用户名: 密码: 验证码:
预混火焰在微小通道中传播和淬熄的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究预混爆燃火焰在微小通道内的传播与淬熄过程,对管道内或开敞空间可燃气体的防燃抑爆均具有重要的意义。本文主要针对爆燃火焰在微小通道中的传播机理与淬熄条件进行了实验和理论研究,旨在为可燃气体燃烧爆炸的防治以及阻火器的设计应用提供理论和实验依据。本文主要工作和结论如下
     (1)建立了管内可燃气体爆炸与爆炸抑制试验装置,实现了计算机程控点火和同步采集测点的压力和火焰速度。通过结构设计,避免了非测点火焰信号的干扰,保证了采集系统获得的火焰信号与测点火焰信号相对应,为确定管内火焰的平均传播速度提供可行的方法,从而能够研究火焰和压力的传播与发展过程。对预混火焰在圆管内的爆炸传播进行了实验研究,获得了圆管内火焰传播的规律,总结了关系式。
     (2)对管内预混爆燃火焰在多层丝网结构中的传播与淬熄进行了实验研究,得到了淬熄压力和淬熄速度与丝网几何参数如丝网层数、丝网目数等之间的关系。引入熄爆参数来反映丝网结构抑制火焰和爆炸压力的效果,熄爆参数可解释为被淬熄的预混火焰进入丝网结构前的能量。实验研究发现,用熄爆参数能够更全面反映丝网抑制火焰和爆炸压力的效果。熄爆参数越大,丝网结构的熄爆能力越强,对相同预混火焰,丝网结构能够淬熄的火焰压力和传播速度越大,而对不同预混火焰,丝网结构能够淬熄活性更大的预混火焰。该研究思路为确定其他微通道阻火抑爆结构的抑爆性能提供了可行的方法。
     (3)建立了预混火焰在狭窄通道的淬熄计算模型,计算结果与实验结果的最大误差为16.1%。对预混爆燃火焰在平行板狭缝结构中的传播和淬熄进行了数值模拟,分析了火焰在狭缝中传播的4种不同状态。获得了火焰传播速度V、狭缝淬熄间距G、狭缝壁面温升△T_w与淬熄长度Lq之间的关系在固定狭缝间距G时,相同预混火焰的淬熄时间Lq/V是定值。狭缝间距G增加,参数C减小,淬熄困难。对CH_4/Air对C_3H_3/Air对C_2H_2/Air狭缝壁面温度上升导致f2(△T_w)减小,淬熄性能下降。对CH_4/Air和C_3H_8/Air预混火焰
     同等条件下,反应活性高的气体,参数C越小,相应淬熄长度也越长,淬熄越困难。
     利用上述关系,可确定平行狭缝阻火装置的几何参数。该方法可推广应用到淬熄不同C-H预混火焰的阻火装置设计。
     (4)对预混爆燃火焰在微小圆管内的淬熄进行了数值模拟。得到了火焰速度V、圆管管径D、预混气初始温升△T与淬熄长度Lq之间的关系
     同等条件下,反应活性高的气体,C越小,淬熄越困难。
     在固定圆管直径D的条件下,火焰速度V对参数C有影响,火焰速度V提高,会使淬熄时间Lq/V减小,参数C增加。
     对CH_4/Air、C_3H_8/Air和C_2H_2/Air预混火焰
     管内预混气体初始温度上升导致圆管的淬熄性能下降。随着温度升高,C_2H_2/Air温度系数f_3(△T)下降显著,淬熄更困难。
     对CH_4/Air和C_3H_8/Air
     对C_2H_2/Air
     (5)在混有惰性气体条件下,对预混爆燃火焰分别在微小圆管和平行板狭缝中的淬熄进行了数值模拟,得出了惰性气体的最佳淬熄浓度,总结了在该浓度下气体淬熄的规律。
     在狭缝中,C_3H_8/O_2/Inert Gas的淬熄特性与C_3H_8/Air的淬熄特性相似。狭缝间距G和参数C可表示为:
     在相同条件下,He、Ar、N_2惰性气体对应的C值依次减小,说明He淬熄能力最强,Ar次之,N_2的淬熄能力最弱。
     在圆管中,C_3H_8/O_2/He与C_3H_8/Air的淬熄特性相似。惰性气体He的加入,使参数C值变大,改善了淬熄效果。
     上述研究结果对设计微小复杂通道阻火抑爆结构具有指导意义。特别为研究阻火抑爆结构长期阻火性能,考察阻火元件温度升高后阻火抑爆效果的变化提供了研究基础。
The investigations into premixed flame propagation in tubes or channels are significant to the deflagration suppression of flammable gas clouds in vessels or unconfined space. To provide theoretical and laboratorial references for deflagration suppression and the design of flame arresters, propagation mechanism and quenching condition of premixed unsteady flames in narrow channels were researched experimentally and then simulated numerically in this paper. The main work and conclusions are as follows
     (1) The experimental apparatus for flammable gases explosion and deflagration suppression in pipe were set up, realizing computer controlled ignition and synchronized measuring of the pressure and flame speed of the test points. The flame detector was designed to only measure the flame signal at right point, hence made the research on the process of flame and pressure propagation and development possible. Experiments were done on the explosion of premixed flame in a long pipe, from which the rules of flame propagation were obtained, and a semi-empirical equation was therefore concluded.
     (2) The propagation and quenching of premixed flame in multilayer wire mesh were studied experimentally, and the relation was got between quenching pressure or quenching speed and wire mesh parameters such as layers or meshes. A concept, suppression parameter, was introduced to indicate the effects of suppressing explosion pressure and flame speed for a multilayer mesh. The suppression parameter can be explained as the energy of the premixed flame before entering the multilayer wire mesh, and which will be quenched. Experiment showed that the suppression parameter could reflect the effects of suppressing explosion pressure and flame speed.The higher the suppressing parameter, the higher the suppressing explosion capacity of the multilayer wire mesh, and it means that for same premixed flames, the higher pressure and flame speed can be suppressed, for different premixed flame, the higher active premixed gas can be suppressed. This research method can provide a better way to determine the suppressing explosion capacity of other narrow channels.
     (3) Propagation and quenching of deflagration were modeled in narrow parallel plate channels. The maximum error between numerical simulation and experiment was 16.1%. Flame propagations under different conditions were considered, four modes of flame propagation in narrow parallel plate channels were discussed, and relationship among flame speed V, plate gap G, the value△T_w of rised wall temperature and quenching length Lq was got as follows
     For a detemined plate gap G, the quenching time Lq/V was constant for a premixed flame.
     The larger the plate gap G, the lower parameter C, the more difficult to quench.
     For CH_4/Air premixed flame
     For C_3H_8/Air premixed flame
     For C_2H_2/Air premixed flame
     The wall temperature rise T_w could make the coefficient f_2(△T_w) of parameter C lower, and decrease the quenching capacity.
     For CH_4/Air and C_3H_8/Air premixed flame
     The higher the chemical activity of premixed flame, the lower the parameter C, the larger queching length was required, and it's more difficult to quench.
     Known parameter C above relationship, the quenching parameters of narrow channel can be determined. This method can be used to design the narrow channel to quench other premixed C-H flames.
     (4) Quenching of premixed falme deflagration in precision tubes were investigated. The relationship among flame speed V, value△T of initial gas temperature rised, diameter D of tube and quenching length Lq was got as follows
     For a premixed flame with higher chemical activity, its parameter C was lower, quching this flame was more difficult.
     For a detemined tube diameter D, a higher flame speed V made the quenching time Lq/V smaller, and parameter C higher.
     For premixed flame CH_4/Air, C_3H_8/Air and
     The initial gas temperature rise could decrease the quenching capacity in precision tubes. The higher initial gas temperature T, the much lower temperature coefficient f_3(△T) for C_2H_2/Air premixed flame, which showed that higher initial gas temperature T makde it more difficult to quench this premixed flame.
     For CH_4/Air and C_3H_8/Air
     For C_2H_2/Air
     (5) Mixing different inert gases in premixed flammable gases, quenching of deflagration were numerically simulated both in narrow parallel plate channels and tubes respectively, getting the optimal quenching concentrations of inert gases, and the quenching rules of the flammable gases in their optimal quenching concentrations as well.
     The quenching properties in narrow channels among differrent gases of C_3H_8/O_2/Inert gase and C_3H_8/Air were similar.The relaltionship between channel gap G and parameter C was shown as follows
     Among the C_3H_8/O_2/Inert gas He, C_3H_8/O_2/Inert gas Ar and C_3H_8/O_2/Inert gas N_2, the parameter C of C_3H_8/O_2/Inert gas He was maximum, that of C_3H_8/O_2/Inert gas N_2 was minimum, which showed that quenching capacity of He was the highest, that of N_2 was the lowest.
     The quenching properties in tubes between gases of C_3H_8/O_2/Inert gas He and C_3H_8/Air were similar. But the Inert gas He made the parameter C higher, which improved the quenching effects.
     The conclusions above are of great significance to the design of micro deflagration suppressing constructions in complex narrow channels, providing references to the research on their long term-performance as well as suppression effect change due to temperature raise, especially.
引文
[1] Davy H., Phil. Trans. 106: 1-24(1816)
    
    [2] Maekawa M. Flame Quenching by Rectangular Channels as a Function of Channel Length forMethane-Air Mixture. Combustion Science and Technology, 1975,11.141-145.
    
    [3] Iida N,. Kawaguchi O, Takeshi S G.. Premixed Flame Propagation into a Narrow Channelat High Speed. Part 2: Transient Behavior of the Properties of the Flowing Gas insidethe Channel. Combustion and Flame, 1985, 60:257-267
    
    [4] #12
    
    [5]周凯元.波纹板阻火器对爆燃火焰淬熄作用的实验研究.中国科学技术大学学 报.1997,27(4):449-454
    
    [6]周凯元,李宗芬.丙烷-空气爆燃火焰通过平行板狭缝时的淬熄研究.爆炸与冲击.1997,17(2): 111-118
    
    [7]周凯元.气体爆燃火焰在狭缝中的淬熄.火灾科学.1999,8(1):22-33
    
    [8]郭长铭,陈志刚.多孔钢板对气相爆轰波传播影响的实验研究.实验力学.2000,15(4):400-407
    
    [9]郭长铭,李剑.爆轰波在阻尼管道中声吸收的实验研究.爆炸与冲击.2000,20(4):289-295
    
    [10]宋占兵.预混火焰在狭缝中的传播机理与熄灭条件的研究.大连:大连理工大学博士论 文,2005.7
    
    [11] Lange R, Donald J. Ermark. Description of an Atmospheric Transport and Diffusion Model and its Emergency Response Application to the Chermobyl Event. Proc. Of the Tntern. System safety conference. Fairmont Hotel, Dallas, Texas, 1991. 7:18-22
    
    [12]张启平.智能化烃类重气泄散过程的数值预测.北京化工大学学报,1999,26(4):84-87
    
    [13] Pesquill. Atomospheric diffusion. New York: Wiley,1974:429
    
    [14] Ermak D L,Chan S T, Morgan D L et al, Hazardous Materials, 1982,76(6): 126-160
    
    [15] Hanna S R, Srimaitis D G, Chang J C. Report prepared by Sigama Research Corporration for AFESC. Washington D C, 1990: 1-32
    
    [16]丁信伟,王淑兰,徐国庆.可燃及毒性气体扩散研究.化学工程.2 00,28(8):33-36
    
    [17] Britter R E, McQuaid J. HSE Contract Research Report. 1988, No. 17, :129-134
    
    [18]斯莱德D H著.气象学与原子能.张永兴译.北京:原子能出版社,1979:204-215
    
    [19]难波桂芳著.化工厂安全.北京:化学工业出版社,1985:181
    
    [20] Chan S T, E rmark D L. Journal of Hazardous Materials, 1987, 16(3):267-292
    
    [21] Dyer A J. Boundary-Layer Meteor, 1974; 68(7):363-372
    
    [22] Koopman R P, Kamppiner L M. Journal of Hazardous Materials, 1986:65-71
    
    [23] PERRY S G. AERMOD, Description of Model Formulation (draft) [R] AMS/EPA Regulatory Model Improvement Committee, 1998
    
    [24] Bailey D T. User's Guide for The Industrial Source Complex (ISC3) Description Models (Revised) Volume I [R]: EPA, 1995
    
    [25]王淑兰,孟志鹏,丁信伟.适用于固定工业源泄放的扩散模型-AERMOD.化学工业与工程.2003, 20(4):231-236
    
    [26]丁信伟等.可燃气云爆炸实验研究.化工学报.1999,50(4):180-183
    
    [27] Bi Mingshu, Wang Shulan, Yu Jianliang (喻健良)etc. Research on Explosion PressureField of Semi-spherical Unrestricted Flammable Gas Clouds. Theory and Practice ofEnergetic Materials. Beijing:China Science and Technology Press, 2001. 10: 261-268
    
    [28] Bi Mingshu, Wang Shulan, Yu Jianliang (喻健良etc. Effects of Plates on ExplosionPressures of Flammable Gas clouds. Theory and Practice of Energetic Materials,Beijing:China Science and Technology Press, 2001.10: 395-398
    
    [29] Dvid C B. Review of Large-scale Explosion Experiments. Plant/operations Progress,1991, 11(1):33-40
    
    [30] Hughes K J, Tomlin A S, Hampartsoumian E. An Investigation of Important Gas-PhaseReactions of Nitrogeneous Species from the Limulation of Experimental Measurements inCombustion Systems. Combustion and Flame, 2001, 124: 573-589
    
    [31] Leyer J C, Desboders D. Unconfined Deflagrative Explosions Without Turbulence.Experiment and Model. Journal of Harzardous Materials, 1993,34:123-150
    
    [32] Christiansen E W , Law C K, Sung C J. Steady and Pulsating PropagationPressures. Combustion and Flame, 2001, 124: 35-49
    
    [33] Harison A J, Eyre J A. The Effect of obstacle Array on the Combustion of large PremixedGas/air Clouds. Combustion Science and Technology, 1987,52:121-137
    
    [34] Van C J M. Experimental Investigation into the Strength of Blast Waves Generated byVapor Cloud Explosions in congested Areas. 6th Inther Symp. Loss Prevention and SafetyPromotion in the Process Ind. , Oslo, Norway, 1998
    
    [35]王淑兰,喻健良,李岳等,球形容器可燃气爆炸超压泄放设计.化工装备技术.1999,20(3): 4-6
    
    [36] Bi Mingshu, Ding Xinwei, Zhou Yihui etc. Experimental Study on Unconfined Vapor Cloud Explosions. Chinese Journal of Chemical Engineering, 2003, 11(1):90-93
    
    [37]徐胜利等.稳定传播火焰在可燃云雾中产生的压力波.燃烧科学与技术.1995,1(2).186-184
    
    [38]林伯泉等.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响.中国矿业大学学 报.1999,22(2):104-107
    
    [39]何碧等.燃料空气炸药爆轰参数的计算.全国空气动力学年会,成都:1999
    
    [40]李岳,毕明树,王淑兰,丁信伟.处理易燃易爆气体设备安全设计.石油化工设 备.2002,31(2):30-33
    
    [41]罗正鸿,丁信伟,王淑兰等.开敞空间可燃气云爆炸研究进展.化工机械.第28卷第6期
    
    [42]邵卫,毕明树,丁信伟等.可燃气云爆炸火焰加速机制的探讨.化工机械.第29卷第2期
    
    [43]毕明树,王淑兰,丁信伟.可燃气云爆炸强度计算综述.化工机械.第26卷第6期
    
    [44]李岳,王淑兰,丁信伟等.气体爆炸泄放计算方法比较与实验.石油化工设备.2003,32(1)
    
    [45]李生娟,毕明树,章正军等.气体爆炸研究现状及发展趋势.化工装备技术.2002,23(6)
    
    [46]谭迎新,张景林,马贵春等.隔爆型电气设备最大允许结构间隙值的确定.华北工学院学 报.2001,22(1)
    
    [47]谭迎新,张景林,马贵春等.可燃气体(或蒸气)最大试验安全间隙值的测定.兵工学报.1999, 20(1)
    
    [48]谭迎新,张景林,张小春.可燃气体(或蒸汽)爆炸特性参数测定.兵工学报.1995,2
    
    [49]张景林,肖林,寇丽平等.气体爆炸抑制技术研究.兵工学报.2000,21(8)
    
    [50]徐胜利,岳朋涛,韩肇元.NUMERICAL STUDIES ON THE MIXING OF CH_4 AND KEROSENE INJECTEDINTO A SUPERSONIC FLOW WITH H_2 PILOT INJECTION. Applied Mathematics and Mechanics, Vol22, No4. Apr 2001
    
    [51]徐胜利,岳朋涛,韩肇元.STUDY ON THE FUEL AIR MIXING INDUCED BY A SHOCK WAVE PROPAGATINGINTO A H_2-AIR INTERFACE. Applied Mathematics and Mechanics, Vol22 No4. Apr 2001
    
    [52]徐胜利,陈成光,李剑.爆轰波在扩张管内临界传播特性的研究.爆炸与冲击.1995,15(1)
    
    [53]徐胜利,岳鹏涛,彭金华.多爆源云雾爆炸波相互作用的三维数值研究.爆炸与冲击.2000,20(1)
    
    [54]徐胜利,汤明钧,糜仲春.近地空中气云爆炸波遇地面反射的研究.爆炸与冲击.1996,16(4)
    
    [55]徐胜利,汤明钧,糜仲春.稳定传播火焰在可燃气云中产生的冲击波.中国科学技术大学学 报.1995,第25卷第4期.1995年12月
    
    [56]徐胜利,汤明钧,糜仲春.无约束云雾产生爆炸场的数值模拟.南京理工大学学报.1994,(5))
    
    [57]徐胜利,汤明钧,糜仲春.一维可燃气云燃烧与爆炸的数值模拟.火灾科学.1996,5(1)
    
    [58]徐胜利,汤明钧,糜仲春.有限释能速率可燃气云爆炸场的研究.燃烧科学与技术.1997,3(2)
    
    [59]徐胜利,汤明钧,糜仲春.圆柱形空腔内气云爆炸波对壁面的作用.气动实验与测量控 制.1996,10(2)
    
    [60]王志荣,蒋军成.管状容器气体燃爆泄放过程的数值模拟.天然气工业.2005,6
    
    [61]何立明,严传俊,袁泉,程邦勤,陈鑫,金涛.混合气体燃烧中压力对爆震波特性参数影响研 究.西北工业大学学报.2004,22(3)
    
    [62] Saad A. EI-Sayed Idnition Characteristics of Metal Particles in Thermal ExplosionTheory J. Loss Prev Process. Ind. Vol. 9. No. 6. pp. 393-400,1996
    
    [63] FOTACHE C. G., H. WANG, C. K. LAW Ignition of ethane, propane, and butane in counterf lowjets of cold fuel versus hot air under variable pressures. COMBUSTION ANDFLAME. 1999,117:794
    
    [64] VARATHARAJAN B., WILLIAMS F. A.. Ignition times in the theory of branched-chain. thermalexplosions .COMBUSTION AND FLAME. 2000,121:554
    
    [65] Naamansen P, Baraldi D, Hjertager BH, Solberg T, Cant S. Solution adaptive CFD simulationof premixed flame propagation over various solid obstructions. Journal of LossPrevention in the Process Industries. 2002,15:189-197
    
    [66] Ibrahim SS, Masri AR. The effect of obstructions on over pressure resulting from premixedflame deflagra-tion. Jounal of Loss Prevention in the ProcessIndus-tries. 2001.14:213-221
    
    [67] Clutter JK, Whitney MG. Use of computational mod-eling to identify the cause of vaporcloud explosion in ci-dents. Journal of Loss Prevention in the ProcessIndustries. 2001.14:337-347
    
    [68]谢波,范宝春,王克全,夏自柱.挡板障碍物加速火焰传播及其超压变化的实验研究.煤炭学 报.第27卷第6期.2002年12月
    
    [69] Fairweather M , Ibrahim SS , Jaggers H , Walker DG. Turbulent premixed flamepropagationinacy lindrical vessel. Twenty-Sixth Symposium(International) onCombustion. Pittsburgh: The Combustion Institute. 1996:365-371
    
    [70] Fairweather M, Hargrave GK, Ibrahim SS, Walker DG. Studies of premixed flame propagationin explosion tubes. Combustion and Flame. 1999,116:504-518
    
    [71] Domnina R, Oanceab D., Chirilac F., IonescuaN. I. Transmission of an explosion betweenlinked vessels. Fire Safety Journal. 2003, 38:147-163
    
    [72] Spalding D. B. A Theory of Inflammable Limits and Flame Quenching. Proc. Roy. Soc. London.1957. A240: 83-100.
    
    [73] Philips H. .The Use of a Thermal Model of Ignition to Explain Aspects of FlameproofEnclosure. Combustion and Flame. 1973,20:121-126
    
    [74] Streng A. G., Gross A. V. The Quenching Diameter of Ozone Flames. Combustion andFlame. 1961, 5: 81-86
    
    [75] Palmer K N, Tonkin P S. The Quenching of Propane-air Explosions by Crimped-ribbonFlame Arresters. In: Second Symposium on Chemical Process Hazards. London. The Instituteof Chemical Engineers. 1963,15-20
    
    [76] Iida N, Kawaguchi 0, Takeshi Sato G. Premixed flame Propagating into a Narrow Channel at a High Speed. Part 1: Flame Behaviors in the Channel, Combustion and Flame. 1985, 60: 245-255
    
    [77] Aly S. L., Hermance C. E. Combust Flame. 1981,40:173
    
    [78] Buckmaster J. Combust Flame. 1976, 26:151
    
    [79] Williams F. Combustion Theory, 2~(nd) ed., Addison-Wesley, Reading, Massachusetts, 1985.
    
    [80] Carrier G. F., Fendell F. E., Feldman P. S., SAE Paper 800285, 1980.
    
    [81] Spalding D. B. Proc. Roy. Soc. London 1957, 240:83
    
    [82] Lee S. T., Tien J. S., Combust. Flame. 1982,48:273
    
    [83] Lee S. T. Tsai H. T., "Numerical Investigation of Steady Laminar Flame Propagationin a Circular Tube, " Combustion and Flame, Vol. 99, 1994, pp. 484-490.
    
    [84] Hackert C. L. Effects of Thermal Boundary Conditions on Flame Shape and Quenching inDucts .Combustion and Flame. 1998, 112:73-84
    
    [85]罗祖军,徐健学.局部狭窄圆管内流体流动的非线性动力学分析.西安交通大学学报.1999,33 (2):50-54
    
    [86]范维澄,刘乃安.火灾安全科学-一个新兴交叉的工程科学领域.中国工程科 学.2001,3(1):6-14
    
    [87] Qin You-hua, Shen Zhao-wu, Lu Shou-xiang etc. Experiment Study of Water Sprays on Gas Flame Propagation.安全与环保学报.2001,1(1):27-29
    
    [88][英]凯恩.顾根.容器外可燃蒸气云爆炸.北京:化工工业出版社,1986.
    
    [89]陈宝.工业防火与防爆.北京:中国劳动出版社,1993.
    
    [90][英]J.克罗斯D.法勒.粉尘爆炸.北京:化学工业出版社,1993.
    
    [91]姜卫利等.一种新型的火灾传感器.北方交通大学学报.1998,22(1):107-109
    
    [92]张从力等.一种新型火灾检测定位技术的试验研究.煤炭工程师.1997,5:4-6
    
    [93][苏]维.依.沃嘉里克,工艺设备防爆.五机部第五设计研究院.1980,12
    
    [94] Frolov S M. Modeling of droplet deformation and breakup conditions [A]. Proceedings of 16th International Colloquium on the Dynamics of Explosions and R eactive Systems [C]. Cracow, Poland:[s. n. ]. 1997: 417-420
    
    [95] Klenk w, Widdecke N, Frohn A. Disintegeration of monodisperse droplet streams by shock wave [A]. Proceeding of 15th International Colloquium on the Dynamics of Explosions and R eactive Systems [C]. Cracow, Poland: [s. n.]: Boulder Co, 1995:229-234
    
    [96] Ranger A A, Nichols J A. Aerodynamics shattering of liquid drops [J]. AIAA J. 1969
    
    [97]夏自柱,蔡周全等.YBW-1型触发式抑爆装置的研究[R].重庆:煤炭科学研究总院重庆分 院,1998.
    
    [98]谢波,范宝春,夏自柱等.大型通道中主动式水雾抑爆现象的试验研究.爆炸与冲 击.2003,23(2):510-516
    
    [99]邢晓江,范宝春,杨宏伟.管内粉尘抑爆效果的试验研究.弹道学报.2000,12(4):72-76
    
    [100] Lebecki K, Cybulski K, Dyduch Z etal. Large scale grain dust explosion-research inPoland. Shock waves. 1995(5): 109-114
    
    [101] Frolov S M, Gelfand B E. Shock waves attention in gas-particles suspensions, Physicsof combustion and explosion, 1991(1): 130-136
    
    [102] Laffitte P, Bouchet R. Suppression of explosion waves in gaseous mixtures by meansof fine powders. Seventh symposium (international) on combustion. 1959: 504-508
    
    [103]范宝春,谢波,张小和.惰性粉尘抑爆过程的试验研究.流体力学实验与测量.1998,2(1): 44-49
    
    [104]余明高,廖光煊,张和平,宋春兰.哈龙替代产品的研究现状及发展趋势.火灾科学.2002.4(2): 108-113
    
    [105]田丽.新一代哈龙替代灭火技术的理论及应用研究.消防技术与产品信息.1999(10):33-35
    
    [106]宋占兵,张孝君,喻健良,崔宗和.灭火剂发展现状与未来.化学工业与工程技术.2001(3): 7-11
    
    [107] Saito N, Ogawa Y, Saso Y etal. Flame-extinguishing Concentrations and PeakConcentrations of N2, Ar, CO2 and their mixtures for Hydrocarbon fuels[J]. Fire SafetyJournal. 1996 (27) : 185-200
    
    [108] Joseph A S. Flame extinguishing in the cup-burner by inert-gases[J]. Fire SafetyJournal. 2005 (40) : 579-591
    
    [109] Su A, Liu YCh. Investigation of impinging diffusion flames with inertgases[J]. International Journal of Heat and Mass transfer, 2002 (45) : 3251-3257
    
    [110]陈思维,杜扬.惰性气体抑制管道中可燃气体爆炸的数值模拟.天然气工业.2006(10):136-139
    
    [111] Gvozdeva L. G. Normal Shock Waves Reflection on Porous Compressible Materials[J]. ATAA.1986,106:155-165.
    
    [112] Dupre G. Propagation of Detonation Waves in Acoustic Absorbing Walled Tube [J]. ATAA,1988, 114:248-263.
    
    [113] Vasil A.A. Near Limiting Detonation in Channels with Porous Walls[J]. CombustionExplosion and Shock Waves. 1994, 30:101-106.
    
    [114] Teodoreczyk A. Detonation Attenuation by Foams and Wire Meshes lining the Walls[J].Shock Waves , 1994.
    
    [115]年伟民,周凯元,夏昌敬等.气相爆轰波通过声学吸收壁时强度衰减过程的实验研究.火灾科 学.2003,12(2):84-89
    
    [116]夏昌敬,周凯元,沈兆武.气体非稳定爆轰波在具有声学吸收壁的直角三通弯管中传播特性研 究.实验力学.2003,18(2):438-443
    
    [117] Vanwingerden C. J. M, Zeeven J. P. Combustion and Flame On the Role of Acoustically Driven Flame Instabilities in Vented Gas Explosions and Their Elimination. 1983,51:109-111
    
    [118]王宝兴,李振彦.可燃气体爆炸泄压过程中声振动不稳定燃烧压力峰减弱方法的研究.爆炸与 冲击.1989,9(2):130-136
    
    [119] HYNES R.G., MACKIE J. C. Inhibition of Premixed Hydrogen-Air Flames by 2-HHeptafluoropropane, Combustion and Flame. 1998,113:554-565
    
    [120] BABUSHOK V., TSANG W., LINTERIS G.T. etal. Chemical Limits to Flame Inhibition.Combustion and Flame. 1998,115:551-560.
    
    [121] YISU, YONGWEI GU ,GENE P. RECKERHARD W. ROTHE, JOSEPH S.FRANCISCO. Laser-InducedFluorescende of CF2 from a CH4 Flame and an H2 Flame with Addition of HCFC-22 andHFC-134a. Combustion and Flame. 1998, 113:236-241
    
    [122]孔文俊,张孝谦,周向阳.CH_4/O_2/N_2预混层流稳态火焰反应机理分析.燃烧科学科学与技 术.1998,4(2)
    
    [123] Palmer K N, Rogowski Z W. The use of flame arresters for protection of enclosed equipment in Propane-air atmospheres. Third symposium on chemical process hazards with special reference to plant design, London,1968
    
    [124] Rogowski Z W, Ames S A. Flashback through crimped-ribbon arresters. Fine ResearchNote, 1972,945
    
    [125] Rogowski Z W. Mannual for testing flame arresters, Building Research EstablishmentReport. HMSO,London, 1978
    
    [126] Thomas G O, Oaklay G L. On practical difficulties encountered when testing flame anddetonation arresters to B S 7244, Trans. I. Chem. E:Process safety and EnviromentalProtection, 1992
    
    [127] One S.,Wakuri.U. Trans.JSME 365:269-279(1977) (in Japanese)
    
    [128] Bevling C. Versuche zwecks Erprobung der Schlagwettersichersich- erheit besondersgeschutzter Motoren und Apparaturen sowie zur Ermit tlunggeeigneterSchutzvorrichtungen f(?)r solche Betriebsmittel. Zeitschri-ft, Gl(?)ckauf" .42. Jahrg.Seite 274-278.301-306 und 338-346
    
    [129] Bartknecht W. Jahresbericht 1976 des Arbeitsgebietes, Explosion -stechnikderBerggewerk-schaftlichen Versuchsstrecke Dortmund-Derne" (unverOffentlicht). (1996)
    
    [130] Mller-Hillebrand D. Grundlagen der Errichtung elektrischer Betriebsanlagen inexplosions- gef(?)hrdeten Betrieben. Berlin-Heidelberg- New York:Springer 1940
    
    [131] Maskow H. Einflsse auf den Z(?)ndurchschlag von Explosionsflammen. VDE -Fachber-ichte14.1950
    
    [132] Bush H. Z(?)nddurchschlag von Gas-und Dampf/Luft-Gemischen an gerad -en parallelenSpalten. Explosivstoffe 5 Nr. 7(1957).
    
    [133] Bartknecht W. Untersuchungen(?)ber den Einflu(?) der Feuchtigkeit explosion- sf(?)higerMethan/Luft-Gemische auf den Z(?)nddurchgang durch Geh(?)useapalte. Schl(?)gel undEisen, Heft 4 (1959).
    
    [134] Bartknecht W. Untersuchungen zur Erforschung der Vorg(?)nge beim Durchgang von hei (?)enExplosionsgasen durch Flammesperren. BVS Dormund-Derne 261,1996 (unver(?)ffentlicht)
    
    [135] Edwards. Material and Constructions Used in Devices to Prevent the Spread of Flamesin Pipelines and Vessels.Material and Design. 1999, 20:245-252
    
    [136]霍月平.抑爆材料及其应用.武警学院学报.1999,15(2):28-29
    
    [137]郭长铭,周光泉,王正道.气相爆轰波在收缩管道中的传播.爆炸与冲击,1998,18(1): 21-27.
    
    [138]郭长铭,张德良,谢巍.气相爆轰波在障碍物上Mach反射后流场的分析.中国科技大学学报, 2000,30(6):686-91.
    
    [139]余力新,孙文超,吴承康.半开口管道中的氢/空气火焰加速和压力发展过程[J].工程热物 理学报,2001,9:637-640.
    
    [140]周凯元,李宗芬.丙烷-空气爆燃波的火焰面在直管道中的加速运动[J].爆炸与冲击.2000, 4:137-142.
    
    [141]桂晓宏,林伯泉.火焰速度与超压关系[J].淮南工业学院学报.1999,12:14-17.
    
    [142]金果.可燃性气云爆炸研究: [硕士学位论文].大连:大连理工大学,2000.
    
    [143]陈爱平.管道内流动气体爆炸问题的实验研究[J].爆炸与冲击.1999,10:347-352.
    
    [144]居江宁,吴文权,吴中立等.TVD方法在瓦斯爆炸可压缩流场中的应用[J].淮南工业学院学 报.2000,9:19-24.
    
    [145]赵衡阳.气体与粉尘爆炸原理.北京:北京理工大学出版社,1996:13-14,23-25,80-89, 180-207.
    
    [146]周力行.湍流气粒两相流动和燃烧的理论与数值模拟.北京:科学出版社.第一版1994.12
    
    [146] Launder B. E., Spalding D. B. Mathematical Models of Turbulence. Academic Press, 1972
    
    [147] Mason H. B. , Spalding D. B. Prediction of Reaction Rates in Turbulent Premixed BoundaryLayer Flows. Pro. European Symp. On Combustion. P. 601, 1973
    
    [148] Magnussen B. F. On Mathematical Modeling of Turbulent Combustion with Special Emphasison Soot Formation and Combustion. 16th Symposium (Int.) on Combustion. P. 719, 1976
    
    [149]范维澄,万跃鹏.流动及燃烧的模型与计算.合肥:中国科学技术大学出版社,1994
    
    [150] Launder B. E., Spalding D. B. The Numerical Computation of Turbulent flows. Computer Methods in Applied Mechanics and Engineering. 1974(3): 269-289
    
    [151]蒋德明.内燃机燃烧与排放学.西安:西安交通大学出版社,2002
    
    [152] Berlad AL, Potter AE. Prediction of the Quenching Effect of various Surface Geometries[C], In: 5th Symposium (International) on Combustion Reinhold Publish Corp, 1955. 728-735
    
    [153]喻建良,毕明树,陈彦则等.一种干式热管阻火器[P].中国:ZL 03214250.1,2004-08-11
    
    [154]Kenneth K.K.著,郑楚光,袁建伟,米建春译.燃烧原理.华中理工大学出版社
    
    [155]郑红,郑学志.化工厂管道阻火器的应用.化工劳动保护.1996:4
    
    [156]石油储罐阻火器.中华人民共和国石油天然气行业标准.中国石油天然气总公司.1996
    
    [157] Bauer P. Experimental investigation on flame and detonation quenching: applicabilityof static flame arresters. Journal of Loss Prevention in the Process Industries 2005(18) : 63-68
    
    [158] Farouk B. , Guceri S. I. Natural convection from a horizontal cylinder-turbulent regime.ASME J Heat Transfer. 1982, 104:228-235
    
    [159] Amano R. S. Development of a turbulence near-wall model and its application toseparated and reattached flows. Numerical Heat Transfer. 1984, 7:59-75
    
    [160] Harlow F. H, Welch J. R. Numerical Calculation of Time-Depended Viscous Incompressibleflow with Free Surface. Phys. Fluids. 1965(8):21-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700