluation of the source-rock control on precious metal grades in volcanic-hosted massive sulfide deposits from western Tasmania,Economic Geology,1992,87:720–738.
    [66]Urabe,T. Sato,T.,Kuroko deposits of the Kosaka mine: Products of submarine hot spring on Miocene sea–floor. Econ. Geol.,1978,73:161–173.
    [67]Valsami,E.,and Cann,J.R.,Mobility of rare earth elements in zones of intense hydrothermal alteration in the Pindos ophiolite,Greece: Geological Society Special Publication,1992,60:219–232.
    [68]Volpe AM,Macdougall JD,Hawkins JW,Mariana trough basalts (MTB): trace element and Sr-Nd isotopic evidence for mixing between MORB-like and Arc-like melts.Earth Planet Sci Lett,1987,82:241-254.
    [69]Wang ZH,Sun S,Li JL,Hou QL,Petrogenesis of tholeiite associations in Kudi ophiolite (western Kunlun Mountains,northwestern China): implications for the evolution of back-arc basins. Contrib Mineral Petrol,2002,143:471–483.
    [70]Wilson M. Igneous Petrogenesis London: Unwin Hyman.,1989,p.227-241.
    [71]Whitford,D.J.,Korsch,M.J.,Porritt,P.M.,Craven,S.J.: Rareearth element mobility around the volcanogenic polymetallic massive sulfide deposit at Que River,Tasmania,Australia. Chem. Geol.,1988,68:105-119.
    [72]Whitford,D.J.,Mcpherson,P.A. and Wallace,D.B.,Geochemistry of the host rocks of the volcanogenic massive sulfide deposits at Que River,Tasmania. Economic Geology,1989,84:1–21.
    [73]Wood,S.A.,and Williams-Jones,A.E.,The aqueous geochemistry of rare-earth elements and yttrium. Part 4. Monazite solubility and REE mobility in exhalative massive sulfide-depositing environments: Chemical Geology,1994,115:135–162.
    [74]Yang,K. and Scott,S.D.,Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature,1996,383:420–423.
    [75]Yang,K. and Scott,S.D.,Magmatic degassing of volatiles and ore metals into a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin,western Pacific: Economic Geology,2002,97:1079–1100.
    [76]Yao-Hui Jiang,Shi-Yong Liao,Wan-Zhi Yang,Wei-Zhou Shen,An island arc origin ofplagiogranites at Oytag,western Kunlun orogen,northwest China: SHRIMP zircon U–Pb chronology,elemental and Sr–Nd–Hf isotopic geochemistry and Paleozoic tectonic implications,Lithos,2008,106:323–335.
    [77]Yasuo Ikeda and Makoto Yuasa,Volcanism in nascent back-arc basins behind the Shichito Ridge and adjacent areas in the Izu-Ogasawara arc,northwest Pacific: evidence for mixing between E-type MORB and island arc magmas at the initiation of back-arc rifting,Contrib. Mineral Petrol.,1989,101:377-393.
    [78]毕华.西昆仑造山带构造演化与岩浆活动. [M]湖南长沙,中南工业大学出版社,2000,12~44.
    [79]毕华,王中刚,王元龙,等.西昆仑造山带构造-岩浆演化史. [J ]中国科学(D辑),1999,5(29):398-405.
    [80]丁道桂,王道轩,刘伟新,等.新昆造山代与盆地[M].北京:地质出版社,1996.
    [81]丁道桂,王道轩,刘伟新等.1996.西昆仑造山带与盆地,北京:地质出版社.p125-143.
    [82]邓万明.喀喇昆仑-西昆仑地区蛇绿岩地质特征及其大地构造意义[J ] .岩石学报,1995,11 (增刊) :98-111.
    [83]孙海田,李纯杰,李锦蓉,等.新疆西昆仑地区铜矿资源找矿地质条件[ J ].中国地质,1997(11): 29-31.
    [84]孙海田等著西昆仑金属成矿省概论[M].北京:地质出版社,2003.
    [85]贾群子,等.西昆仑块状硫化物矿床成矿条件和成矿预测著[M].北京:地质出版社,1999.
    [86]姚凤良,孙丰月,等,矿床学教程,[M].北京:地质出版社,2006.
    [87]李永安,李向东,孙东江,韩玉玲. 1995.中国新疆西南部喀喇昆仑羌塘地块及康西瓦构造带构造演化[M].乌鲁木齐:新疆科技卫生出版社,71-103.
    [88]孙海田,李纯杰,李锦平,等,新疆昆仑式火山岩型块状硫化物铜矿床及成矿地质环境,[J].矿床地质,2004,23(1):82-92.
    [89]姜春发,王宗起,李锦铁,等.中央造山带开合构造[M].北京:地质出版社,2000.
    [90]姜春发,杨经绥,冯秉贵,等.昆仑开合构造[M]北京:地质出版社,1992.
    [91]姜耀辉,芮行健,贺菊瑞,等.西昆仑山加里东期花岗岩类构造类型及其大地构造意义[J].岩石学报,1999,15(1):105-115.
    [92]潘裕生.西昆仑山构造特征与演化[J].地质科学,1990,25(3):224~233
    [93]王东安陈瑞君.新疆库地西北一些克沟深海蛇绿质沉积岩岩石学特征及沉积环境[J].自然资源学报,1989,4(3),212-221.
    [94]王书来,汪东坡,祝新友.新疆西昆仑金(铜)矿找矿前景分析[J ] .地质找矿论丛,2000,15 (3) : 224 - 229.
    [95]张佩民,孙海田,等,昆盖山北坡火山岩型块状硫化物铜矿床成矿条件分析及找矿预测[J]地质与勘探,2006,(11):5-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700