超高层建筑竖井结构内烟气运动规律及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪,世界经济和科学技术飞速发展,城市人口日趋密集,高层、超高层建筑不断增加,特别是在大城市、超大城市,超高层建筑已经成为一个城市现代化程度的的重要标志之一。超高层建筑中存在电梯井、楼梯井、管道井、电缆井等多种竖向通道,一旦发生火灾,在烟囱效应、热烟浮力以及近地风场的共同作用下,这些竖井将会极大地促进火势及烟气的蔓延,从而造成严重的危害。然而,目前世界上尚无完整系统的超高层建筑防火设计规范,尤其我国目前仅有《高层民用建筑防火设计规范》,也主要只是针对高层建筑制定的,超高层建筑火灾的一系列特有问题并没有包括进来。而关于火灾烟气运动的力源机理,国际上也没有开展过完善系统的研究,尤其针对超高层建筑竖井结构的研究更是空白。因此,开展对超高层建筑竖井内烟气驱动力及蔓延规律的研究具有重要的现实意义。
     本文在前人研究的基础上,依托香港裘挫基金和中国科技大学火灾科学国家重点实验室及西南交通大学的实验条件,并自主加工2.7m高的小尺寸竖井实验台,以现场实验和模拟实验相结合的研究方法开展了超高层建筑竖井内烟气驱动力、不同火源位置及不同侧向开口情况下烟气运动规律的研究,并在查阅大量文献资料基础上,运用相似理论和数值分析方法进行了相应的理论分析。
     利用小尺寸竖井实验台对单纯烟囱效应、单纯热烟浮力、室外风影响、综合作用等情况进行实验及数值模拟研究,研究所得结论如下:单纯烟囱效应随着竖井内外温差的增大而增大,在无外界热源维持竖井内外温差的情况下,烟囱效应将迅速消失,且当内外温差相差不大时,逆烟囱效应造成的气体流动较正烟囱效应的快;单纯热烟浮力仅在烟气蔓延前期起主导作用,随后温度升高后,竖井内外形成一定的温差,烟囱效应起主导作用;近地风场会对竖井内烟气蔓延产生极大的影响,但在开口位置与风向的不同组合条件下,对烟气蔓延作用的影响差别较大,风向对竖井内烟气蔓延的影响大小顺序为:迎风面>侧面>背风面;在各种驱动力共同作用下,能极大地促进竖井内烟气的蔓延,增加竖井内烟气量,改变烟气在竖井内的蔓延途径,且在整个实验过程中,三种作用均对火势及烟气的蔓延有较大的影响。
     对不同火源位置条件下竖井结构内的烟气运动规律进行实验和数值模拟研究,得出了火源位置因子与最高温度的分布关系及最高温度与所对应的位置高度的拟合函数,研究所得结论如下:随着火源位置的不断升高,中性面的位置也在上移;火源位置对烟气的蔓延有较大影响,其产生烟气均向上部区域蔓延,而其下部区域基本无烟;竖井内的最高温度与火源位置因子(h/H)呈反比例关系,火源位置越高,比例因子越大,竖井内的最高温度就越低。
     对不同侧向开口条件下竖井结构内的烟气运动规律进行实验和数值模拟研究,研究表明:竖井内烟气运动过程是随着竖井结构的不同而变化的,主要取决于进气口及侧向开口打开情况;仅有中性面以下侧向开口开放时,中性面以下侧向开口数与竖井烟气混合效果及呈正比关系;仅有中性面以上侧向开口开放及上下均有侧向开口开放时,下部烟气会以墙壁羽流形式沿开口墙面蔓延,除起火层外,在中性面以下的所有楼层中相对无烟,直到火灾的产烟量超过流动所能排放的烟量;封闭竖井内部烟气运动最为缓慢,顶部温升相对较慢;全开放竖井内,中性面以下侧向开口卷吸空气程度较大,烟气流动最快,竖井顶部温度最低,温度梯度比较一致,稳态情况下近似为一特定的值。
     本文研究所得出的这些结论,具有一定的可操作性和实用性,为超高层建筑火灾防治相关规范的制订提供了一定的理论依据。
With the rapid development of global economy, science and technology, many high-rise and even ultra high-rise buildings are built or to be built in dense urban areas in large cities or city groups over the world. Ultra high-rise buildings have already become one of the important symbols of urban modernization. There are stairwells, pipe and cable ducts, and other vertical channels in those ultra high-rise buildings. These shafts will facilitate the spread of fire and smoke in a fire by combining natural driving forces with stack effect, smoke buoyancy and wind action. However, there is still not yet a workable fire safety system for ultra high-rise buildings in the world. In China, only "Fire Protection Design Standard for High-Rise Civil Constructions" is formulated particularly for high-rise constructions. It does not include a list of specific fire safety provisions for protecting against ultra high-rise building fires. There are no complete systematic research on the mechanism of fire and smoke movement in the world, and very little research on vertical shafts in ultra high-rise buildings. Therefore, carrying out the study of smoke driving forces and the mechanism of smoke spread in the shafts of ultra high-rise buildings is very important.
     With the support of the Croucher Foundation in Hong Kong, the State Key Laboratory of Fire Science in the University of Science and Technology of China, The Hong Kong Polytechnic University and the Southwest Jiaotong University, experiments were carried out to study smoke movement and the associated driving forces in this thesis. Efforts were made on reviewing previous studies first. Scale model experiments on a 2.7 m tall vertical shaft were carried out. The natural smoke driving forces, the movement mechanism of smoke under the conditions of different fire positions and lateral openings in the shaft of an ultra high-rise building were investigated by combining scale model experiments and numerical models. Similarity theory and numerical analysis method were applied with reference to the literature.
     By using a small-scale shaft model, the effect of simple hot smoke buoyancy, outdoor air, their integrated effect and others were studied. From this part of study, it is found that the simple stack effect increases as the temperature difference between the inside and outside of the shaft becomes higher. Without the external heat source maintaining the temperature difference, stack effect will disappear quickly. When the temperature difference is not obvious, the gas flow under the reverse stack effect is faster than under the stack effect. The simple hot smoke buoyancy plays a leading role in the early stage of smoke spreading. As the temperature increases, there is a temperature difference between inside and outside of the shaft. Therefore, stack effect plays a leading role. The near-ground vent influences the smoke spreading inside the shaft significantly, but in the integrated condition of ventilating position and wind direction, the effect on smoke spreading is very different. The order of the impact of wind direction is as follows: wind surface > side surface > lee side. Under the integrated effect of various driving forces, it will facilitate smoke spreading greatly inside the shaft, increase the volume of gas inside the shaft, and change the spreading pattern of smoke. Throughout the course of the experiments, all of the three effects influence fire and smoke spreading significantly.
     In studying the movement of gas inside the shaft and from numerical simulations of gas under different heights of fire, the relationship between the fire location factor and the highest temperature was derived. A correlation relation of the maximum temperature with the location of fire was derived. From this part of study, it can be concluded that the height of the neutral plane increases with the location of the fire. The location of the fire affects smoke spreading significantly. Most of the smoke flows to the upper region of stack, and the bottom of the region is smoke-free. The maximum temperature in the stack is in inverse proportion to the fire location factor (h/H). The higher the position of the fire, the larger the fire location factor, and the lower the maximum temperature.
     By studying the movement of gas inside the shaft and from numerical simulations of gas under different opening conditions, other conclusions can be drawn. The movement of gas varies with the structure of the shaft, which mainly depends on the inlet vent and the opening. When only the vents below the neutral plane are open, the number of vents below the neutral plane have direct ratio with the effect of mixing with smoke. When only the vents above the neutral plane are open or some vents both above and below the neutral plane are open, the lower smoke extends in the form of a wall plume along the wall which has vents. Floors under the neutral plane are smoke-free until smoke produced is more than the smoke flowing out. When all the vents are closed, smoke moves slowly and the upper temperature increase slowly. When all the vents are open, there is large air entrainment through the vents below the neutral plane, the velocity of gas is fast. The temperature at the bottom of the stack is low with the same temperature gradient, in steady-state condition it is a constant.
     The results deduced from this thesis are practical and useful to the industry. Concepts are helpful to the government in drafting standards for fire protection in ultra high-rise buildings.
引文
[1]中华人民共和国公安部.2005.高层民用建筑设计防火规范[Z].北京:中国计划出社.
    [2]邓玲.2006.FDS场模拟计算中的网格分析[J].消防科学与技术,02:207-210.
    [3]马修·韦尔斯.2006.摩天大楼结构与设计[M].北京:中国建筑工业出版社.
    [4]石碧青.2007.高层建筑围护结构风压分布特征[D].汕头大学.
    [5]刘天川.2004.超高层建筑空调设计[M].北京:中国建筑工业出版社.
    [6]朱杰,霍然,付永胜.2007.超高层建筑火灾防排烟研究[J].消防科学与技术,01:54-57
    [7]孙建军,李烈,路世昌,et al.2006.高层建筑管道井内烟气运动大涡模拟[J].中国安全科学学报,09:40-45.
    [8]全远丽.2007.建筑物表面风压及周围风环境的数值模拟研究[D].暨南大学.
    [9]杨伟,顾明.2003.高层建筑三维定常风场数值模拟[J].同济大学学报(自然科学版),06:647-651.
    [10]张靖岩.2008.垂直竖井中烟囱效应诱导火羽流结构的简化模型研究[J].中国安全生产科学技术,02:26-30.
    [11]张靖岩,霍然,王浩波,et al.2006.高层建筑中利用竖井进行排烟的可行性分析[J].工程力学,07:147-154.
    [12]张靖岩,李元洲,霍然,et al.2006.竖井中羽流前锋上升时间的实验研究[J].安全与环境学报.
    [13]张靖岩,霍然,王浩波,et al.2006.烟囱效应形成机理的实验[J].中国科学技术大学学报,01:73-76.
    [14]张靖岩,霍然,王浩波,et al.2005.竖井中烟气运动的非滞止状态产生的临界条[J].自然科学进展,04:504-508.
    [15]范维澄,王清安.1995.火灾学简明教程[M].合肥:中国科学技术大学出版社.
    [16]周月庭,吕令毅.2007.高层建筑三维非定常风场并行计算的数值模拟[J].建筑科学与工程学报,01:42-46.
    [17]周允基.2004.应用FDS软件对零售店铺火灾的数值模拟(英文)[J].火灾科学,01:18-21.
    [18]周莉,席光.2001.高层建筑群风场的数值分析[J].西安交通大学学报.
    [19]钟委.2007.地铁站火灾烟气流动特性及控制方法研究[D].
    [20]赵孝保.2004.工程流体力学[M].南京:东南大学出版社,
    [21]徐义华,江叔通.2004.建筑物风环境三维定常数值仿真[J].南昌航空工业学院学报(自然科学版),02:52-55.
    [22]袁新明,毛根海,吴寿荣,et al.1999(02).高层建筑物风场和风压力的数值计算[J].扬州大学学报(自然科学版).
    [23]韩志斌.1999.建筑结构风荷载的数值模拟研究[D].武汉理工大学.
    [24]韩占先.2001.降伏火魔之术[M].济南:山东科学技术出版社.
    [25]霍然,袁宏永.2003.性能化建筑防火分析与设计[M].合肥:安徽科学技术出版社.
    [26]霍然,胡源,李元洲.1999.建筑火灾安全工程导论[M].合肥:中国科学技术大学出版社.
    [27]Bryner S L.2000.Wind Effect on Fire Behavior in Compartment[J].《NISTNR 6588》.
    [28]Black W Z.Smoke movement in elevator shafts during a high-rise structural fire[J].Fire Safety Journal.,In Press,Corrected Proof.
    [29]Branley N,Jones W P.2001.Large Eddy simulation of a turbulent non-premixed flame[J].Combustion and Flame.,127(1-2):1914-1934.
    [30]Cermak J A P A J E.1997.Turbulence in Building Wakes Proceedings of the 4th International Conference on Wind Effects on Buildings and Structures[M].Cambridges Universty.
    [31]Cheng C C,Lam K M,Demirbilek F N.2008.Effects of building wall arrangements on wind-induced ventilation through the refuge floor of a tall building[J].Journal of Wind Engineering and Industrial Aerodynamics,96(5):656-664.
    [32]Chen G Q,Tao L,Rajagopal K R.2000.Remarks on large eddy simulation[J].Communications in Nonlinear Science and Numerical Simulation,5(3):85-90.
    [33]Chow W K.1998.Numerical Studies on Recent Large High-Rise Buliding Fire[J].ASCE Journal of Architectural Engineering,4(2):65-74.
    [34]Chow W K.2001.General Aspects of Fire Safety Management for Tunnels in Hong Kong[J].Journal of Applied Fire Science,10(2):179-190.
    [35]Chow W K.2004.Application of Computational Fluid Dynamics:Fire Safety Awareness for Gas Station in Dense Urban Areas with Wind Effect[J].ASME Heat Transfer/Fluid Engineering Summer Conference,11-15.
    [36] D P J .2002. SFPE Handbook of fire protection engineering[M]. Third Edition ed. Quincy,MA,USA: The National Fire Protection Association.
    [37] FR.1992.Aninternational survey of computer models for fire and smoke [J].Journal of fire protection engineering.
    [38] Fothergill JHKAJW. 1983.Design of Smoke Control System for Buildings[M]. Atlanta: ASHRAE inc.
    [39] G.o. Tamm Y J .2002. Buoyancy and pressure induced flow of hot gases in vertical shafts[J]. Proceedings of the 12th International Heat Transfer Conference,693-698.
    
    [40] H K J . 1991. A general routine for analysis of stack effect[J]. 《NISTNR 4588》 .
    [41] H. Satoh, O. Sugawa H K .1994. Plume behavior in confined and narrow space-as one of submodel of plume for an atrium fire[M]. Ottawa, Ontario, Canada: Proceeding of Fourth International Symposium, 551-562.
    [42] Hasib R, Kumar R, Shashi, et al. 2007. Simulation of an experimental compartment fire by CFD[J]. Building and Environment, 42(9): 3149-3160.
    [43] H. G. C. Woo J A P A J E C. 1997. Wind Tunnel Measurements in the Wakes of Structures[Z].
    [44] J H K T. M ethod of p redicting smokemovement in atria with application to smoke management[Z]. NISTIR 5516 .
    [45] Jo J H, Lim J H, Song S Y, et al .2007. Characteristics of pressure distribution and solution to the problems caused by stack effect in high-rise residential buildings[J]. Building and Environment, 42(1): 263-277.
    [46] J. Cannon E Z. 1976. Turbulent mixing in vertical shafts under conditions applicable to fires in high rise buildings[J]. California Institute of Technology.
    [47] Kiefer H P E J. 1998. Modelling of mean and fluctuating wind loads in built2up areas[J]. Journal of Wind Engineering and Industrial Aerodynamics, (74): 619-629.
    [48] Klote J H .1988. an analysis of the influence of piston effect on elevator smoke control[J]. NBSIR 88-3751.
    [49] Klote J. 1991. A General Routine for Analysis of Stack Effect[J]. National Institute of Standards and Technology, NISTNR.
    [50] Klote J H .2004. Hazards Due To Smoke Migration Through Elevator Shafts[J]. NIST GCR 04-864-I.
    [51] Klote J H. 1994. Fire and Smoke Control-An Historical-Perspective[J]. ASHRAE Journal, 36(7): 46-50.
    [52] Klote J H .1992. A Preview of ASHRAES Revised Smoke Control Manual.[J]. ASHRAE Journal,34(11): 34-37.
    [53] Klote J H .1989. Full Scale Smoke Control Tests at The Plaza Hotel Building[J]. ASHRAE Journal, 31(4): 28.
    
    [54] LBenedict, EeZukoski. 1996. Bouyant Flows in Shaft[J]. NIST论文集.
    [55] MarutaE, kandaM, satoJ. 1998. Effects on surface roughness for wind pressure on glass and cladding of buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,74: 651-663.
    [56] Marshall N R. 1986. Air entrainment into smoke and hot gases in open shafts[J]. Fire Safety Journal, 10(1): 37-46.
    [57] Marshall N R .1985. The behaviour of hot gases flowing within a staircase in open shafts[J]. Fire Safety J,10: 245-255.
    [58]Mcgrattan,kevin B,baum E A.2007.Fire Dynamics Simulator-Technical Reference Guide(5.0)[M]. Maryland: NISTIR 6467.
    [59] Mcgrattan,kevin B,baum E A.2007.Fire Dynamics Simulator-user Guide(5.0)[M]. Maryland: NISTIR 6467.
    [60] Mcgrattan K B, Baum H R, Rehm R G. 1998. Large eddy simulations of smoke movement[J]. Fire Safety Journal, 30(2): 161-178.
    [61] Mercier G P, Jaluria Y. 1999. Fire-induced flow of smoke and hot gases in open vertical enclosures[J]. Experimental Thermal and Fluid Science, 19(2): 77-84.
    [62] Milke J H K A J A. 1992. Design of Smoke Management Systems[M]. Atlanta: ASHRAE inc, 19-90.
    [63] Patankar S V.1980. Numerical heat transfer and fluid flow[M]. Hem ishpere Publish ing Co.
    [64] PeterAIrwin, michaelDCicci, jonathanBLankin. 1998. Variability of cladding pressures caused by adjacent building[J]. Journal of Wind Engineering and Industrial Aerodynamics,77: 147-156.
    [65] Priyadarsini R, Cheong K W, Wong N H. 2004. Enhancement of natural ventilation in high-rise residential buildings using stack system[J]. Energy and Buildings, 36(1): 61-71.
    [66] Ronald G. Rehm, William M. Pitts, Howard R. Baum D D E. Initial Model for Fires in the World Trade Center Towers[J]. National Institute of Standards and Technology.
    [67] ShahAshwinR, chanisChristosC. 1991. Simulation of probablistic wind loads and building analysis[J]. A merican Society of Mechanical Engineers Design Engineering Division, 30(9): 22-25.
    [68] Swaddiwudhipong S K M S .2002. Dynamic Response of Wind2excited Building Using CFD[J]. Journal of Sound and Vibration, 253(4): 735-754.
    [69] Tanaka H, Lee Y. 1988. Stack effect and building internal pressure[J]. Journal of Wind Engineering and Industrial Aerodynamics, 29(1-3): 293-302.
    [70] Tamura G T. 1994.Smoke Movement and Control in High-Rise Buildings[J]. National Fire Protection Association.
    [71] Tao L, Rajagopal K R, Chen G Q. 2001. Discrete large eddy simulation[J]. Communications in Nonlinear Science and Numerical Simulation, 6(1): 17-22.
    [72] Theodoridis G, Moussiopoulos N. 2000. Influence of building density and roof shape on the wind and dispersion characteristics in an urban area : a numerical study[J]. Environmental Monitoring and Assessment, 65(11): 407-415.
    [73] T. Tanaka T F A J Y. 2000. Investigation into Rise Time of Buoyant Fire Plume Fronts[J]. International Journal on Engineering Performance-Based Fire Codes, 2(1): 14-25.
    [74] Van M K, Merci B. 2006. Application of two buoyancy-modified k-[epsilon] turbulence models to different types of buoyant plumes[J]. Fire Safety Journal, 41(2): 122-138.
    [75] Wong N H, Heryanto S .2004. The study of active stack effect to enhance natural ventilation using wind tunnel and computational fluid dynamics (CFD) simulations[J]. Energy and Buildings, 36(7): 668-678.
    [76] Xiao G Q, Tu J Y, Yeoh G H. 2008. Numerical simulation of the migration of hot gases in open vertical shaft[J]. Applied Thermal Engineering, 28(5-6): 478-487.
    [77] Xin Y, Gore J, Mcgrattan K B, et al. 2002. Large eddy simulation of buoyant turbulent pool fires[J]. Proceedings of the Combustion Institute, 29(1): 259-266.
    [78] Zhang J Y, Lu W Z, Huo R, et al. 2008. A new model for determining neutral-plane position in shaft space of a building under fire situation[J]. Building and Environment, 43(6): 1101-1108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700