含救援站特长隧道火灾特性及烟气控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国隧道建设的不断发展,众多长大隧道不断涌现出来,其火灾安全日益成为一个亟需关注和解决的问题。本论文对含救援站特长隧道内各火灾场景的火灾特性和烟气控制进行了深入研究,为含救援站特长隧道火灾安全设计提供理论依据和技术参考。
     在风流与火羽流相互作用的分析基础上,对包括隧道顶壁下最高烟气温度、火羽流偏转角、隧道火焰长度、烟气纵向温度分布、断面温度分布、火灾热释放率和增长速率等一般隧道火灾特性进行了分析。结果表明隧道顶壁下最高烟气温度可划分为2个区域,其主要相关参数为火灾热释放率、纵向通风速度、修正隧道高度和火源尺寸;火羽流的偏转角直接与无量纲通风速度相关联;隧道火焰长度与一无量纲火源热释放率线性相关,与通风速度关系不大;火源下游烟气纵向温度分布能够很好地用2个自然指数拟合,其主要参数应为一无量纲距离;最大火灾热释放率和增长速率与通风速度密切相关。由于相对通风条件较好,隧道火灾—般处于燃料控制阶段,火灾热释放率峰值与通风无关,火灾增长速率与通风速度成线性关系,即通风只影响火灾增长速率而不影响火灾热释放率峰值。同时可见,隧道火灾最大热释放率并不一定比自然空间大,火灾增长也不一定比自然空间快。
     纵向通风隧道火灾的烟气控制是隧道火灾安全设计的一个最重要问题。对纵向通风隧道火灾控制烟气流动的临界风速和回流长度进行了量纲分析和模型试验结果分析,得出了隧道火灾通风临界风速和回流长度的计算式。结果表明,隧道火灾通风临界风速与回流长度是相互关联的统一体。在火灾热释放率较小时,两者均与火灾热释放率息息相关;而当火灾热释放率较大时,两者都基本与火灾热释放率无关。同时分析了列车阻塞条件下临界风速与回流长度的变化趋势,结果表明有无列车条件的临界风速差异比略小于隧道阻塞比。在同一无量纲限制风速下,有列车回流长度要小于无列车工况。
     隧道内发生火灾时,隧道间横通道可用于紧急逃生。在临界Froude数假定基础上得到了计算横通道临界风速的Froude模型,尽管试验结果表明临界Froude数并非一常数从而说明此模型的不合理性,但通过此分析确定了横通道临界风速的各影响参数。通过对各参数的量纲分析,得出了与横通道临界风速相关的主要准则。同时对横通道防火门尺寸对横通道临界风速的影响进行了理论分析。通过模型试验结果,分析了横通道防火门几何尺寸、隧道火灾热释放率和隧道纵向通风速度等参数对横通道临界风速的影响,结果表明横通道临界风速与隧道火灾热释放率成1/3次方关系、与隧道纵向通风速度成自然指数关系、与横通道防火门高度成3/2次方关系,而与横通道防火门宽度基本无关。并得到了计算横通道临界风速的无量纲公式,试验结果与其吻合很好。
     对救援站型式及火灾通风模式进行了全方位的分析,得出了救援站的两种基本模式;通过对救援站有效长度和遮挡高度的分析,得出了简化救援站模型试验具体可行的方法;在此基础上开展了大量救援站火灾通风模型试验,对救援站内有列车和无列车两种条件下各横通道的烟气控制进行了系统分析,得到了救援站各横通道临界风速的基本规律;进而将横通道临界风速与横通道防火门处烟气温度关联,得出了横通道防火门处烟气温度的计算方法,并在此基础上掌握了横通道防火门高度的一般要求。同时对救援站内温度分布进行了分析,得出了有无列车情况下横通道内和横通道外温度分布的一般规律。
     采用一维模拟和三维模拟结合的方法,对太行山特长隧道内2个救援站边界条件及救援站火灾通风方案进行了计算分析,结果表明这样的方法是可行的,太行山1号救援站通风方案C、方案E和太行山2号救援站方案B是较好的通风方案。同时通过数值计算分析发现,在斜井与隧道连接前转折一定角度使送风气流垂直进入隧道的方案能够极大改善救援通道风速分布的均匀性。弯管长度为1D(1倍斜井直径)时,最小横通道风速为0.7m/s;弯管长度为2D(2倍斜井直径)时,最小横通道风速为1.4m/s。而在1D直管段基础上拓宽接口界面并没有有效改善救援通道风速分布。
     开展了隧道自动水喷淋火灾模型试验,并对自动水喷淋系统的响应时间、响应条件以及系统崩溃条件进行了系统分析。结果表明,自动水喷淋系统中第一个喷嘴激活时的火灾热释放率与隧道纵向通风速度成线性关系,所有的喷嘴几乎都在大约1min-2min内(全尺寸4min-8min)激活,激活烟气温度一般略大于感应温度。同时隧道内高风速和小水流量都可能导致系统的崩溃;但在合理的参数选择基础上,隧道自动水喷淋系统能够很好地控制火灾发展,能够有效避免系统的崩溃。通过对系统崩溃的研究给出了合理的抑制崩溃的区域。
With rapid development of tunnel construction in our country, there has being a large number of long and complicated road tunnels, and tunnel fire safety is becoming a focus nowadays. This thesis researches on the fire characteristics and smoke control in many scenarios in a super long tunnel including rescue stations, to provide theoretical evidence and references for determination of design of tunnel fire safety in a super long tunnel including rescue stations.
     Based on the analyses of interaction of ventilated flow with plume flow, this thesis analyzes the fire characteristics in a tunnel fire, including maximum excess gas temperature beneath the tunnel ceiling, the deflection angle, the flame length, ceiling temperature distribution, vertical temperature distribution in different cross-sections, heat release rate and fire growth rate. The results show that the maximum excess gas temperature can be divided into two zones, and the most important parameters involved are the maximum heat release rate, the longitudinal ventilation velocity, the modified tunnel height and the geometry of the fire source. The deflection of the flame in a ventilated flow is directly related to a dimensionless ventilation velocity, which takes the heat release rate, the ventilation velocity and the geometry of the fire source into account. The flame length in a large tunnel fire is proportional to the heat release rate and almost independent of the ventilation velocity. The ceiling temperature distribution can be correlated well using two natural exponential functions with a dimensionless distance away from the fire site. The maximum heat release rate and the fire growth rate are intimately related to the longitudinal ventilation velocity. Normally a tunnel fire is well ventilated and fuel-controlled, and the maximum heat release rate is independent of the ventilation velocity and the fire growth rate is proportional to the ventilation velocity. In other words, the longitudinal ventilation has influence on the fire growth rate rather than the peak heat release rate under the condition. It is also shown that the peak heat release rate in a tunnel fire may be lower than in an open fire, and so is the fire growth rate.
     Smoke control in a longitudinally ventilated tunnel fire is a focus in the fire safety design of a given tunnel. The critical velocity and the back-layering length are analyzed based on dimensional analysis and tests data, and specific formulae that correlate well with tests results are proposed. The results show that there is a tight relationship between them. When a tunnel fire is small, both of them are related to the heat release rate, however, independent of the heat release rate when the fire gets very large. The effect of obstruction of a vehicle on the smoke control is also analyzed. The results show that the decrease rate of critical velocity due to obstruction is slightly greater than the ratio of cross-section area of the model vehicle to tunnel cross-section area, and the back-layering length with an accident vehicle set inside the tunnel gets smaller.
     The cross-passages between two tunnels are designed for evacuation during a tunnel fire. Based on the assumption of a constant critical Froude number, a theoretical model called Froude model is proposed. Although the tests data show the critical Froude number is not a constant, the influencing parameters involved in are known and then used for dimensional analysis. The effect of geometry of a fireproof door in a cross-passage, the tunnel ventilation velocity, and the heat release rate is analyzed. The results show that the critical velocity in a tunnel cross-passage varies approximately as 1/3 power of the heat release rate, as the exponential law of the ventilation velocity, as 3/2 power of the fireproof door height, and almost independent of the fireproof door width. A correlation for predicting the critical velocity in a tunnel cross-passage was proposed. The theoretical results fit the tests data well.
     The types of structure of a rescue station in a super long tunnel and its emergency ventilation systems are analyzed. Two types of rescue stations are classified. The influence of the effective length of a rescue station and effective height of the blocks are analyzed and simplified method of carrying out model-scale rescue station fire tests is obtained. A series of rescue station fire tests was conducted based on the simplified method. The smoke control in a rescue station with and without a train placed inside the model tunnel is analyzed. The basic rule of distribution of the critical velocities in different cross-passages is obtained. According to theoretical analysis, the critical velocity in a tunnel cross-passage is directly related to the gas temperature beside the fire-proof door at the door height. In other words, the gas temperature beside the door can be predicted if the critical velocity is determined. A specific requirement for fireproof door height is also proposed based on these analyses. The temperature distribution in the rescue station and the cross-passages is also analyzed, and the basic rule of gas temperature distribution along the ceiling of the cross-passage is obtained.
     A method combing one-dimensional method and three-dimensional method was used to analyze the emergency ventilation systems used in two rescue stations of Taihangshan super long tunnel. The ventilation scheme C and E is better than others for Rescue stationⅠand scheme B for Rescue stationⅡ. The distribution of the velocities in tunnel cross-passages gets much more uniform if the shaft turns its direction to make the air flow in the shaft inject into the rescue station with a right angle. The minimum velocity in the cross-passage is about 0.7 m/s if the length of the section is 1D (one time its hydraulic diameter), and 1.4 m/s 2D (two times its hydraulic diameter). The measure widening the connector based on 1D long section has nearly no effect on the distribution of velocities in the cross-passages.
     A series of model scale tunnel fire tests with automatic water spray system was carried out. The actuation time, actuation condition of the bulbs and collapse of an automatic water spray system were analyzed. The results show that the actuation heat release rate of the first bulb is proportional to the longitudinal ventilation velocity, and all the actuated nozzles are activated in a range of about 1 min to 2 min (full-scale 4 min to 8 min), and normally the actuated temperature is little higher than the link temperature. The high longitudinal ventilation velocity and the low water flow rate result in collapse of an automatic water spray system. An appropriate zone avoiding the collapse of a system is proposed.
引文
[1]张光鹏.公路隧道双向换气式纵向通风研究.西南交通大学博十学位论文.2008.
    [2]Diamantidisa D, Zuccarellib F, Westhauserc A. Safety of long railway tunnels. Reliability Engineering and System Safety,2000(67):135-145.
    [3]Ozawa S. Ventilation and Fire Countermeasure in Seikan Tunnel.6th Aerodynamics and Ventilation of Vehicle Tunnels. England.1988:481-493.
    [4]RUDIN C. Fires in long railway tunnels-the ventilation concepts adopted in the AlpTransit projects.10th Int. Symp. on Aerodynamics and Ventilation of Vehicle Tunnels, Boston,2000.
    [5]胡隆华.隧道火灾烟气蔓延的热物理特性研究.中国科技大学博十学位论文.2006.
    [6]Carvel, R. O. and Marlair, G., "A history of fire incidents in tunnels". In The handbook of Tunnel Fire Safety (A. N. Beard and R. O. Carvel, Eds.),Thomas Telford Publishing,3-41, London, UK,2005.
    [7]Anders Lonnermark. On the Characteristics of Fires in Tunnels. Doctoral Thesis of Lund University.2005.
    [8]Andersen, T. and Paaske, B. J., Railroad and Metro Tunnel Accidents, Det Norske Veritas (DNV), http://home.no.net/lotsberg/artiklar/andersen/en_-table_1.html.
    [9]涂文轩.我国铁路隧道列车火灾简介.消防技术与产品信息1996,1:26-27.
    [10]ISO 834-1, "Fire-resistance tests-Elements of building construction-Part 1:General requirements", First ed.,1999-09-15, International Organization for Standardization,1999.
    [11]EN 1363-2, "Fire resistance tests-Part 2:Alternative and additional procedures", First ed., 1999-09-24, European Committee for Standardization,1999.
    [12]Beproeving van het gedrag bij verhitting van twee isolatiematerialen ter bescherming van tunnels bij brand. Instituut TNO voor Bouwmaterialen en Bouwconstructies, B-79-391, Delft, The Netherlands,1979.
    [13]Rapport betreffende de beproeving van het gedrag van twee isolatiematerialen ter bescherming van tunnels tegen brand. Instituut TNO voor Bouwmaterialen en Bouwconstructies, Rapport B-80-33, Delft, The Netherlands,1980.
    [14]Richtlinien fur Ausstattung und Betrieb von Tunneln (RABT). Ausgabe 1985 ed., Forschungsgesellschaft fur Strabn-und Verkehrswesen,1985.
    [15]Michel PERARD, Bruno BROUSSE. Full size tests before opening Two French Tunnels.8th International Symposium on Aerodynamics and Ventilation of Vehicle. England,1993, p383-408.
    [16]Didier Lacroix, Patrick Chasse. Small Scale Study of Smoke Trap Door Systems.8th International Symposium on Aerodynamics and Ventilation of Vehicle[M]. England,1993, p409-438.
    [17]Saito N, Yamada T, Sekizawa A, Yanai E, Watanabe Y, Miyazaki S. Experimental study on fire behavior in a wind tunnel with a reduced scale model. In:Second international conference on safety in road and rail tunnels, Granada, Spain,3-6 April 1995. p303-310.
    [18]Oka Y., Atkinson GT. Control of smoke flow in tunnel fires. Fire Safety Journal.1995(25): 305-22.
    [19]Wu Y., Bakar M.Z.A. Control of Smoke Flow in Tunnel Fires using longitudinal ventilation systems-a study of the critical velocity. Fire Safety Journal.2000(35):363-390.
    [20]Thomas, P.H., Webster, C.T.& Raftery, M. M., Some experiments on buoyant diffusion flames. Combustion and Flame,1961,54:359-367.
    [21]Subway environmental design handbook, vol. Ⅱ, Subway environmental simulation computer program, Version 4, Part 1, User's manual. DOT of USA,1997.
    [22]Riess I, Bettelini M, Brandt R:Sprint-A Design Tool for Fire Ventilation,10th International symposium on aerodynamics and ventilation of vehicle tunnels. Boston,2000, pp.629-637.
    [23]Ingo R and Marco B. The prediction of smoke propagation due to tunnel fires. ITC Conference on Tunnel Fires and Escape from Tunnels, Lyon,1999.
    [24]冯炼.地铁环境控制系统的应用及其数值模拟软件[J].城市轨道交通研究.1999,2:37-39.
    [25]STESS-地铁热环境分析软件.清华大学热能系.1996.
    [26]Biollay H, Chasse P. Validating and optimizing 2D and 3D computer simulations for the OFENEGG Tunnel fire tests. The Fourth International Symposium on Aerodynamics and Ventilation of Vehicle Tunnels. Liverpool, UK,1994, p357-379.
    [27]Walter W J, Glenn P F, Richard D P, Paul A R. A Technical Reference for CFAST:An Engineering Tool for Estimating Fire and Smoke Transport. NIST TN 1431.Maryland,2003.
    [28]Karlsson B., Quintiere J.G. Enclosure Fire Dynamics. Washington, CRC Press,2000.
    [29]Chow W K. Simulation of tunnel fire using a zone model. Tunnelling and Underground Space Technology,1996,11(2):221-236.
    [30]Grant G B, Jagger S F and Lea C J. Fires in tunnels. Phil. Trans. R. Soc. London,998: 2873-2906.
    [35]Chen X J. Simulation of temperature and smoke distribution of a tunnel fire based on modifications of multi-layer zone model. Tunnelling and Underground Space Technology. 2008,23(1):75-79.
    [36]McGrattan K. Fire Dynamics Simulator (version 4)-Technical Reference Guide. NISTIR 1018. Maryland:NIST,2006:17-24.
    [37]Woodburn, P J, and Britter, R E, CFD Simulation of a Tunnel Fire-Part Ⅰ. Fire Safety Journal, 1996(26):35-62.
    [38]Woodburn, P J, and Britter, R E, CFD Simulation of a Tunnel Fire-Part Ⅱ. Fire Safety Journal, 1996(26):63-90.
    [39]Wu Y, Bakar M.Z.A. Control of Smoke Flow in Tunnel Fires using longitudinal ventilation systems-a study of the critical velocity. Fire Safety Journal.2000(35):363-390.
    [40]Maele K V, Merci B. Application of RANS and LES field simulations to predict the critical ventilation velocity in longitudinally ventilated horizontal tunnels. Fire Safety Journal.2008.
    [41]Hu L H, Huo R, Peng W, Chow W K, Yang R X. On the maximum smoke temperature under the ceiling in tunnel fires. Tunnelling and Underground Space Technology,2006(21): 650-655.
    [42]Luo M, Beck V. A study of non-flashover and flashover fires in a full-scale multi-room building. Fire Safety J 1996;26:191-219.
    [43]Luo M, He Y, Beck V. Application of field model and two-zone model to flashover fires in a full-scale multi-room single level building. Fire Safety J 1997;29:1-25.
    [44]Hua J S, Wang J, Kumar K. Development of a hybrid field and zone model for fire smoke propagation simulation in buildings. Fire Safety Journal,2005(40):99-119.
    [45]Yao J, Fan W, Kohyu S, Saisuke K. Verification and application of field-zone-network model in building fire. Fire Safety J 1999;33:35-44.
    [46]邢书仁,吴兵,周心权,张莉聪.区域模拟与巷道火灾一维烟流流动模拟耦合方法初探.中国安全科学学报.14(2):24-26.
    [47]Thomas, P. H., The movement of buoyant fluid against a stream and venting of underground fires. Fire Research Note, No.351, Fire Research Station, Watford, UK,1958.
    [48]Thomas, P. H., The movement of smoke in horizontal passages against an air flow, Fire Research Note, No.723, Fire Research Station, Watford, UK,1968.
    [49]Danziger N.H., Kennedy W.D. Longitudinal ventilation analysis for the Glenwood canyon tunnels. Proceedings of the Fourth International Symposium on Aerodynamics and Ventilation of Vehicle Tunnels,1982:169-186.
    [50]Lee C.K., Chaiken R.F., Singer J.M. Interaction between duct fires and ventilation flow:an experimental study, Combust Sci and Technology 1979(20):59-72.
    [51]Hinkley P.L. The flow of hot gases along an enclosed shopping mall. A tentative theory. Fire Research Note No.807, March 1970.
    [52]Heselden A.J.M. Studies of fire and smoke behaviour relevant to tunnels. Proceedings of the Second International Symposium of Aerodynamics and Ventilation of Vehicle Tunnels, Paper Jl,1976.
    [53]Bettis, R.J., Jagger, S. F.& Macmillan, A. J. R., Interim validation of tunnel fire consequence models; summary of phase 1 tests. HSL Report IR/L/FR/94/2, Health and Safety Laboratory, Buxton, UK,1994.
    [54]Bendelius A. Memorial tunnel fire ventilation test programme. Paper Presented in the One Day Seminar of Smoke and Critical Velocity in Tunnels, London,2 April 1996.
    [55]Oka Y., Atkinson G.T. Control of smoke flow in tunnel fires. Fire Safety Journal.1995,25: 305-22.
    [56]McCaffrey BJ. Purely buoyant diffusion flames:some experimental results. National Bureau of Standards,1979, NBSIR 79-1910.
    [57]胡隆华.隧道火灾烟气蔓延的热物理特性研究.中国科学技术大学博士论文[D].2006.
    [58]Edwards J C, Franks R A, Friel G F, Yuan L M. NIOSH Mining Document, Experimental and Modeling Investigation of the Effect of Ventilation on Smoke Rollback in a Mine Entry,2005.
    [59]Vauquelin O, Telle D. Smoke control in tunnel fires-should we talk about critical velocity or critical mass flow rate, the 11th International Symposium on Aerodynamics and Ventilation of Vehicle Tunnels,2000:97-110.
    [60]Vauquelin O, Caracte'risation experimentale de l'apparition dune nappe de retour, Comptes Rendus de l'Acade mie des Sciences, Serie Ⅱ b 321 (1995) 15-18.
    [61]Megret O, Vauquelin O. A model to evaluate tunnel fire characteristics. Fire Safety Journal. 2000;34:393-401.
    [62]Vauquelin O. Parametrical study of the back flow occurrence in case of a buoyant release into a rectangular channel. Experimental Thermal and Fluid Science 29 (2005) 725-731
    [63]Megret O, Vauquelin O, Chass!e P, Casal!e E. A reduced scale tunnel for the study of fire-induced smoke control. Third International Conference on Safety in Road and Rail Tunnels. Nice, France:ITC,1998.
    [64]Vauquelin O, Wu Y. Influence of tunnel width on longitudinal smoke control. Fire Safety Journal 2006(41):420-426.
    [65]Kunsch J. P. Simple model for control of fire gases in a ventilated tunnel. Fire Safety Journal. 2002,37:67-81
    [66]Kunsch J. P. Critical velocity and range of a fire-gas plume in a ventilated tunnel. Atmospheric Environment.1999(33):13-24.
    [67]Bakke P., Leach S. J. Turbulent diffusion of a buoyant layer at a wall. Applied Scientific Research.1966(15):97-136.
    [68]Atkinson G. T., Wu Y. Smoke control in sloping tunnels. Fire Safety J 1996,27:335-41.
    [69]Hwang C. C, Edwards JC. CFD Modeling of smoke reversal. In:Proceedings of the international conference on engineering fire protection design. Bethesda, Maryland, USA: Society of Fire Protection Engineers,2001, p.376-387.
    [70]Edwards J C, Franks R A, Friel G F, Yuan L M. NIOSH Mining Document, Experimental and Modeling Investigation of the Effect of Ventilation on Smoke Rollback in a Mine Entry,2005.
    [71]周延,王德明,周福宝.水平巷道火灾中烟流逆流层长度的实验研究.中国矿业大学学报(自然科学版).2001(05):24-26.
    [72]Vantelon, J. P., Guelzim, A., Quach, D., Kim Son, D., Gobay, D., Dallent, D..1991 Investigation of re-induced smoke movement in tunnels and stations:an application to the Paris Metro. The 3rd Int. Symp. on Fire Safety Science, Elsevier, Oxford, Edinburgh, UK, 907-918.
    [73]Cordier H. Simulation numerique de l'interaction en milieu confine d'un ecoulement de convection force avec panache thermique:application a la ventilation de tunnels routiers en cas d'incendie,These de l'Universite d'Aix-Marseille II-IRPHE,1999.
    [74]Hu L. H., Huo R., Chow W K. Studies on buoyancy-driven back-layering flow in tunnel fires. Experimental Thermal and Fluid Science.2008 (32):1468-1483.
    [75]Newman J.S. Experimental evaluation of fire-induced stratification. Combustion Flame. 1984(57):9-33.
    [76]Ingason H. Fire dynamics in tunnels. In The handbook of Tunnel Fire Safety (A. N. Beard and R. O. Carvel, Eds.),Thomas Telford Publishing,3-41, London, UK,2005.
    [77]P.H.E. van de Leur, Kleijn C R and Hoogendoorn C J. Numerical study of the stratified smoke flow in a corridor:Full scale calculations. Fire safety Journal,1989(14):287-302.
    [78]Bos W G, Van Den Elsen T, Hoogendoorn C J, Test F L. Numerical study of stratification of a smoke layer in a corridor. Combustion Science and Technology,1996,38(5&6):227-243.
    [79]Hinkley, P.L.,1970. The flow of hot gases along an enclosed shopping mall-a tentative theory. Fire Research Note No.807, Fire Research Station.
    [80]Evers, E., Waterhouse, A.,1978. A complete model for analyzing smoke movement in buildings. Building Research Establishment, BRE CP 69/78.
    [81]Kim, M.P., Han, Y.S., Yoon, M.O.,1998. Laser-assisted visualization and measurement of corridor smoke spread. Fire Safety J.31,239-251.
    [82]He, Y.P.,1999. Smoke temperature and velocity decays along corridors. Fire Safety J.33, 71-74.
    [83]Delichatsios, M.A.,1981. The flow of fire gases under a beamed ceiling. Combust. Flame 43, 1-10.
    [84]Bailey, J.L., Forney, G.P., Tatem, P.A., Jones, W.W.,2002. Development and validation of corridor flow submodel for CFAST. J. Fire Prot. Engg.22,139-161.
    [85]Hu L.H., Huo R., Li Y.Z., Wang H.B., Chow W.K. Full-scale burning tests on studying smoke temperature and velocity along a corridor. Tunnelling and Underground Space Technology. 2005(20):223-229.
    [86]Hu L.H., Huo R., Wang H.B., Yang R.X. Experimental studies on fire-induced buoyant smoke temperature distribution along tunnel ceiling. Building and Environment.2007(42): 3905-3915.
    [87]Hu L H, Huo R. Chow W K. Studies on buoyancy-driven back-layering flow in tunnel fires. Experimental Thermal and Fluid Science.2008 (32):1468-1483.
    [88]Takeda, H. and Akita, K. Critical Phenomenon in Compartment Fires with Liquid Fuels.18th International Symposium on Combustion. Waterloo, Canada,1980:519-527.
    [89]Saito, N., Yamada, T., Sekizawa, A., Yanai, E., Watanabe, Y.& Miyazaki, S. Experimental study on fire behaviour in a wind tunnel with a reduced scale model.2nd Int. Conf. Safety in Road and Rail Tunnels, Granada, Spain 1995:303-310.
    [90]Ingason, H. Fire Experiments in a Model Tunnel using Pool Fires-Experimental Data, SP Swedish National Testing and Research Institute, SPAR 1995:52, Boras, Sweden,1995.
    [91]Ingason, H. Effects of Ventilation on Heat Release Rate of Pool Fires in a Model Tunnel. SP Swedish National Testing and Research Institute, SP REPORT 1995:55, Boras, Sweden,1995.
    [92]Carvel R O. Fire size in tunnels. Doctoral Thesis, School of the Built Environment, Heriot-Watt University, Edinburgh, UK,2004.
    [93]Carvel R O, Beard A.N, Jowitt P W, Drysdale D D. The influence of tunnel geometry and ventilation on the heat release rate of a fire. Fire Technology,2004(40):5-26.
    [94]Lonnermark A. On the Characteristics of Fires in Tunnels. Doctoral Thesis, Department of Fire Safety Engineering, Lund University, Lund, Sweden,2005.
    [95]Kurioka H, Oka Y, Satoh H, Sugawa O. Fire properties in near field of square fire source withlongitudinal ventilation in tunnels. Fire Safety Journal 2003(38):319-340.
    [96]杨高尚,彭立敏,彭建国.从人员安全疏散的观点研究特长隧道横通道间距.灾害学.2007,22(1):44-48.
    [97]Tesson M,Brousse B.Fixed water sprinkling systems for fire control in road tunnels. Proceedings of the 5th International Conference on Safety in Road and Rail tunnels. Marseille, France:Tunnel Management International,2003.
    [98]Hall R C. Ventilation During Road Tunnel emergencies. Berkshire:TRL Limited,2006:16-17.
    [99]Tarada F. Critical Velocities for Smoke Control in Tunnel Cross-passages[M].1st International Conference on Major Tunnel and Infrastructure Projects. Taiwan:2000:1-12.
    [100]Kim D H, Park W H. Experiment by using reduced scale models for the fire safety of a rescue station in very long rail tunnel in Korea. Tunnelling and Underground Space Technology. 2006(21):303.
    [101]Tarada F, Bopp R, Nyfeler S, et al. Ventilation and Risk Control of the Young Dong Rail Tunnel in Korea.1st International Conference on Major Tunnel and Infrastructure Projects. Taiwan:2000.
    [102]Bettelini M. CFD for tunnel safety. Fluent user's meeting. Bingen,2001,9.
    [103]田沛哲.二郎山半横向通风公路隧道的火灾控制研究.北京工业大学硕士论文.2002.
    [104]Ingason H., Li Y. Z., Model scale tunnel fire tests with point extraction system. SP Report 2010:03.
    [105]Ingason H., Li Y. Z., Model scale tunnel fire tests with longitudinal ventilation. Fire Safety Journal. Accepted,2010.
    [106]Ingason H. Model scale tunnel fire tests-longitudinal ventilation. SP Report 2005:49.
    [107]Ingason H., Werling P. Experimental study of smoke evacuation in a model tunnel. FOA Defence Research Establishment. FOA-R-99-01267-311-SE, Tumba, Sweden,1999.
    [108]Haerter, A. Fire tests in the Ofenegg tunnel in 1965. International Conference on Fires in Tunnels, SP REPORT 1994:54,195-214, Boras, Sweden,10-11 October,1994.
    [109]Schlussbericht der Versuche im Ofenegg tunnel von 17.5-31.51965. Kommission fur Sicherheitstmassnahmen in Strassentunneln,1965.
    [110]Pucher, K. Fire Tests in the Zwenberg tunnel (Austria). International Conference on Fires in Tunnels,187-194, Boras, Sweden,1994.
    [111]State of the road tunnel equipment in Japan-ventilation, lighting, safety Equipment. Public Works Research Institute, Technical note, Vol.61, Japan,1993.
    [112]Fires in transport Tunnels:report on full-scale tests, edited by Studiensgesellschaft Stahlanwendung e. V., EUREKA-Project EU499:FIRETUN, Dusseldorf, Germany,1995.
    [113]Ingason, H. Heat release rate measurements in tunnel fires. International Conference on Fires in Tunnels,86-103, Boras, Sweden,1994.
    [114]Steinert, C. Smoke and Heat Production in Tunnel Fires. The International Conference on Fires in Tunnels,123-137, Boras, Sweden,1994.
    [115]Memorial Tunnel Fire Ventilation Test Program-Test Report. Massachusetts Highway Department and Federal Highway Administration,1995.
    [116]Lemaire, T., van de Leur, P. H. E., and Kenyon, Y. M. Safety Proef:TNO Metingen Beneluxtunnel-Meetrapport. TNO, TNO-Rapport 2002-CVB-R05572,2002.
    [117]Lemaire, T., and Kenyon, Y. Large scale fire tests in the Second Benelux tunnel. Fire Technology.2006(42):329-350.
    [118]van de Leur, P. H. E., and Kenyon, Y. M. Safety Proef:TNO Metingen Beneluxtunnel-Meetrapport. TNO, TNO-Rapport 2002-CVB-R05572,2002.
    [119]Ingason, H. and Lonnermark A., Heat Release Rates from Heavy Goods Vehicle Trailers in Tunnels. Fire Safety Journal,2005.40:p.646-668.
    [120]Lonnermark, A., and Ingason, H. Large Scale Fire Tests in the Runehamar Tunnel-Gas Temperature and Radiation. International Symposium on Catastrophic Tunnel Fires (CTF), SP Report 2004:05. Boras, Sweden,2004.
    [121]McGrattan K. FDS survey Report 2005. NIST.2005,3.
    [122]叶琮勤.大空间建筑性能式烟控系统设计之3D-CFD电脑模拟分析与全尺寸试验印证.台湾国立中山大学博士学位论文.2006.
    [123]Hwang C.C., Edwards J.C. The critical ventilation velocity in tunnel fires-a computer simulation 2005 Fire Safety Journal,2005(40):213-244.
    [124]Hoult, D. P., Fay J. A., and Forney L. J. A Theory of Plume Rise Compared with Field Observations. Journal of the Air Pollution Control Association.1969(19):585-590.
    [125]Hoult D. P., and Weil J. C. Turbulent plume in a laminar cross flow. Atmospheric Environment.1972,6(8):513-530.
    [126]Heskestad, G. "Fire Plumes," SFPE Handbook of Fire Protection Engineering. National Fire Protection Association, Quincy, MA,1995.
    [127]Zukoski, E. E. Smoke movement and mixing in two-layer fire models. The 8th UJNR Joint Panel Meeting on Fire Research and Safety. Tsukuba.1985.
    [128]Quintiere J. G., Rinkinen W. J., and Jones W. W. The effect of room openings on fire plume entrainment. Combustion Science and Technology.1981; 26:193-201.
    [129]Raj P. P. K., Moussa A. N., and Aravamudau K. Experiments involving pool and vapor fires from spills of liquidified natural gas on water. Prepared for U.S. Dept. of Transportation, U.S. Coast Guard, Rept. No. CG-D-55-79.
    [130]Karlsson B., and Quintiere J. G. Enclosure Fire Dynamics. Washington:CRC Press,2000.
    [131]McCaffrey B. J. Purely buoyant diffusion fames:some experimental results. NBSIR79-1919. National Bureau of Standards.1979.
    [132]Kurioka H., Oka Y., Satoh H., Sugawa O. Fire properties in near field of square fire source withlongitudinal ventilation in tunnels. Fire Safety Journal.2003,38:319-340.
    [133]Rew, C., and Deaves, D., Fire spread and flame length in ventilated tunnels-a model used in Channel tunnel assessments, Proceedings of the International Conference on Tunnel Fires and Escape from Tunnels,397-406, Lyon, France,5-7 May,1999.
    [134]Bailey, J.L., Forney, G.P., Tatem, P. A., Jones, W.W., Development and validation of corridor flow submodel for CFAST. J. Fire Protection Engineering.2002,22:139-161.
    [135]Croce, P. A., and Xin, Y., "Scale modeling of quasi-steady wood crib fires in enclosures", Fire Safety Journal, Vol.40,245-266,2005.
    [136]Harmathy, T. Z., "Experimental Study on the Effect of Ventilation on the Burning of Piles of Solid Fuels", Combustion and Flame, Vol.31, p.259-264,1978.
    [137]Tewarson, A., "Generation of Heat and Chemical Compounds in Fires". In The SFPE Handbook of Fire Protection Engineering (P. J. DiNenno, D. Drysdale, C. L. Beyler, W. D. Walton, R. L. P. Custer, J. R. Hall, and J. M. Watts, Eds.), National Fire Protection Association,3-82--3-161, Quincy, MA, USA,2002.
    [138]Rigter B P.Two-layer theory applied to the phenomenon of backlayering.11th International Symposium of Aerodynamics and Ventilation of Vehicle Tunnels. Switzerland: BHR Group, 2003, ppl91-218.
    [139]Deberteix P., Gabay D., Blay D., Experimental study of fire-induced smoke propagation in a tunnel in the presence of longitudinal ventilation, Proceedings of the International Conference on Tunnel Fires and Escape fro, Tunnels, Washington,2001, pp.257-265
    [140]Gerber, P. Quantitative risk assessment and risk-based design of the Gotthard Base Tunnel. Proceedings of the 4th International Conference Safety in Road and Rail Tunnels, Madrid, Spain,2006:395-404
    [141]铁道第三勘察设计院集团有限公司.《特长隧道防灾救援、安全疏散及通风技术研究》阶段成果报告[R].天津:2007.
    [142]Bassler A, Bopp R, Scherer O, et al. Ventilation of emergency station in the Koralmtunnel. 112th International Symposium on Aerodynamics and Ventilation of Vehicle Tunnels. Portoroz, Slovenia,2006.
    [143]Ozawa S. Ventilation and Fire Countermeasure in Seikan Tunnel.6th Aerodynamics and Ventilation of Vehicle Tunnels. England.1988, pp481-493.
    [144]郭春,王明年,赵海东.铁路特长隧道火灾应急救援问题研究.中国安全科学学报.2007,17(9):153-158.
    [145]宋建平,李国良,谷柏森,董勤银.乌鞘岭特长隧道救援防灾预案及防塌技术措施.隧道建设.2006,26(6):37-40.
    [146]赵勇.浏阳河隧道关键技术问题的探讨.铁道标准设计.2006,12:54-73.
    [147]Ingason H. Model Scale Railcar Fire Tests.Fire Safety Journal.2008,42:271-282.
    [148]张达明.地铁车站与区间火灾烟气扩散研究.北京工业大学硕士学位论文.2007.5.
    [149]NFPA130-2007 Standard for Fixed Guideway Transit and Passenger Rail Systems. Quincy, MA, USA:National Fire Protection Association,2007.
    [150]地下铁道设计规范GB50157-02.中国计划出版社.北京.2002.
    [151]PIARC. Fire and smoke control in road tunnels. PIARC Committee on Road Tunnels. Cedex, France: World Road Association (PIARC),1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700