自抗扰控制技术在航空相机镜筒控制系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高航空相机控制系统性能,进而提高相机整体性能,本论文首次将自抗扰控制技术应用到航空相机中。以某航空相机镜筒控制系统为研究对象,从理论分析、数值仿真和应用实现三个方面对自抗扰控制技术进行了研究,成功实现了镜筒速度和位置的自抗扰控制。
     建立了系统的仿真模型和数学模型。研究和分析TD理论,验证了TD在过渡过程安排和滤波方面的良好性能。对两种非线性控制律进行了分析,设计了LPD、NLPD和TOFC控制器,验证了非线性控制律在提高系统精度及改善抗扰动性能方面的优越性。
     研究了ESO理论,给出了三阶LESO和NLESO的一般形式,采用带宽参数化的方法设计了单参数化的LESO。对ADRC与ESO的阶进行了讨论,阐明了二阶ADRC对一阶和三阶被控对象的控制能力。
     采用线性或非线性控制律,基于LESO或NLESO,设计了不同形式的ADRC。仿真结果验证了ADRC的控制效果和较强的鲁棒特性,表明ADRC在不引入积分控制的情况下,使系统迅速达到零稳态误差,增强了稳态抗偏差能力。提出了适合在航空相机伺服系统中应用的ADRC通用设计方法,对关键参数进行了分析。
     设计了镜筒的数字控制器,实现了ADRC速度控制,输入为1°/s时稳速精度达到0.4%以内,验证了ADRC作为一种通用控制器的控制性能。提出采用改进的TD设计速度响应过渡过程,消除了通用TD在响应初始阶段的假死区效应。
     采用软件模拟载机角速度扰动的方式验证了ADRC的抗扰动能力。实现了镜筒的位置控制,定位精度达到位置编码器的分辨率精度。结合多点实验参数和最小二乘法设计了变参数的位置过渡过程,实现了镜筒工作范围全程的快速无超调定位。通过其他运动机构产生的两种不同频率的周期性力矩扰动及手动扰动,验证了定位状态下ADRC的抗扰动能力。
     本论文的研究工作表明,ADRC完全能够达到而且在某些方面超越传统控制器的控制性能,为航空相机控制系统的设计提供了新的思路。
In order to improve control performance of aerial cameras and then improve the total performance, Active Disturbance Rejection Control (ADRC) is applied into aerial cameras for the first time. The control plant of the dissertation is the lensbarrel of an aerial camera. The research on ADRC technique is from three aspects of theoretical analysis, numerical simulation and application. ADRC is applied in speed control and position control of the lensbarrel successfully.
     The simulation model and mathematical model are given firstly. The theory of TD is discussed and proved effective in transient design and filtering. Through analysis of two kinds of nonlinear control law, LPD, NLPD, TOFC controllers is designed and the advantage of nonlinear control is proved in precision and ability of disturbance rejection.
     The theory of ESO is discussed and the general format of three order LESO and NLESO. LESO of a single parameter is designed with method of bandwidth parameterization. The order of ADRC and ESO is discussed and control ability of the second order ADRC is demonstrated to the first and third plants.
     Different ADRC is given based on linear or nonlinear control law, LESO or NLESO. Simulation results prove the high performance and robustness. ADRC achieves zero steady state error without integration and enhances the ability of steady state error rejection. The general procedure of ADRC is presented and analysis of the important parameters is given.
     A digital controller is designed and speed control is achieved with precision of 0.4% when reference input is 1°/s. The result proves the excellent performance of ADRC as a general controller. The modified TD is presented for transient profile design of speed control to eliminate the dummy dead zone effect of general TD. The angular velocity disturbance is simulated by way of programming.
     Position control of lensbarrel is achieved with precision of photoelectric encoder resolution. The method of transient profile design with a variable parameter based on multipoint tests and least squares is presented which can achieve global positioning rapidly without overshoot. The disturbance rejection performance of ADRC in position state is confirmed by periodic torque disturbance generated by other motion plant and manual disturbance separately.
     The work of the dissertation indicates that ADRC can attain and even exceed the control performance of traditional controller. A new thought is presented for design of aerial camera control systems.
引文
[1] R.S.Brownie.Trends in Podded Reconnaissance Systems[C].Proceeding of SPIE Vol.5109,2003,37-41.
    [2]程晓薇,车英,薛常喜.CCD数字航空相机高分辨力成像关键技术与发展[J].电光与控制,2009,16(4):7-10.
    [3] K.James Held,Brendan H. Robinson.TIER II Plus Airborne EO Sensor LOS Control and Image Geolocation[C].Proceeding of IEEE Conference,1997,337-405.
    [4]卢志刚,吴杰,吴潮.数字伺服控制系统与设计[M].北京:机械工业出版社,2007.
    [5]耿立中,安文化,车念曾.KA-112A全景式航空照相机[M].北京:中国人民解放军空军司令部情报部,1988.
    [6]王光.KS-146长焦距航空照相机[M].北京:中国人民解放军空军司令部情报部,1989.
    [7]韩京清.从PID技术到“自抗扰控制”技术[J].控制工程,2002,9(3): 13-18.
    [8] G.J.Silva , A.Datta , S.P.Bhattacharyya . New Resultsonthe Synthesis of PID Controllers[C].IEEE Transactions on Automatic Control,2002,47(2):241-252.
    [9]韩京清.自抗扰控制技术—估计补偿不确定因素的控制技术[M].国防工业出版社,2008.
    [10]韩京清.控制理论—模型论还是控制论[J].系统科学与数学,1989,9(4):328-335.
    [11]韩京清.系统辨识的一种方法—状态反馈法[J].控制与决策,1990,(1):13-17.
    [12]韩京清.非线性系统的状态观测器[J].控制与决策,1990,(3):57-60.
    [13]韩京清.非线性控制系统中状态反馈的实现[J].控制与决策,1991,(3):161-167.
    [14]韩京清.非线性PID控制器[J].自动化学报,1994,20(4):487-490.
    [15]韩京清.一种新型控制器—NLPID[J].控制与决策,1994,9(6):401-406.
    [16]韩京清.一类不确定对象的扩张状态观测器[J].控制与决策,1995,10(1):85-88.
    [17]韩京清.利用非线性特性改进PID控制律[J].信息与控制,1995,24(6):356-363.
    [18]韩京清.非线性状态误差反馈控制律—NLSEF[J].控制与决策,1995,10(3):221-225.
    [19]黄一,张文革.自抗扰控制器的发展[J].控制理论与应用,2002,19(4):485-491.
    [20]韩京清.自抗扰控制技术[J].前沿科学,2007,1(1):24-31.
    [21]陈星.自抗扰控制器参数整定方法及其在热工过程中的应用[D]:[硕士学位论文].北京:清华大学,2008.
    [22]苏位峰.异步电机自抗扰矢量控制调速系统[D]:[博士学位论文].北京:清华大学,2004.
    [23]张兆靖.自抗扰控制系统参数整定方法的研究[D]:[硕士学位论文].江苏:江南大学,2007.
    [24]李乔.并联型混合有源电力滤波器的自抗扰与H∞鲁棒控制[D]:[博士学位论文].广州:华南理工大学,2005.
    [25]管志敏.自抗扰控制技术在大型火电机组控制系统中的应用研究[D]:[博士学位论文].河北:华北电力力大学,2009.
    [26]马幼捷,刘增高,马云斌.一种具有自抗扰调速电路的三相鼠笼异步电机[P].中国专利,CN 101499769A,2008.
    [27]廉明,韩振宇,富宏亚.自抗扰技术在卫星姿态模拟系统中的应用[J].光学精密工程,2010,18(3):616-622.
    [28]徐乐.主动磁控小卫星自抗扰姿态控制系统研究[D]:[硕士学位论文].黑龙江:哈尔滨工业大学,2006.
    [29]宋金来,王晓燕,韩京清,等.卫星制导炸弹控制回路中的自抗扰控制[J].航天控制,2008,26(3):25-29.
    [30]宋金来,韩京清.平台式惯导系统的快速初始对准方法的研究[J].中国惯性技术学报,2002,10(1):25-29.
    [31]宋金来,杨雨,许可康,等.捷联式惯导系统静基座快速初始对准方法的研究[J].系统仿真学报,2002,14(10):1352-1354.
    [32]黄焕袍,武利强,高峰,等.自抗扰控制在火电厂主汽温控制中的应用[J].系统仿真学报,2005,17(1):241-244.
    [33]徐春梅,杨平,蒋式勤,等.火电厂主汽温控制系统的自抗扰控制仿真研究[J].华北电力大学学报,2006,33(3):41-45.
    [34]黄焕袍,武利强,韩京清,等.火电单元机组协调系统的自抗扰控制方案研究[J].中国电机工程学报,2004,24(10):168-173.
    [35]徐书凯,胡勤丰,王大伟.基于卡尔曼观测器的永磁同步电机自抗扰控制[J].电机与控制应用,2010,37(5):27-31.
    [36]刘星桥,胡建群,周丽.自抗扰控制器在三电机同步系统中的应用[J].中国电机工程学报,2010,30(12):80-85.
    [37]夏长亮,刘均华,俞卫,等.基于扩张状态观测器的永磁无刷直流电机滑模变结构控制[J].中国电机工程学报,2006,26(20):139-143.
    [38]张文革,韩京清.一类混沌系统的状态观测与控制[J].控制与决策,2000,15(3):301-304.
    [39]焦连伟,陈寿孙,王晓丰.电力系统自抗扰控制器[J].清华大学学报(自然科学版),1999,39(3):27-29.
    [40]李壮举,刘贺平,王允建.一种改进的自抗扰解耦方法及其应用仿真[J].计算机仿真,2010,27(4):344-348.
    [41]李红文.二级倒立摆自抗扰控制算法的研究与应用[D]:[硕士学位论文].黑龙江:哈尔滨理工大学,2009.
    [42]武利强,韩京清.直线型倒立摆的自抗扰控制设计方案[J].控制理论与应用,2004,21(5):654-659.
    [43]金迪,邵诚.自抗扰控制器在6自由度液压并联机器人仿真分析中应用[J].大连理工大学学报,2003,43(5):691-696.
    [44]辛普,刘丁,杨延西.基于自适应免疫整定的机器人无标定自抗扰视觉伺服控制[J].控制理论与应用,2007,24(4):546-552.
    [45]何凌云.磁悬浮系统的自抗扰控制[D]:[硕士学位论文].湖南:国防科学技术大学,2006.
    [46]吕伟龙,吴丹,王先连,等.自抗扰精密跟踪运动控制器的设计.清华大学学报(自然科学版),2007,47(2):190-193.
    [47]吴赛成.自抗扰控制器在激光陀螺单轴稳定平台中的应用研究[D]:[硕士学位论文].湖南:国防科学技术大学,2006.
    [48]陈忻彦,黄一,韩京清,杨雨,魏宗康.自抗扰控制思想在动力调谐陀螺仪力平衡回路中的应用.中国惯性技术学报,2003,11(6):84-89.
    [49]刘洁.自抗扰控制器在高性能异步电机控制系统中的应用[D]:[硕士学位论文].天津:天津大学,2003.
    [50] Dan Wu,Xiankui Wang,Tong Zhou,et al.Application of Active Disturbance Rejection to Tracking Control of a Fast Tool Servo System[C].Proceedings of the 2005 IEEE Conference on Control Applications,Toronto,Canada,2005:547-552.
    [51]蔡涛,陈杰,白永强.坦克稳定器的自抗扰控制算法.火力与指挥控制,2004,29(4):23-25.
    [52] Zhiqiang Gao , R. Russell Rhinehart . Theory vs. Practice: The Challenges From Industry[C].Proceedings of the 2004 American Control Conference,Boston,USA,2004:1341-1349.
    [53] Zheng Qing,Gao Zhiqiang.On Practical Applications of Active Disturbance Rejection Control[C].Proceedings of the 29th Chinese Control Conference,Beijing,China,2010:6095-6100.
    [54]高志强.控制工程的抗扰范式[C].Proceedings of the 29th Chinese Control Conference,Beijing,China,2010:6071-6076.
    [55] Gang Tian,Zhiqiang Gao.Frequency Response Analysis of Active Disturbance Rejection Based Control System[C].Proceedings of the 16th IEEE International Conference on Control Applications,Part of IEEE Multi-conference on Systems and Control,Singapore,2007:1595-1599.
    [56] Qing Zheng,Linda Q. Gao,Zhiqiang Gao.On Stability Analysis of Active Disturbance Rejection Control for Nonlinear Time-Varying Plants with Unknown Dynamics[C].Proceedings of the 46th IEEE International Conference on Decision and Control,New Orleans,USA,2007:3501-3506.
    [57] Wankun Zhou,S.Shao,Zhiqiang Gao.A Stability Study of the Active Disturbance Rejection Control Problem by a Singular Perturbation Approach[J].Applied Mathematical Sciences.2009,3(10):491-508.
    [58] Jeffrey Csank , Zhiqiang Gao . Uncertainty Reduction Through Active Disturbance Rejection[C].Proceedings of the 2008 American Control Conference,Washington,USA,2008:3689-3694.
    [59] Zhiqiang Gao . On Discrete Time Optimal Control: A Closed-Form Solution[C].Proceedings of the 2004 American Control Conference,Boston,USA,2004:52-58.
    [60] Zhiqiang Gao.Active Disturbance Rejection Control: A Paradigm Shift in Feedback Control System Design[C].Proceedings of the 2006 American Control Conference,Minneapolis,USA,2006:2399-2405.
    [61] Jack Zeller,Minshao Zhu,Tom Stimac,et al.Nonlinear Digital Control Implementation for DC-DC Power Converter[C] . Proceedings of IECEC’01 36th Intersociety Energy Conversion Engineering Conference,Georgia,2001:1-6.
    [62] B.X.S.Alexander,Richard Rarick,Lili Dong.A Novel Application of An Extended State Observer for High Performance Control of NASA’s HSS Flywheel and Fault Detection[C].Proceedings of the 2008 American Control Conference,Washington,USA,2008:5216-5221.
    [63] Qing Zheng,Lili Dong,Dae Hui Lee,et al.Active Disturbance Rejection Control for MEMS Gyroscopes[C] . Proceedings of the 2008 American Control Conference ,Washington,USA,2008:4425-4430.
    [64] Qing Zheng , Lili Dong , Zhiqiang Gao . Control and Rotation Rate Estimation of Vibrational MEMS Gyroscopes[C].Proceedings of the 16th IEEE International Conference on Control Applications , Part of IEEE Multi-conference on Systems and Control ,Singapore,2007:118-123.
    [65] Lili Dong,Qing Zheng,David Avanesov.The Design and Implementation of Driving Mode Control for Vibrational Gyroscopes[C].Proceedings of the 2008 American Control Conference,Washington,USA,2008:4419-4424.
    [66] Lili Dong,Qing Zheng,Zhiqiang Gao.On Control System Design for the Conventional Mode of Operation of Vibrational Gyroscopes[J].IEEE Sensor Journal,2008,8(11):1871-1878.
    [67] Qing Zheng,Lili Dong.A Disturbance Rejection Based Control System Design for Z-Axis Vibratory Rate Gyroscopes[C].Proceedings of IEEE International conference on Control and Automation,Guangzhou,China,2007:2105-2110.
    [68] Qing Zheng,Zhongzhou Chen,Zhiqiang Gao.A Dynamic Decoupling Control Approach and Its Applications to Chemical Processes[C].Proceedings of the 2007 American Control Conference,New York,USA,2007:5176-5181.
    [69] Zhongzhou Chen,Qing Zheng,Zhiqiang Gao.Active Disturbance Rejection Control of Chemical Processes[C].Proceedings of the 16th IEEE International Conference on ControlApplications,Part of IEEE Multi-conference on Systems and Control,Singapore,2007:855-861.
    [70] YI HOU.Novel Control Approaches For Web Tension Regulation[D].CLEVELAND STATE UNIVERSITY,USA,2001.
    [71] Wankun Zhou,Zhiqiang Gao.An Active Disturbance Rejection Approach to Tension and Velocity Regulations in Web Processing Lines[C] . Proceedings of the 16th IEEE International Conference on Control Applications,Part of IEEE Multi-conference on Systems and Control,Singapore,2007:842-848.
    [72] Frank J. Goforth,Zhiqiang Gao.An active disturbance rejection control solution for hysteresis compensation[C].Proceedings of the 2008 American Control Conference,Washington,USA,2008:2202-2208.
    [73] SHAOHUA HU . On High Performance Servo Control Algorithms For Hard Disk Drive[D].CLEVELAND STATE UNIVERSITY,USA,2001.
    [74] Qing Zheng , Zhiqiang Gao . Motion Control Design Optimization: Problem and Solutions[J].International Journal of Intelligent Control and System,2005,10(4):269-276.
    [75] Gang Tian,Zhiqiang Gao.Benchmark Tests of Active Disturbance Rejection Control on an Industrial Motion Control Platform[C] . Proceedings of the 2009 American Control Conference,St. Louis,USA,2009:5552-5557.
    [76] Lili Dong,Prasanth Kandula,Zhiqiang Gao.On a Robust Control System Design for an Electric Power Assist Steering System[C].Proceedings of the 2010 American Control Conference,Baltimore,USA,2010:5356-5361.
    [77] Lili Dong , Yao Zhang . On Design of a Robust Load Frequency Controller for Interconnected Power Systems[C].Proceedings of the 2010 American Control Conference,Baltimore,USA,2010:1731-1736.
    [78] Bosheng Sun,Zhiqiang Gao.A DSP-Based Active Disturbance Rejection Control Design for a 1-kW H-Bridge DC–DC Power Converter[C] . IEEE Transactions On Industrial Electronics,2005,52(5):1271-1277.
    [79]陈庆伟,郭毓,杨非,等.双电机同步联动控制系统.南京理工大学学报,2005,29(Suppl):103-107.
    [80]忽麦玲,张光辉,卫平,等.双电机驱动伺服系统的建模与分析.火炮发射与控制学报,2008,2:93-96.
    [81] Jean-Jacques,E. Slotine,Weiping Li.Applied Nonlinear Control[M].程代展等译.北京:机械工业出版社,2009.
    [82]韩京清.非线性跟踪-微分器[J].系统科学与数学,1994,20(4):177-183.
    [83]韩京清,袁露林.跟踪微分器的离散形式[J].系统科学与数学,1999,19(3):268-273.
    [84]武利强,林浩,韩京清.跟踪微分器滤波性能研究[J].系统仿真学报,2004,16(4):651-652.
    [85]韩京清.最速反馈控制的不变性[J].系统科学与数学,2005,25(4):498-506.
    [86] George Ellis.Control System Design Guide[M].第三版.刘君华等译.北京:电子工业出版社,2006.
    [87]王广雄,何朕.控制系统设计[M].北京:清华大学出版社,2008.
    [88]刘胜,彭侠夫,叶瑰昀.现代伺服系统设计[M].黑龙江:哈尔滨工程大学出版社,2001.
    [89] Jingqing Han.Nonlinear Design Methods for Control Systems[C].Proceedings Of The 14th IFAC World Congress,Beijing,1999.
    [90] Zhiqiang Gao . Scaling and Bandwidth-Parameterization Based Controller Tuning[C] . Proceedings of the 2003 American Control Conference , USA , 2003 :4989-4996.
    [91] Qing Zheng,Linda Q. Gao,Zhiqiang Gao.On Estimation of Plant Dynamics and Disturbance from Input-Output Data in Real Time[C].Proceedings of the 16th IEEE International Conference on Control Applications,Part of IEEE Multi-conference on Systems and Control,Singapore,2007:1167-1172.
    [92]韩京清,张荣.二阶扩张状态观测器的误差分析[J].系统科学与数学,1999,19(4):465-471.
    [93] Huang Yi , Han Jingqing . The Self-stable Region Approach for Second Order Systems[J]. Sys.Sci.& Math.Scis.,1999,12(3):238-245.
    [94]黄一,韩京清.非线性连续二阶扩张状态观测器的分析与设计[J].科学通报,2000,45(13):1373-1378.
    [95]邵立伟,廖晓钟,夏元清,等.三阶离散扩张状态观测器的稳定性分析及其综合[J].信息与控制,2008,37(2):135-139.
    [96] Robert Miklosovic , Aaron Rake , and Zhiqiang Gao . Discrete Implementation and Generalization of the Extended State Observer [J].Proceedings of the 2006 American Control Conference,Minneapolis,USA,2006:2209-2214.
    [97] Weiwen Wang , Zhiqiang Gao . A Comparison of Advanced state Observer Design Techniques[C].Proceedings of the 2003 American Control Conference,Denver,USA,2003:4754-4759.
    [98]张荣,韩京清.串联型扩张状态观测器构成的自抗扰控制器[J].控制与决策,2000,15(1):122-124.
    [99]韩京清.自抗扰控制器及其应用[J].控制与决策,1998,13(1):19-23.
    [100]万晖.自抗扰控制器的稳定性分析及其应用[D]:[博士学位论文].北京:中国科学院数学与系统科学研究院,2001.
    [101] Huang Yi,Han Jingqing.Disturbance Rejection and Tracking Design via the SSR Aproach for Second Order Uncertain Systems[J] . Sys . Sci . & Math. Scis. ,1999,12(Suppl):96-103.
    [102]要晓梅,王庆林,刘文丽,等.一般工业对象的二阶自抗扰控制[J].控制工程,2002, 9(5):59-62.
    [103]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    [104] Sun Li-Ming,JIANG Xue-Zhi,LI Dong-Hai.Tuning of Auto-disturbance-rejection Controller for a Class Nonlinear Plants[J].自动化学报,2004,30(2):251-254.
    [105]李海生,朱学峰.自抗扰控制器参数整定与优化方法研究[J].控制工程,2004,11(5):419-423.
    [106]于希宁,朱丽玲.自抗扰控制器的动态参数整定及其应用[J].华北电力大学学报,2005,32(6):9-13.
    [107]韩京清.扩展状态观测器参数与菲波纳奇数列[J].控制工程,2008,15(Suppl):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700