预混火焰分析系统开发及反应工况对碳烟结构特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于燃烧过程中产生的碳烟颗粒危害人类健康和污染环境,碳烟颗粒的形成机理始终是燃烧科学研究中的中心课题之一。通过利用缸内取样和各种分析检测技术,我们对柴油机缸内碳烟的演化过程已有一定的认识。但由于缸内高温高压和不稳定非均质的燃烧过程,对于其实际形成机理和工况对其影响还需要进一步的基础性研究和量化分析。因此本文在国外文献调研基础上,建立了一套预混燃烧分析系统,可以实现对预混燃烧产物进行全面的实验分析;并利用建立的燃烧分析系统研究了预混甲烷火焰温度和燃空当量比对基本碳烟颗粒粒径、团聚颗粒分形维数和基本碳烟颗粒纳米结构的影响。论文主要研究工作和结论如下:
     1,建立了以Mckenna燃烧器为目标火焰源的燃烧系统。可以实现稳定的预混层流燃烧火焰;可以精确的调节燃空当量比和稀释比;可以精确的调节取样火焰高度。并建立了可以对火焰各位置温度进行精确测量的高温热电偶测温系统。
     2,建立了一套新型的Thermophoretic Sampling Particle Diagnostic(TSPD)系统。该TSPD系统可以水平多点定位,而且定位更精确,动态响应速度、加速度和速度更为优越。建立了毛细管稀释取样系统并且对火焰各位置点的燃烧产物进行了稀释取样初步实验。
     3,不同发展阶段的碳烟颗粒呈现不同的形貌特征;团聚态碳烟颗粒随着火焰高度增加尺寸增大,分形维数减小。不同高度取样观察到的初生碳烟颗粒粒径基本不变;基本碳烟颗粒粒径随火焰高度增加从~10nm增加到~30nm。随着碳烟成熟的过程,碳烟颗粒的纳米结构变得更为有序,微晶长度明显加长。
     4,随着火焰温度升高,基本碳烟颗粒粒径减小,团聚态碳烟颗粒分形维数减小,表明高温环境下碳烟颗粒团聚的更松散。随着火焰温度升高,碳烟微晶加长且更直,层间距减小。这说明随着火焰温度的升高,碳烟颗粒的纳米结构组织趋向于变得更有序和氧化活性更低。
     5,随着燃空当量比增加,基本碳烟粒子粒径增大,团聚形成的团聚碳烟颗粒包含基本粒子数目增多,团聚态碳烟颗粒分形维数减小。随着燃空当量比增大,碳烟颗粒的微晶加长,曲率减小,层间距减小。这些结果表明,相同的高温环境中,大燃空当量比产生的碳烟颗粒的纳米结构更加有序和趋向石墨化。
The reaction mechanism of soot formation has become one of the central themes of research activities in the area of combustion, mostly due to environmental and health concerns on pollutant emission from combustion devices. The need to provide a better physical and chemical understanding of soot formation in the high-pressure and high-temperature and inhomogeneous engine combustion chamber requires the development of combustion analysis systems and further fundamental combustion researches. Therefore, combustion analysis systems have been developed to conduct comprehensive experimental investigation of soot formation in premixed flames. The effects of temperature and fuel-air equivalence ratio on nanostructure, fractal dimension and size of soot have been investigated for laminar, atmospheric-pressure premixed methane flames. The major research work and results of this dissertation are listed as follows:
     1. Combustion system has been developed to investigate flame-formed soot in premixed laminar flames produced on a commercial McKenna burner, with precisely adjustable equivalence ratio and sampling height above burner. For precise temperature measurement of different flame locations, a high-temperature thermocouple temperature measurement system has also been designed.
     2. A thermophoretic sampling particle diagnostic (TSPD) system and an in-situ probe sampling system have been developed to obtain combustion products for physical and chemical investigation of soot formation. The TSPD system has been further developed on the basis of an advanced electric cylinder, with a freely positionable and accurate linear motor and very high dynamic response.
     3. Different sizes and morphology of soot are found depending upon the aging of soot formation. With the increase of height above burner, primary particle size increases from ~10nm to ~30nm, and the value of aggregate fractal dimension decreases. Fringe length extends and soot nanostructure becomes more ordered during the maturation process.
     4. With the increase of flame temperature, both of the primary particle size and aggregate fractal dimension value decrease, signifying that soot particles are more loosely clustered in higher temperature environment. It is revealed that both the fringe tortuosity and separation distance decrease as temperature increases, while the mean fringe length increases distinctly, indicating the soot evolution toward a more graphitic structure and higher resistance toward oxidation.
     5. With the increase of fuel-air equivalence ratio, both of the primary particle size and the number of primary particles in aggregates increase. Aggregate fractal dimension value decreases, implying more soot particles with chain-like structure in higher fuel-air equivalence ratio environment. The mean fringe length increases, while the fringe tortuosity and separation distance decrease as fuel-air equivalence ratio increases, indicating the tendency of soot nanostructure toward a more ordered state.
引文
[1] Michael Frenklach. Reaction mechanism of soot formation in flames. Physical Chemistry Chemical Physics, 2002, 4:2028-2037
    [2] Charles S. McEnally, Lisa D. Pfefferle, Burak Atakan, et al. Studies of aromatic hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap. Progress in Energy and Combustion Science, 2006, 32:247-294
    [3] Hai Wang. Formation of nascent soot and other condensed-phase materials in flames. Proceedings of the Combustion Institute, 2011, 33(1): 41-67
    [4] H. Richter, J.B. Howard. Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Progress in Energy and Combustion Science, 2000, 26:565-608
    [5] Paul Roth. Particle synthesis in flames. Proceedings of the Combustion Institute, 2007, 31:1773-1788
    [6] Z. A. Mansurov. Soot Formation in Combustion Processes (Review). Combustion, Explosion, and Shock Waves, 2005, 41(6):727-744
    [7] A. Kay, M. Gratzel. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells, 1996, 44:99-117
    [8] B. Oregan, M. Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal Ti02 films. Nature, 1991, 353:737-740
    [9] M. Gratzel, J. Photochem. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochem. Rev. 2003, 4:145-153
    [10] R. Bashyam, P. Zelenay. A class of non-precious metal composite catalysts for fuel cells. Nature, 2006, 443:63-66.
    [11] F. Ballester, J.M. Tenias, S. Perez-hoyos. Air pollution and emergency hospital admissions for cardiovascular diseases in Valencia, Spain. Journal of epidemiology and community health, 2001, 55(1): 57-65
    [12] M.L. Bell, J. M. Samet, F. Dominici, Time-series studies of particulate matter. Annual review of public health, 2004, 25:247-280
    [13] B. Ostro, R. Broadwin, S. Green, et al. Fine Particulate Air Pollution and Mortality in Nine California Counties: Results from CALFINE. Environ Health Perspect, 2006, 114(1): 29-33
    [14] S. Roberts, M.A. Martin. Methods for Bias Reduction in Time-Series Studies of Particulate Matter Air Pollution and Mortality. Journal of Toxicology and Environmental Health, Part A, 2007, 70(8): 665-675
    [15] K.Park, D.B.Kittelson, M.R. Zachariah, et al. Measurement of Inherent Material Density of Nanoparticle Agglomerates. Journal of Nanoparticle Research, 2004, 6: 267-272
    [16] Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL. Fine particulate air pollution and mortality in 20 US cities, 1987–1994. N Engl J Med, 2000, 343:1742-1749
    [17] Katsouyanni K, Touloumi G, Samoli E, Gryparis A, Le Tertre A, Monopolis Y, et al. Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 project. Epidemiology, 2001, 12:521-531
    [18] Kaiser J. Evidence mounts that tiny particles can kill. Science, 2000, 289:422–3
    [19] Avakian MD, Dellinger B, Fiedler H, Gullet B, Koshland C, Marklund S, et al. The origin, fate, and health effects of combustion by-products: a research framework. Environ Health Perspect, 2002, 110:1155-1162
    [20] Jacobson MZ. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 2001, 409:695-697
    [21] Hansen J, Nazarenko L. Soot climate forcing via snow and ice albedos. Proc Natl Acad Sci USA, 2004,101:423-428
    [22] Ramaswamy V, Boucher O, Haigh J, et al. Radiative forcing of climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, vander Linden PJ, Dai X et al., editors. Climate change 2001: the scientific basis. Cambridge: Cambridge University Press, 2001, p349-416
    [23] Andreae MO. The dark side of aerosols. Nature, 2001, 409(6821):671-672
    [24] Jacobson MZ. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J Geophys Res, 2002, 107(D19) [Article Number 4410]
    [25] Jeremy P. Cain, Paul L. Gassman, Hai Wang, Alexander Laskin. Micro-FTIR study of soot chemical composition—evidence of aliphatic hydrocarbons on nascent soot surfaces. Physical Chemistry Chemical Physics, 2010, 12:5206–5218
    [26] Victor Fernandez-Alos, Justin K. Watson, Randy vander Wal, Jonathan P. Mathews. Soot and char molecular representations generated directly from HRTEM lattice fringe images using Fringe3D. Combustion and Flame, 2011, 158( 9):1807-1813
    [27] Jean-Marc Leyssale, Jean-Pierre Da Costa, Christian Germain, et al. An image-guided atomistic reconstruction of pyrolytic carbons. APPLIED PHYSICS LETTERS, 2009, 95 [Article Number 231912]
    [28] Fidel Castro-Marcano, Amar M. Kamat, Michael F. Russo Jr., Adri C.T. van Duin, Jonathan P. Mathews. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field. Combustion and Flame, doi:10.1016/j.combustflame.2011.10.022
    [29] J.H. Kent, H. Jander, H.Gg. Wagner. Soot formation in a laminar diffusion flame. Symposium (International) on Combustion, 1981, 18(1):1117-1126
    [30] H. F. Calcote. Mechanisms of soot nucleation in flames—A critical review Combustion and Flame, 1981, 42:215-242
    [31] B. S. Haynes and H. G. Wagner. Soot formation. Progress in Energy and Combustion Science, 1981, 7(4):229-273
    [32] R. A. Dobbins, H. Subramaniasiavam. in Soot Formation in Combustion: Mechanisms and Models, ed. H. Bockhorn, Springer-Verlag, Heidelberg, 1994, p. 290
    [33] M. B. Colket, R. J. Hall. in Soot Formation in Combustion: Mechanisms and Models, ed. H. Bockhorn, Springer-Verlag, Heidelberg, 1994, p. 442
    [34] M. Frenklach, H. Wang. in Soot Formation in Combustion: Mechanisms and Models, ed. H. Bockhorn, Springer-Verlag, Heidelberg, 1994, p. 165
    [35] H. Wang, M. Frenklach. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combustion and flame, 1997, 110(1-2):173-221
    [36] J?rg Appel, Henning Bockhorn, Michael Frenklach. Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons. Combustion and flame, 2000, 121(1-2):122-136
    [37] M. Frenklach, D. W. Clary, W. C. Gardiner, S. E. Stein. Effect of fuel structure on pathways to soot. Proc. Combust. Inst., 1986, 21:1067-1076
    [38] H. Wang, K. Brezinsky. Computational Study on the Thermochemistry of Cyclopentadiene Derivatives and Kinetics of Cyclopentadienone Thermal Decomposition. The Journal of Physical Chemistry, 1998, 102:1530-1541
    [39] E. Ikeda, R. S. Tranter, J. H. Kiefer, et al. The pyrolysis of methylcyclopentadiene: Isomerization and formation of aromatics. Proceedings of the Combustion Institute, 2000, 28:1725-1732
    [40] M. Frenklach, H. Wang. Detailed modeling of soot particle nucleation and growth. Symposium (International) on Combustion, 1991, 23:1559-1566
    [41] J. A. Mulholland, M. Lu and D. H. Kim. Pyrolytic growth of polycyclic aromatic hydrocarbons by cyclopentadienyl moieties. Proceedings of the Combustion Institute, 2000, 28:2593-2599
    [42] A. D’Anna, A. D’Alessio and J. Kent. A computational study of hydrocarbon growth and the formation of aromatics in coflowing laminar diffusion flames of ethylene. Combustion and Flame, 2001, 125( 3):1196-1206
    [43] C. J. Pope and J. A. Miller. Exploring old and new benzene formation pathways in low-pressure premixed flames of aliphatic fuels. Proceedings of the Combustion Institute, 2000, 28, 1519-1527
    [44] N. W. Moriarty and M. Frenklach. AB initio study of naphthalene formation by addition of vinylacetylene to phenyl. Proceedings of the Combustion Institute, 2000, 28:2563-2568
    [45] N. W. Moriarty, N. J. Brown and M. Frenklach. Hydrogen Migration in the Phenylethen-2-yl Radical. The Journal of Physical Chemistry, 1999, 103:7127-7135
    [46] D. F. Kronholm, J. B. Howard. Analysis of soot surface growth pathways using published plug-flow reactor data with new particle size distribution measurements and published premixed flame data. Proceedings of the Combustion Institute, 2000,28:2555-2561
    [47] J. Nagle and R. F. Strickland-Constable. Proceedings of the Fifth Conference on Carbon, Pergamon Press, London, 1962, p.154
    [48] S. K. Friedlander, Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, Oxford University Press, Oxford, New York, 2000
    [49] U. O. Koylu, G. M. Faeth, T. L. Farias, et al. Fractal and projected structure properties of soot aggregates. Combustion and Flame, 1995, 100:621-633
    [50] Uemit Koeylue, Yangchuan Xing, Daniel E. Rosner. Fractal Morphology Analysis of Combustion-Generated Aggregates Using Angular Light Scattering and Electron Microscope Images. Langmuir, 1995, 11 (12): 4848-4854
    [51] R.L. Vander Wal, Aaron J. Tomasek, James D. King. A method for structural characterization of the range of cylindrical nanocarbons: Nanotubes to nanofibers. Carbon, 2005, 43:2918-2930
    [52] Hong-Shig Shim, Robert H. Hurt, Nancy Y.C. Yang. A methodology for analysis of 002 lattice fringe images and its application to combustion-derived carbons. Carbon, 2000, 38:29-45
    [53] R.L. Vander Wal, A.J. Tomasek. Soot oxidation: dependence upon initial nanostructure. Combustion and flame, 2003, 34(1), 1~9
    [54] R.L. Vander Wal, C.J. Mueller. Initial investigation of effects of fuel oxygenation on nanostructure of soot from a direct-injection diesel engine. Energy & fuels, 2006, 20(6): 2364~2369
    [55] R.L. Vander Wal, A.J. Tomasek, et al. Carbon nanostructure examined by lattice fringe analysis of high-resolution transmission electron microscopy images. Applied spectroscopy, 2004, 58(2), 230~237
    [56] R.L. Vander Wal, A.J. Tomasek, M.I. Pamphlet, et al. Analysis of HRTEM images for carbon nanostructure quantification. Journal of Nanoparticle Research, 2004 6(6): 555~568
    [57] R.L. Vander Wal. Soot Nanostructure: Definition, Quantification and Implications. Sae paper, 2005, 2005-01-0964
    [58] Anish Goel, Peter Hebgen, John B. Vander Sande, Jack B. Howard. Combustion synthesis of fullerenes and fullerenic nanostructures. Carbon, 2002, 40:177–182
    [59] Adam Neer, Umit O. Koylu. Effect of operating conditions on the size, morphology, and concentration of submicrometer particulates emitted from a diesel engine. Combustion and Flame, 2006, 146:142-154
    [60] J. Zhu, K.O. Lee, A. Yozgatligil, M.Y. Choi. Effects of engine operating conditions on morphology, microstructure, and fractal geometry of light-duty diesel engine particulates. Proceedings of the Combustion Institute, 2005, 30:2781-2789
    [61] K.O. Lee, Jinyu Zhu. Sizes, graphitic structures and fractal geometry of Light-duty diesel engine particulates. SAE paper 2003-01-3169, 2003
    [62] H. Zhao, G. Lowry, N. Ladommatos, Time-Resolved Measurements and Analysis of In-Cylinder Gases and Particulates in Compression-Ignition Engines, SAE Paper 961168, 1996
    [63] Magín Lapuerta, Rosario Ballesteros, Francisco J. Martos, A Method to Determine the Fractal Dimension of Diesel Soot Agglomerates, Journal of Colloid and Interface Science, 2006, 303: 149~158
    [64] C. Van Gulijk, J.C.M. Marijnissen, M. Makkee, J.A. Moulijn, A. Schmidt-Ott, Measuring Diesel Soot with a Scanning Mobility Particle Sizer and an Electrical Low-Pressure Impactor: Performance Assessment with a Model for Fractal-like Agglomerates. Aerosol Science, 2004, 35: 633~655
    [65] Zheng Li, Chonglin Song, Jinou Song, Gang Lv, Surong Dong, Zhuang Zhao. Evolution of the nanostructure, fractal dimension and size of in-cylinder soot during diesel combustion process. Combustion and Flame, 2011, 158:1624-1630
    [66]董素荣,现代柴油机全气缸取样系统开发及缸内微粒理化特性研究,[博士学位论文],天津,天津大学,2007
    [67] S.D. Stasio. Electron microscopy evidence of aggregation under three different size scales for soot nanoparticles in flame. Carbon, 2001, 39(1): 109~118
    [68] J. Lahaye, G. Prado. Morphology and internal structure of soot and carbon blacks. Particulate Carbon Formation During Combustion, 1981: 33~55
    [69] Tomoji Ishiguro, Yoshiki Takatori, Kazuhiro Akihama. Microstructure of diesel soot particles probed by electron microscopy: First observation of inner core and outer shell. Combustion and Flame. 1997, 108(1): 231-234
    [70]张炜,柴油机燃烧过程中缸内微粒理化特性的研究,[博士学位论文],天津,天津大学,2009
    [71]王宇,电场作用下火焰中碳烟颗粒的分布与聚积规律, [博士学位论文],北京,清华大学,2009
    [72] Y.Yan, H.F.Yang, F.Q.Zhang, et al. Low-temperature solution synthesis of carbon nanoparticles,onions and nanoropes by the assembly of aromatic molecules.Carbon, 2007, 45:2209-2216
    [73] L.E. Murr, K.F. Soto. A TEM study of soot,carbon nanotubes,and related fullerene nanophlyhegra in common fuel-gas combustion sources.Materials Characterization, 2005, 55:50-65
    [74] Terrill A. Cool, Andrew McIlroy, Fei Qi, et al. Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source. REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76, 094102
    [75] Fei Qi, Rui Yang, Bin Yang, et al. Isomeric identification of polycyclic aromatic hydrocarbons formed in combustion with tunable vacuum ultraviolet photoionization. REVIEW OF SCIENTIFIC INSTRUMENTS. 2006, 77, 084101
    [76]杨锐,王晶,黄超群等,同步辐射单光子电离在燃烧研究中的应用,科学通报,2005, 50(15):1570-1574
    [77] Jeonghoon Lee, Igor Altman, Mansoo Choi. Design of thermophoretic probe for precise particle sampling. Aerosol Science, 2008, 39:418-431
    [78] R. A. Dobbins, C. M. Megaridis. Morphology of Flame-Generated Soot As Determined by Thermophore tic Sampling. Langmuir, 1987, 3:254-259
    [79] U.O. KOYLU, C. S. McENALLY, D. E. ROSNER, et al. Simultaneous Measurements of Soot Volume Fraction and Particle Size / Microstructure in Flames Using a Thermophoretic Sampling Technique. COMBUSTIONAND FLAME, 1997, 110:494-507
    [80] McIlroy A, Jeffries J B. Cavity ringdown spectroscopy for con-centration measurements. In Kohse-H?inghaus K, Jeffries J B. (Ed.) Applied Combustion Diagnostics. New York: Taylor & Fran-cis, 2002. p98-126
    [81] Smyth K C, Crosley D R. Detection of minor species with laser techniques. In Kohse-H?inghasu K, Jeffries J B. (Ed.) Applied Combustion Diagnostics. New York: Taylor & Francis, 2002. p9-30
    [82] Jonathan H.F., Peter A.M.K., Robert W.B. Measurements of conditional velocities in turbulent premixed flames by simultaneous OH-PLIF and PIV. 1999, Combustion and Flame,116:220-232
    [83] Kohse-Hoinghaus K. Jefferies J.B. Applied Combustion Diagnostics. Taylor&Francis, 2002, p294-296
    [84] Dreier T, Ewart P. Coherent techniques for measurements with in-termediate concentrations. In Kohse-H?inghaus K, Jeffries J B. (Ed.) Applied Combustion Diagnostics. New York: Taylor & Francis, 2002. p69-97
    [85] A. ERGUT, Y. LEVENDIS. AN INVESTIGATION ON THERMOCOUPLE BASED TEMPERATURE MEASUREMENTS IN SOOTING FLAMES. Proceedings of IMECE2005, 82332
    [86] CHARLES S. MCENALLY, U.O. KOYLU, LISA D. PFEFFERLE, et al. Soot Volume Fraction and Temperature Measurements in Laminar Nonpremixed Flames Using Thermocouples. COMBUSTIONAND FLAME, 1997, 109:701-720
    [87] Carlos A. Echavarria, Adel F. Sarofim, JoAnn S. Lighty, et al. Evolution of soot size distribution in premixed ethylene/air and ethylene/benzene/air flames: Experimental and modeling study. Combustion and Flame, 2011, 158:98-104
    [88] M. MattiMaricq. An examination of soot composition in premixed hydrocarbon flames via laser ablation particle mass spectrometry. Aerosol Science, 2009, 40:844-857
    [89] M. Matti Maricq. Coagulation dynamics of fractal-like soot aggregates. Aerosol Science, 2007, 38:141-156
    [90] Dale R. Tree, Kenth I. Svensson. Soot processes in compression ignition engines. Progress in Energy and Combustion Science, 2007, 33:272-309
    [91] R.H. Hurt, A.F. Sarofim, J.P. Longwell. Gasification-induced densification of carbons : from soot to form coke. Combustion and flame, 1993, 95(4): 430-432
    [92] ROBERT H. HURT, GREGORY P. CRAWFORD, HONG-SHIG SHIM. EQUILIBRIUM NANOSTRUCTURE OF PRIMARY SOOT PARTICLES. Proceedings of the Combustion Institute, 2000, 28:2539–2546
    [93] M. Alfe, B. Apicella, R. Barbella, et al. Structure–property relationship in nanostructures of young and mature soot in premixed flames. Proceedings of the Combustion Institute, 2009, 32:697-704
    [94] F.G. Emmerich. Evolution with heat treatment of crystallinity in carbons. Carbon, 1995, 33 (12):1709-1715.
    [95] J. Song, M. Alam, A.L. Boehman, et al. Examination of the oxidation behavior of biodiesel soot. Combustion and flame, 2006, 146(4): 589-604
    [96] Randy L. Vander Wal, Aaron J. Tomasek. Soot nanostructure: dependence upon synthesis conditions. Combustion and Flame, 2004, 136:129-140
    [97] D.S. Su, R.E. Jentoft, J.O. Muller, et al. Microstructure and oxidation behavior of Euro IV diesel engine soot: a comparative study with synthetic model soot substances. Catalysis Today, 2004, 90: 127-132
    [98] M. Alfè, B. Apicella, J.-N. Rouzaud, et al. The effect of temperature on soot properties in premixed methane flames. Combustion and Flame, 2010, 157:1959-1965
    [99] A.B. Palotas, L.C. Rainey, A.F. Sarofim, et al. Effect of oxidation on the microstructure of carbon blacks. Energy & fuels, 1996, 10(1): 254-259
    [100] C. Coury, A.M. Dillner. A method to quantify organic functional groups and inorganic compounds in ambient aerosols using attenuated total reflectance FTIR spectroscopy and multivariate chemometric techniques. Atmospheric Environment, 2008, 42:5923-5932
    [101] TYLER R. MELTON, FIKRET INAL, SELIM M. SENKAN. The Effects of Equivalence Ratio on the Formation of Polycyclic Aromatic Hydrocarbons and Soot in Premixed Ethane Flames. Combustion and Flame, 2000, 121:671-678
    [102] Ali Ergut, Yiannis A. Levendis, Henning Richter, et al. The effect of equivalence ratio on the soot onset chemistry in one-dimensional, atmospheric-pressure, premixed ethylbenzene flames. Combustion and Flame, 2007, 151:173-195
    [103] Ali Ergut, Rick J. Therrien, Yiannis A. Levendis, et al. The effect of temperature on the soot onset chemistry in one-dimensional, atmospheric-pressure, premixed ethylbenzene flames. Combustion and Flame, 2008, 155 (1) :232-246

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700