细水雾熄灭含障碍物油火的实验与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的哈龙灭火技术会产生温室效应、严重破坏臭氧层以及污染环境,而细水雾具有高效、无环境污染和能有效降低烟气毒害等优点,近年来已成为国际消防界研究的热点。考虑到细水雾在实际消防工程中的推广,本论文应用实验研究和数值模拟相结合的方法,开展了障碍物条件下细水雾灭火有效性的实验和模拟研究。
     定性分析了细水雾的灭火参数。基于流体力学守恒方程,建立了受限空间内部的能量产生、转移和损失模型,并给出了各种能量的计算方法。这些模型的建立,为下面章节的数值模拟提供理论依据与建模数据。
     自制了用于研究细水雾熄灭含网格形障碍物油火的实验平台。通过改变细水雾压力、火源与障碍物的距离、障碍物的遮盖率、以及障碍物之间的间距来研究细水雾熄灭含网格形障碍物油火特性。结果表明障碍物与火源的距离以及障碍物的遮盖率是影响灭火重要因素,得出了有效距离在油池火焰高度L的1/2处及障碍物遮盖率为10%时,细水雾熄灭油火的时间最短。
     同时本论文在结合实验数据的基础上,利用火灾动力学模型,进行了细水雾抑制含障碍物火焰的数值模拟。并通过局部网格加密的方法,解决了粗糙网格划分下无法识别较小尺寸障碍物的困难,以及保证了运算精度。最后结合实验现象应用数值模拟结果,分析了实验中细水雾能有效熄灭障碍物油火的原因。
Traditional Halon fire-fighting technology will have a greenhouse effect and damage the ozone layer Seriously as well as the pollution of the environment but the Water mist have the advantages of the highly efficient and environmentally, as well as reducing gas poisoning effectively. In recent years, it has become a hot spot studied. The scene of the fire complex environment and the existence of obstacles make it more difficult to fire. Considered the promotion prospects of the water mist in the actual fire protection engineering, used a combination methods of experimental research and numerical simulation. It was carried out simulation and experimental study on the conditions of obstacles water mist fire-fighting effectiveness.
     Based on the Conservation equations of fluid mechanics, established the model of the internal energy generation, transfer, loss for the limited space and gave each energy computational method. I analysis each mechanism of the water mist in fire extinguishing, gave the best parameters in quota.
     Then set up a fire-fighting platform for experiments and data acquisition system using for research the inhibition the water mist of liquid barrier with the flame. It was carried out the experiment of water mist putting out the Kerosene fire with barrier under different working conditions by changing the pressure water mist and the distance of the fire source and the barrier, obstacle hiding rare, the distance between grid shape obstacles. The results showed that the source of the fire barrier and the distance between the barrier and the cover was an important factor, range in more than 400mm and cover rate of 10% the time of the Water mist extinguishing oil fires is the shortest.
     Using fire dynamics model carried out numerical simulation water mist suppress flame with obstruction. Ensure the accuracy of computing, using the local mesh refinement approach, which solute the difficult of coarse mesh can not identify the smaller size barrier. Simulation results explained the reason why the water mist fire-fighting can not be effective, experiment agree with the basic phenomenon.
引文
[1] http://www.shejis.com/,中国设计师网,消防安全知识培训教材.
    [2] http://www.119.cn,中国消防在线,中国消防工作简况,摘自:公安部消防局.
    [3] WR.L.Alpert,Incentive for use of misting spray as a Fire Suppression Flooding Agent,roceedings of Water Mist Fire suppression Work shop[C]. Edited by A.N.Kathy and H.J.Nora,1993,31-36.
    [4] K.A .Notarianni P.E.Water Mist Fire Suppression System Proceeding of Technical Symposium on Halon Alternatives Society of Fire Protection Engineers and PLC Education Foundation. Knoxville TN[C].1994, 57-64.
    [5]公安部消防局,国家环境保护总局编.中国淘汰哈龙行动[M].北京:中国环境科学出版社2000.11.
    [6]刘江虹,廖光煊,范维澄.细水雾灭火技术及其应用[J].火灾科学,2001(1):34-37.
    [7]张国欢.撞击式和离心式水雾喷头的差异[J].消防科学与技术,2000,39-40.
    [8]程方涛.新型细水雾灭火实验研究[D].武汉:武汉大学环境工程,2005.
    [9]刘江虹.细水雾抑制熄灭固体火焰的模拟实验研究[D].合肥:中国科技大学工程热物理,2001.
    [10]马素平,寇子明.用于喷雾降尘的压力型雾化喷嘴设计研究[J].矿山机械,2006,34(1):67-68.
    [11]杨琦.高压细水雾灭火系统技术[J].消防技术与产品信息,2003(10):11-14.
    [12] Liu Xuanya,Lu Shouxiang,Qin Jun.Experimental study on suppression of methane flame propagating by water mist [A].2004 International Symposium on Safety Science and Technology[C].Shanghai.1493—1498.
    [13] Mawhinney J R , Eng P.Engineering criteria for water mist fire suppression systems[A].Proceedings of Water Mist Fire Suppression Workshop[C].1993.
    [14] Marttila P K.Water mist in total flooding applicationsl Aj.Proceedings of Halon Altematives Technical working conference[C].1993.309.
    [15]崔正心.细水雾与障碍物稳定火焰相互作用的研究[J].火灾科学,2001,10(3):174-177
    [16]刘晅亚.细水雾对障碍物挡板火灭火有效性的实验研究[J].中国工程科学,2006,8(5):88-93,97.
    [17] Liu Z, Kim A K. A review of water mist fire suppression systems fundamental studies.Journal of Fire Protection Engineering[J], 2000,10(3):32-50.
    [18]刘江虹,廖光煊,厉培德等.细水雾灭火技术研究与进展[J].科学通报,2003,48(8).
    [19]周善淮.高压单相流细水雾自动灭火系统的研制及火场温度监测[D].杭州:浙江大学机械电子工程,2004.
    [20] Herterich O. Water as an extinguishing agent[M]. Heidelberg Alfred Huthig Publishing Company, 1960.
    [21]刘江虹,廖光煊,秦俊等.细水雾与射流卷吸现象的模拟实验研究[J].火灾科学,2000(2):8-13.
    [22]曾汉才,韩才元,吴学曾等.燃烧技术[M].武汉:华中理工人学出版社,1991,11,107-112.
    [23]马承伟,严荷荣,袁东顺等.液力式雾化喷头雾滴直径分布规律[J].农业机械学报,1999,30(1):33-39.
    [24]姚斌,廖光煊,范维澄等.利用锥型量热计研究细水雾作用下的油池火热释放速率[J].量子电子学报,2002年(02期).
    [25]刘益民.细水雾有效雾通量灭火机理的模拟实验研究[D].合肥:中国科学技术大学,2008.
    [26] BejanA. Heat transfer. [M]New York: Wiley,1993.
    [27]刘江虹,廖光煊.细水雾作用下固体池火熄灭时间的实验研究[J].中国科学, 2003,3.
    [28]冯瑞,霍然,于海春.受限空间油池火燃烧特性的实验研究[J].消防科学与技术. 2005,24 (3):288-291.
    [29]秦俊,廖光煊.激光多勒细水雾雾场特性研究[J].激光技术,2001,4.
    [30]傅维镳,张永廉,王清安.燃烧学[M].北京:高等教育出版社,1989.
    [31] V. Babrauskas. An Introduction to Mathematical Fire Modeling[J]. Fire Safety Journal. 2001,36(5): 515-517.
    [32] Beyler.C.L. Fire Plumes and Ceiling Jets. Fire Safety Journal[J]. 1986,11(1-2): 53-75.
    [33] V. Babrauska. Estimating large pool fire burning rates. Fire Technology[J]. 1983,34(5): 251-261.
    [34] Sung Chan Kim,Hong Sun Ryou. An experimental and numerical study on fire suppression using a water mist in an enclosure[J]. Building and Environment,2003,38:1309-1316.
    [35]高宇飞.基于区域模拟的建筑排烟模型及其应用研究[D].徐州:中国矿业大学,2006.
    [36] Bosch,C.J.H. vanden,R. Weterings. Methods for the calculation of physical effects-Due to releases of hazardous materials (3rd edition 1997) [M]. Netherlands: Committee for thePrevention of Disasters. 1997 .
    [37] W.P.Crocher and D. H. Napier. Thermal radiation hazards of liquid pool fires and tank fires[C]. 1st Chemical Symposium Series.1997.
    [38]杨立中.工业热安全工程[M].合肥:中国科学技术大学出版社,2001.
    [39] Heskestad,G. Engineering relations for fire plumes[J]. Fire Safety Journal. 1984,7: 25-32..
    [40]范明豪,周华,杨华勇.高压细水雾灭火喷嘴的雾化特性研究[J].机械工程学报,2002,9:17-21.
    [41]周华,邓东,周善淮等.高压单相流细水雾灭火系统研制及实验研究[J].消防科学与技术,2004,23(4):351-353.
    [42] Hiroshi Shimizu, Manai Tsuzuki, Yasuo Yamazaki ect. Experiments and numerical simulation on methane flame quenching by water mist[J]. Journal of Loss Prevention in the Process Industries, 2001,14:603-608.
    [43] J.E.Floyd,K.B.McGrattan,S.Hostikka,et a1.CFD Fire Simulation Using Mixture Fraction Combustion and Finite V0lume Radiatlve Heat Transfer[J].Journal of Fire Protection Engineering,2003(13):11-36.
    [44]邓玲. FDS场模拟计算中的网格分析[J].消防科学与技术,2006, 25 ( 2 ): 207-210
    [45] K. B. McGrattan,H. R. Baum,R. G. Rehm. Fire Dynamics Simulator (Version 5)User’s Guide. [M] NIST Special Publication 1019-5,2007.
    [46]李元洲.中庭式大空间建筑内火灾烟气流动与控制研究[D].中国科学技术大学,2001,1-33,81-93.
    [47]倪照鹏,阚强.正确认识建筑物性能化设计消防设计与评估[A].建筑物性能化防火设计方法方法与技术评估研讨会论文集[C].2003,1-5.
    [48] NFPA 92B.Standard for Smoke Management Systems in Malls,Atria,and Large Spaces.National Fire Association.USA.2005 Edition.
    [49] Dougal Drysdale.An Introduction to Fire Dynamics 2nd Edition. University of Edinburgh,UK.,117-144,343-348,328-331,305-310,321-324, 333-334, 296-305.
    [50] NFPA 204.Standard for Smoke and Heat Venting. National Fire Association.USA.2002 Edition.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700