管内气体爆炸数值模拟与惰性气体的淬熄研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,一些气体爆炸事故的频繁发生对可燃气体爆炸与抑爆工作提出了严峻的挑战,而随着管道的大规模应用,气体爆炸的传播也越来越为人们所重视,关于这方面的研究也开始日益增多,因此,研究气体爆炸在管道中的传播机制,探讨气体爆炸抑制的新技术和新方法,不仅可以为防爆抑爆研究工作提供理论依据和参考,对保障安全生产和人民的生命安全也具有重要的现实意义。
     本文采用了现阶段较为流行的计算机模拟技术,对预混可燃气体混合物在管道内的爆炸过程和惰性气体淬熄火焰的效果进行了研究。本文工作的主要内容和结论如下:
     (1)建立了二维封闭-开放管道模型和流体力学、燃烧学控制方程组,采用有限体积法离散方程,将气体比热设为随温度变化的函数,对预混乙炔/空气混合物在管道内的爆炸过程进行了数值模拟。结果表明,可燃气体在管道内被点燃后,火焰首先呈半球状并以层流的方式向周围扩展,当火焰与壁面接触后,受壁面的约束作用,一部分火焰被壁面反弹,与已燃区内的气体相作用形成了扰动,使火焰发生变形,最后逐渐发展成为了“郁金香”状的结构;火焰的变形导致了湍流的产生,加速了燃烧反应的进程,从而形成了正反馈机制,促进了火焰在管道内加速传播。通过与实验结果和文献相比较,其最大误差不超过28%,证明了模拟具有较好的合理性与准确性。
     (2)建立了开放-开放圆管通道模型和平行板狭缝模型,对惰性气体在圆管和平行板狭缝内淬熄火焰的过程进行了研究。考察了惰性气体的浓度对火焰淬熄的影响,发现随着惰性气体浓度的增加,火焰的淬熄越容易,当惰性气体浓度增加到一定程度时,火焰在圆管和狭缝中的淬熄长度将不再变化。分析了惰性气体淬熄火焰的原因,认为惰性气体能够有效提高网管和平行板狭缝淬熄火焰的能力是因为惰性气体的加入稀释了预混气体的浓度,降低了反应速率,从而使燃烧释热速率降低。
     (3)对不同活性的可燃气体火焰在圆管和狭缝中的淬熄规律进行了考察,总结了火焰淬熄长度随圆管直径/狭缝间距和火焰速度的变化趋势,发现丙烷和乙烯火焰的淬熄长度与圆管直径/狭缝间距成二次函数关系,而乙炔火焰在圆管中的淬熄长度随火焰速度成指数函数关系,在狭缝中淬熄长度随火焰速度成线性关系。将火焰在圆管和平行板狭缝中的淬熄过程进行了对比,证明圆管结构的淬熄性能要优于平行板狭缝结构。
     (4)建立了圆管结构淬熄火焰的数学模型,证明了圆管结构的淬熄距离与惰性气体热导率的三分之一次方和分子量的三分之一次方成正比,与反应速率的三分之一次方成反比。
In recent years, the people who are engaged in the work of explosion or explosionsuppression are puzzled with the reality of gas explosion which happen frequently. And asducts are gradually used in big amount in industry, the phenomenon of flame propagating induct is paid more attention than before; therefore, the studies about it are increasing day byday. Undoubtedly, to study the mechanism of flame propagating in duct, as well as to seekafter the new ways or new methods of explosion suppression will benefit for both ofexplosion prevention and the security of production and people.
     Based on the reaslization above, the numerical simulation techniques are adopted to studythe premixed flame propagating in duct and activity of fire extinguishing in inert gases in thisarticle. The main works and conclusions are in the following:
     (1) The model of a two-dimensional closed-open pipe, as well as a group of governingequations of fluid and combustion are setup to study the premixed acetylene/air flamepropagating in duct. The equations are discretizated by Finite Volum Method, and specificheat of gases is set to be the function of temperature. The simulation shows that flamepropagates aroundly as a semi-sphere once the premixed gases are ingited. After some time,when the flame approaches the wall, the flame is rebounded. Then the flame reboundedinteracts with the gases which are produced from combustion. So in this way, the flame isstretched, and finally a "tulip" flame is formed. The flame stretch produces turbulent andmakes the reaction rate increase. Then a feed-back mechanism is formed, which makese theflame accelerate in duct. The comparison between simulation and experiment is made, and themaximum error is found to be less than 28%, so in this way the simulation is proved to beveracious and rational.
     (2) Open-open channels of tube and parallel plates are established, and flame extinguishingin channels in the effects of inert gases are studied. It is found that flame will extinguisheasier as the concentration of inert gases increasing. Once the concentrations increase to someextent, the quenching lengths of flame in tube and plates will not change. The reason forflame extinguishing easier in inert gases can be explained that premixed mixtures are dilutedwith the complement of inert gases, which eventually leads to the reduction of reaction rate.
     (3) The rules of flame extinguishing in tube and parallel plates are summerized. Some factors which affect fire extinguishment such as premixed gas reactivity, sizes of tube andplates, flame velocity et al are taken into account. It is found that the flame quenchinglengthes for propane and ethylene are in conic relation with diameters of the tube or widths ofthe parallel plates. However, as to acetylene flame, the rules in tube are different with that inparallel plates. In tube, the quenching lengthes are in exponatial relation with flame velocity,but in parallel plates, the relation is linearity. The comparison of flame extinguishing in tubeand plates are made, and it si proved that tube has better quenching effect than plates.
     (4) The mathematical model of flame extinguishing in tube is set up, and a formulation isgotten. From the formulation, it is can be seen that the quenching distance of tube is positiveproportional to one-third power of heat conductivity and molecular weight, but negativeproportional to one-third power of reaction rate of flame.
引文
[1] 王亚军,黄平,李生才.2006年11-12月国内安全事故统计分析.安全与环境学报.2007,2(1):154-157
    [2] 赵衡阳.气体与粉尘爆炸原理.北京.北京理工大学出版社.1995
    [3] Markstein, G H Sixth. International Symposium on Combustion, Reinhold, New york. 1956, pp: 387-398
    [4] Strehlow, R A. Combustion Fundamentais, McGraw-Hill, New York. 1985
    [5] V'yacheslav Akkerman, Vitaly Bychkov, Arkady Petchenko, Lars-Erik Eriksson. Accelerating flames in cylindrical tubes with nonslip at the walls. Combustion and Flame. 2006,145:206-219
    [6] A K Oppenhein, P A Urtiew. Experimental observations of the transition to detonation in an explosive gas. Pro. Roy. Soc, A295, 1966 (13)
    [7] N N Smirnov, V F Nikitin. Effect of Channel Geometry and Mixture Temperature on Detonation to Deflagration Transition in Gases Combustion. Explosion and Shock Waves. Vol. 40, No. 2, pp. 86-199, 2004
    [8] A R Masri, S S lbrahim, N Nehzat, AR. Green. Experimental study of premixed flame propagation over various solid obstructions. Experimaental Thermal and Fluid Science. 2000 (21): 109-116
    [9] Salah S Ibrahim, Graham K Hargrave, Tim C Williams.Experimental investigation of flame/solid interactions in turbulent premixed combustion. Experimetal Thermal and Fluid Science 2001(24): 99-106
    [10] 周凯元,李宗芬.丙烷-空气爆燃波的火焰面在直管道中的加速运动.爆炸与冲击.Vol.20,No.2 Apr.2000.137-142
    [11] 王昌建,徐胜利,郭长铭.气相爆轰波在半圆形弯管中传播现象的实验研究.爆炸与冲.Vol.23,No.5 Sept,2003.448-453
    [12] 王汉良,周凯元,夏昌敬.气体爆轰波在弯曲管道中传播特性的实验研究。火灾科学.Vol 1,No 4.Oct,2001.209-212
    [13] 范喜生.关于抑爆和阻爆设计方法的研究.工业安全与防尘.1999(10):22-25
    [14] 郑学志.选用金属网型阻火器的隐患问题.化工劳动保护(安全技术与管理分册).1995(4):4-6
    [15] K.K.Kenneth著,郑楚光,袁建伟,米建春译.燃烧原理.华中理工大学出版社
    [16] 张国伟.爆炸作用原理.北京.国防工业出版社.2006
    [17] 胡湘渝,张德良.气相爆轰波贯穿胞格变化研究.北京理工大学学报.2001(3):286-291
    [18] 年伟民,周凯元,夏昌敬等.气相爆轰波通过声学吸收壁时强度衰减过程的实验研究.火灾科学.2003(4):84-90
    [19] 周崇.管道内预混可燃气体爆炸与抑爆的研究.大连理工大学硕士学位论文.2004
    [20] B H Hjertager, M Bjorkhaug, K Fuhre. Explosion propagation of inhomogeneous methane-air clouds inside an obstructed 50m~3 vented vessel. J Hazard Mater. 19 (1988)
    [21] I O Moen, D Bjerketvedt, T Engebretsen, A Jessen, et al. Transition to detonation in a flame jet. Combustion and Flame. 75 (1989)
    [22] I O Moen, D Bjerketvedt, A Jessen, P A Thibault. Transition to detonation in a large fuel-aircloud. Combustion and Flame. 61 (1985)
    [23] 周凯元,李宗芬.燃气管道阻火器原理及其应用.煤气与热力.1993(9):32-37
    [24] W Bartknecht, Brenngasund, Staubexplosionen, Forschungsbericht F45, Bundesinstitut fur Arbeidsschutz (Bifa), Dortmund Germany (1971)
    [25] H Steen, K Schampel. Experimental investigation of run-up distance of gaseous detonations in large pipes. 4th International symposium on Loss Prevention and Safety Promotion in the process industries. Pergamon, London, UK. pp. E23-E33 (1983)
    [26] 喻健良,周崇,刘润杰.管道内预混气体爆燃过程的实验研究.石油与天然气化工.2004(6) 453-457
    [27] 杨志,周凯元,谢立军,刘庚冉.Z型管道中气体火焰传播规律的实验研究.火灾科学.2006.6(3):111-116
    [28] 夏昌敬,周凯元,沈兆武等.可燃气体非稳定爆轰波通过90°圆弯管传播特性的实验研究.实验力学.2002.12(4):438-443
    [29] D Dunn-Rankin, M A Mccann. Over pressure from nondetonating, baffle-accelerated turbulent flames in tubes. Combustion and Flame. 2000 (120): 504-514
    [30] 余立新,孙文超,吴承康.障碍物扰动对预混火焰发展的影响.中国科学.2000(5):420-428
    [31] A R Masri, S S Ibrahim, N N ehzat, A R Green. experimental study of premixed flame propagation over various solid obstructions. Experimental Thermal and Fluid Science. 2000 (21): 109-116
    [32] 余明高,廖光煊,张和平,宋春兰.哈龙替代产品的研究现状及发展趋势.火灾科学.2002.4(2):108-113
    [33] 田丽.新一代哈龙替代灭火技术的理论及应用研究.消防技术与产品信息.1999(10):33-35
    [34] 宋占兵,张孝君,喻健良,崔宗和.灭火剂发展现状与未来.化学工业与工程技术.2001(3):7-11
    [35] Naoshi Saito, Yoshio Ogawa, Yuko Saso et al. Flame-extinguishing Concentrations and Peak Concentrations of N2, Ar, CO2 and their mixtures for Hydrocarbon fuels[J]. Fire Safety Journal. 1996 (27): 185-200
    [36] Joseph A Senecal. Flame extinguishing in the cup-burner by inert-gases[J]. Fire Safety Journal. 2005 (40): 579-591
    [37] Ay Su, Ying-Chieh Liu. Investigation of impinging diffusion flames with inert gases[J]. International Journal of Heat and Mass transfer, 2002 (45): 3251-3257
    [38] 陈思维,杜扬.惰性气体抑制管道中可燃气体爆炸的数值模拟.天然气工业.2006(10):136-139
    [39] 胡畔.石化装置设计中阻火器的选用.炼油设计.2002.32(6):37-39
    [40] 王振成,小川辉繁.金属网阻火器设计参数的优化选择.中国安全科学学报(增刊).1995.(12):176-182
    [41] Norimasa Iida, Osamu Kawaguchi, G.Takeshi Sato. Premixed flame Propagating into a Narrow Channel at a High Speed, Part 1: Flame Behaviors in the Channel. Combustion and Flame. 1985 (60): 245-255
    [42] Norimasa Iida, Osamu Kawaguchi, and G. Takeshi Sato, Premixed flame Propagating into a Narrow Channel at a High Speed, Part2: Transient Behaviors of the Properties of the flowing Gas inside the Channel, Combustion and Flame, 1985 (60): 257-267
    [43] Aly S L, Hermance C E Combust. Flame. 1981 (40): 173
    [44] Buckmaster, J, Combust. Flame,, 1976 (26): 151
    [45] Williams F. Combustion Theory, 2nd ed., Addison-Wesley, Reading, Massachusetts, 1985.
    [46] Carder G F, Fendell F E, Feldman P S. SAE Paper. 1980.
    [47] Spalding, D B Proc. Roy. Soc. London. 1957. A240:83
    [48] Lee S T, Tien J S. Combust. Flame. 1982 (48): 273
    [49] Lee S T, Tsai H T. Numerical Investigation of Steady Laminar Flame Propagation in a Circular Tube. Combustion and Flame. 1994 (99) pp: 484-490.
    [50] Hackert C L, Ellzey J L, Ezekoye O A.. Effects of Thermal Boundary Conditions on Flame Shape and Quenching in ducts. Combustion and Flame. 1998 (112) pp: 73-84.
    [51] 周凯元.气体爆燃火焰在狭缝中的淬熄.火灾科学.1999.8(1):22-33
    [52] Pascal Bauer. Experimental investigation on flame and detonation quenching: applicability of static flame arresters. Journal of Loss Prevention in the Process Industries 2005 (18): 63-68
    [53] 王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社,2004.
    [54] 陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001.
    [55] Arkady Petchenko, Vitaly Bychkov a, V'yacheslav Akkerman, Lars-Erik Eriksson. Flame-sound interaction in tubes with nonslip walls. Combustion and Flame 2007 (149): 418-434
    [56] D G Norton, D G Vlachos. Combustion characteristics and fame stability at the microscale: a CFD study ofpremixed methane/air mixtures. Chemical Engineering Science. 2003 (58): 4871-4882
    [57] A Petchenko, V Bychkov. Axisymmetric versus non-axisymmetric flames in cylindrical tubes. Combustion and Flame. 2004 (136): 429-439
    [58] 胡湘渝,张德良.易燃混合气体爆炸完全基元反应模型数值模拟.安全与环境学报.2001.10(5)
    [59] Fluent Help Inc.2003-01-28.
    [60] 杨世铭,陶文铨.传热学(第三版).北京.高等教育出版社.1998
    [61] 宋占兵.预混火焰在狭缝中的传播机理与熄灭条件的研究.大连理工大学博士论文.2005.7
    [62] 毕明树,尹旺华,丁信伟,王淑兰.管道内可燃气体爆燃的一维数值模拟.天然气工业.2003.(4):89-93
    [63] Christophe Clanet, Geoffrey Searb. On the "Tulip Flame" Phenomenon. Combustion and Flame. 1996 (105): 225-238
    [64] Dunn-Rankin, D Barr P K, Sawyer R F. Twenty-First Symposium (Intemarional) on Combustion. The Combustion Institute, Pittsburgh. 1986, pp: 1291-1301.
    [65] Gonzales M, Borghi R, Saouab A. Cornbust. Flame 1992 (88): 201-220.
    [66] Rotman D A, Oppenheim A K. Twenty-First Symposium (International) on Combustion, The Combustion Institute, Pittsburgh. 1986 Pp: 1303-1312.
    [67] K V Dobrego, I M Kozlov, V V Vasiliev. Flame dynamics in thin semi-closed tubes at different heat loss conditions. International Journal of Heat and Mass Transfer. 2006 (49): 198-206
    [68] 赵黛青,黄显峰,山下博史,张春林.微尺度CH4扩散火焰特性的数值解析[J].燃烧科学与技术,2005(11):530-534
    [69] 蒋德明.内燃机燃烧与排放学.西安:西安交通大学出版社,2002.
    [70] 胡春明.预混火焰在平板狭缝中传播与淬熄的研究.大连理工大学硕士学位论文.2006
    [71] 李江涛.微型圆管结构对火焰传播抑制作用的数值模拟.大连理工大学硕士学位论文.2006
    [72] 郑学志.对管道阻火器的研究.油气储运.1988(10):
    [73] 石油储罐阻火器.中华人民共和国石油天然气行业标准.中国石油天然气总公司.1996
    [74] 化工企业爆炸和火灾危险环境电力设计规程.中华人民共和国化学工业部设计标准.北京.1989
    [75] 郑红,郑学志.化工厂管道阻火器的应用.化工劳动保护.1996:4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700