淬火介质的常用钢热探头评价和淬火介质数据库
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淬火介质的正确选择和使用一直是热处理的重要课题之一。淬火介质评价方法中,冷却曲线法应用最广。它能描述冷却过程中淬火介质与工件间的传热行为,而且已发展出若干定量的评价方法。但热探头材料和测温点的选择等方面存在的局限,使现有冷却曲线既无法正确表征淬火介质对实际工件的冷却效果,又无法据此准确预测工件的淬后性能。
     本文提出设计常用钢热探头评价淬火介质并建立淬火介质数据库。常用钢热探头在尺寸、材料、热电偶布置等方面不同于以往的评价方法中使用的热探头。选择有代表性的钢材制造热探头并依照热处理工艺进行淬火,可以模拟工件的冷却过程。通过采集热探头内典型部位的冷却曲线、淬火组织和硬度,可以表征淬火介质的冷却能力和硬化能力。
     开发淬火过程温度采集系统,实现了较高的采样速率,使用数字滤波消除了数据的噪声干扰。利用温度采集系统测量了20CrMnTi、GCr15、H13等10种常用钢热探头在9种油基和水基淬火介质中淬火的冷却曲线。研究了热探头中央横截面的淬后组织分布和硬度分布,对淬火开裂的热探头,采集了开裂部位的形貌。
     开发了淬火介质数据库,可以实现常用钢热探头淬火过程的冷却曲线、冷速曲线及热探头淬后组织分布、硬度分布和淬裂形貌的查询。数据库在设计中对易用性和数据规模的可扩展性进行了充分考虑。
Correct selection and usage of quenchants is one of the key issues in heat treatment. Among the evaluation methods of quenchants, cooling curve method is the most popular. This method is able to describe heat transfer between quenchant and workpiece during quenching. Although many quantitative analysis methods were developed from cooling curve method, it is still a problem to select proper material for thermal probe manufacturing and to select locations in probe for temperature measurement. This prevents cooling curve method from presentation of quenchants' cooling effect on practical workpieces and results in incorrect prediction of enhanced performance.
    In this thesis, it is put forward to design a probe of typical steels and to establish a quenchant database by quenching tests. The probe of typical steels has specific features in measurement, material, thermal couple arrangement, etc. With the tests in accordance with standard quenching technology, practical quenching process of workpiece can be simulated. This method gives cooling power and hardening power of quenchants with the results of cooling curves, microstructure and hardness collected at several representative locations in the probes.
    A temperature acquisition system was developed to carry out high-speed acquisition of temperature signals. Probes made of 10 kinds of typical steels such as 20CrMnTi, GCr15 and H13 were quenched in 9 different quenchants, and cooling curves were recorded with the acquisition system. In this work, microstructure distribution and hardness distribution along cross-section in the middle of the length of quenched probes were investigated, and the photographs of cracked probes were taken.
    The quenchant database provides users with access to the data of cooling curves and cooling rate curves of quenching tests. It also restores microstructure distribution and hardness distribution of all the quenched probes as well as photographs of the cracked probes. Extensibility and user-friendly characteristics are involved in design philosophy.
引文
[1] 徐祖耀.材料热处理原理——相变研究及其应用.中国热处理年鉴.北京:中国热处理行业协会,2003.213-219
    [2] R.T.von,Bergen.淬火介质的选择和控制对工程用钢零件变形的影响.国外机车车辆工艺,1995,(3):38-44
    [3] 苏东升,马振腾,陈南平等.钢的过程奥氏体曲线.第一版,本溪钢铁公司第一炼钢厂,1979
    [4] 热处理手册第一卷.第3版.北京:机械工业出版社,2001
    [5] 李茂山,张克俭.热处理淬火介质的新进展.金属热处理,1994,(4):39-42
    [6] 李强.热处理淬火冷却介质及其新发展.郑州纺织工学院学报,2001,12(2):30-33
    [7] 朱祖昌,王琦.聚合物介质的冷却特性曲线及其应用.第八次全国热处理大会.北京:中国机械工程学会热处理分会,2003.669-672
    [8] 朱祖昌.聚合物冷却介质和热处理冷却技术(一).
    [9] 雷仲眉,水洪.聚合物淬火介质的应用.金属热处理,1998,11:26
    [10] 金义华,尹付成.聚合物淬火介质的正确选用.国外金属热处理,1997,(5):28-29
    [11] 秦勇.热处理淬火介质的发展.煤矿机械,2001,(3):3-4
    [12] 刘峰.钢材的冷却结束(二).轧钢,1996,(1):39-41,56
    [13] 高长银.淬火油动态下冷却性能的研究.2001,7
    [14] 陈乃录,潘健生,廖波.用冷却曲线估测动态条件下淬火油的淬火烈度.金属热处理,2002,27(12):46-48
    [15] 陈春怀,周敬恩.淬火介质冷却能力的测定和应用.金属热处理,2001,26(11):28-31
    [16] J.Bodin 著,李福臣译.淬火介质冷却能力的测定和评价.国外金属热处理,1992,13(3):21-30
    [17] 陈志宏,吴季恂.冷却介质性能评定方法的进展——冷却却曲线法的发展.金属热处理,1998,(6):4-8
    [18] K Lainer, H M Tensi. Heat transfer coefficient and heat flux density distribution, influenced by the wetting behavior of hollow cylinders. In Proceeding of the Second International Conference on Quenching & the Control of Distortion, 4-7 November 1996, Cleveland. Ohio: 93-99
    [19] "Drayton Probe systems: Quenchalyzer Brochure". Instruments and Technology Inc.,2000
    [20] ISO/DIS 9950 工业淬火油——冷却特性的测定——实验室试验法
    [21] ISO 9950 工业淬火油——冷却特性的测定——镍合金探头试验法
    [22] B.Liscic, Svaic and Filetin. "Workshop Designed System for Quenching Intensity Evaluation and Calculation of Heat Transfer Data". First International Conference on Quenching and Control of Distortion, Chicago, Illinois, 1992
    [23] JIS K 2242——1980 热处理油
    [24] 法国标准.NFT60178
    
    
    [25] JB/T 7951-95 淬火介质冷却性能试验法
    [26] 胡志东,李光银,范宏利.淬火介质冷却曲线与钢的淬火效果的关系.武汉汽车工业大学学报,1997.19(4):50-53
    [27] I. Tamura, N. Shimizu and T. Okada, "A method to judge the quench-hardening of steel from cooling curve of quenching oils". Journal of Heat Treating, Vol.3, No. 4, 1984, pp. 335-343
    [28] Bodin J, Segerberg S. Measurement and Evaluation of the power of Quenching Media for Hardening. Heat Treating, 1992,(4):24-26
    [29] Deck M, Damay P and Le Strat F. Castrol index: une method de classification des huiles de trempe. ATTT 90 Internationaux de France de Traitement Thermique (Conference proceedings). Paris, France: Le Mans,19-21 Sept 1990:49-70.
    [30] Segerberg S O. Classification of quench oils: a method of comparison. Heat Treating, 1988, 20(12):30-33
    [31] 陈春怀,周敬恩.关于评价淬硬能力的Segerberg公式的讨论.西安交通大学学报,2002,36(1):78-82
    [32] 增广益.淬火介质冷却曲线的判读和评价.金属热处理,1999,(3):38-40
    [33] 增广益.淬火介质冷却能力的数值表示方法.铸煅热——热处理实践,1996,(2):48-51
    [34] Künzel Th.,Tensi H M and Weizel G. Rewetting rate-the decisive characteristic of a quenchant. Proceeding of IFHT'S 5th Intermational Congress on Heat Treatment of Materials, Budapest, 1986, 111: 1860-1813
    [35] Liscic B, Filetin T. Computer-Aided Evaluation of Quenching Intensity and Prediction of Hardness Distribution. J. Heat Treat, 1988, 5(2): 115-124
    [36] Bates C E, Landig T, and Seitanakis G. Quench factor analysis: A powerful tool comes of age. Heat Treating, 1985, (12): 13.
    [37] GoryushinV V, et al. PK-2 quenching medium. Metalloved. Term. Obrab. Met., 1986, (10):9-13
    [38] 陈乃录.淬火冷却技术的研究进展.中国热处理,中国机械工程学会热处理分会,2003.260-266
    [39] Segerberg S. Controlling the quench process for more consistent hardening. Heat Treatment of Metals, 1993,(1): 15-23
    [40] 罗新民,刘惠南.探头及其冷却行为对淬火介质冷却特性评定的影响.江苏理工大学学报,1995,17(5):50-55
    [41] 王魁汉,吴玉峰,付忠林.热处理行业用新型温度传感器及测温技术。首届中国热处理活动周论文集.大连:中国热处理学会,2002.V-26~V-29
    [42] 天东,潘健生,毛立忠,沈雷.测量淬火冷却曲线几种热电偶的安装方法.金属热处理,1998,(11):32-34,42
    [43] 李强,王葛,陈乃录,廖波,王同珍。淬火介质流场计算机模拟.科学通报,2002,47(24):1861-1862
    [44] 张伟民,陈乃录,胡明娟.热处理智能技术.首届中国热处理活动周论文集.大连:
    
    中国热处理学会,2002.Ⅲ-35~Ⅲ-39
    [45] 陈乃录,潘健生,廖波,高长银,叶健松.淬火油动态下换热系数的测量及计算.热加工工艺,2002,(3):6-7,40
    [46] 顾剑锋,潘健生,胡明娟.淬火冷却过程中表面综合换热系数的反传热分析.上海交通大学学报.1998,32(2):19-31
    [47] 陈乃录,高长银,单进,潘健生,叶健松,廖波.动态淬火介质冷却特性及换热系数的研究.材料热处理学报,2001,22(3):41-44
    [48] 谢建斌,程赫明,何天淳.钢淬火时非线性热问题的研究.桂林工学院学报,2001,21(3):265-270
    [49] 程赫明,王洪纲.圆柱体45钢淬火过程中热传导方程逆问题的求解.昆明理工大学学报,1996,21(3):54-58
    [50] H.K. Kim, S.I. Oh. Evaluation of heat transfer coefficient during heat treatment by inverse analysis. Journal of Materials Processing Technology, 2001,(112): 157-16:5
    [51] 潘健生,张伟民,袁文庆.影响热处理计算机模拟精度的若干问题的探讨.首届中国热处理活动周论文集.大连:中国热处理学会,2002.Ⅲ-1~Ⅲ-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700