空气射流及合成气射流火焰的直接数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用直接数值模拟方法对无反应空气射流和合成气射流火焰进行了研究。具体研究内容包括三维燃烧直接数值模拟的数值方法、空气射流及合成气射流火焰。
     模拟求解的控制方程为无量纲化完全可压缩的Navier-Stokes方程,采用具有四阶精度的8阶中心有限差分的空间求导格式和五步四阶Runge-Kutta时间步进格式,同时添加了10阶显式中心差分过滤格式,该数值方法表现出了良好的稳定性。推导出了适用于三维燃烧情况的三维特征无反射边界条件,同时还采用了缓冲区低通过滤的缓冲区边界条件。此外确定了三维程序并行计算方法,结合所采用的显式差分方法取得了令人满意的并行加速比。
     首先对一典型亚音速圆形空气射流进行了直接数值模拟。计算得到了平均速度、雷诺应力、二阶和三阶速度相关及湍流能谱等湍流统计量,通过同实验数据的对比发现DNS结果同实验结果符合非常好。对涡量、速度梯度进行了计算以揭示湍流结构的演化过程,给出了射流上游段涡环形状的拟序结构在向下游运动的过程中逐渐破碎的过程的图像。计算出射流轴线平均速度衰减率系数Bu为5.5,这同其他研究者的数据非常接近。得到表征射流平均速度径向分布曲线形状的常数Ku为75.4。统计计算出了速度相关系数,发现在轴向区域x=17d-20d湍流统计量呈现出较好的自相似性,且与实验数据符合很好。最后计算了射流轴线上轴向速度和径向速度的一维湍流能谱,结果显示在湍流惯性子区能谱衰减符合k-5/3衰减律。在射流轴线上x=19d附近轴线速度和径向速度的一维能谱因为湍流的各项异性而呈现出一定差别。
     其次模拟了木屑合成气三维射流火焰燃烧现象,在模拟中采用合成气的真实组成,以对合成气射流火焰结构、物质分布特别是污染物NO的分布情况进行更加准确的研究,同时采用包含NO反应的多步化学反应机理来模拟反应过程。采用激光诱导荧光技术对合成气射流火焰进行了测量,得到了火焰中OH的瞬时分布图像和平均浓度的径向分布。模拟得到了燃烧场中组分质量分数、温度、混合分数、化学反应热释放率和标量耗散率等的分布图像,发现模拟得到的OH瞬时图像表现出了同PLIF测量结果相同的褶皱形状。然后统计了得到了各物理量在混合分数空间的PDF分布图和条件平均值分曲线,发现OH的最大值出现在最大热释放率的左侧,也即偏向高温的贫燃料侧,这种OH和热释放率峰值的偏离说明对于部分预混射流火焰来说,采用OH作为火焰锋面的指示量并不完全精确。而后对在射流不同位置标量耗散率和化学反应速率间的关系进行了研究,发现在射流初始段标量耗散率越大的地方化学反应越快,在射流下游这种现象逐渐消失。最后对射流火焰的着火过程进行了分析,较大的标量耗散率推动燃料和氧化剂的混合,且在混合分数空间热释放率不断增大最终全面着火现象发生。
Round jet flow and syngas jet flame were studied via direct numerical simulation technique. The main research subject were the numerical techniques for there dimensional direct numerical simulation of combustion, air jet flow and syngas jet flame.
     The fully compressible non-dimensional Navier-Stokes conservation equations were solved here. For the spatial discretization eighth-order explicit central finite difference scheme was adopted and fourth-order five stage Runge-Kutta scheme was used for temporal marching. Besides, tenth-order explicit central finite difference scheme was used to eliminate the unwanted oscillation with high wave number. All these numerical techniques perform very well and have strong stability. Non-reflecting characteristic boundary conditions for three dimensional combustion were obtained. Exit zone where low order filtering was implemented near computational domain boundary were used. Proper parallel computational methods were used combined with the explicit difference schemes, and high speed-up was obtained.
     First we do a DNS for a subsonic round turbulent air jet in a coflow with laminar flow. The jet mean velocity, Reynolds stresses, second and third order velocity moments and turbulent energy spectral were obtained. These simulation results agree very well with experimental data. Vortex rings were found in the upstream of the jet, further downstream these large scale coherent structure started to break down and merge with each other. Image of this evolution process were showed by vortex magnitude and velocity gradient. The decay rate Bu of jet centerline mean velocity is found to be 5.5, which was very close tR RtKHV rHVu(?). u, wKLF(?)tVSrRILOH of the mean velocity along radial direction, was found to be 75.4. Then we calculate the second and third order velocity moments and found that in the axial region of x=17d-20d the jet statistics exhibit self-similar behavior and agree well with published experimental data in fully self-similar region. The one-dimensional energy spectra of longitudinal and lateral velocity are also presented. The inertial region where the spectra decays according to the k-5/3 is observed. At around x=19d on the jet centerline, their was some difference between autospectra of longitudinal and of lateral velocity due to anisotropy.
     Then we do a direct simulation of wood residue syngas jet flame in a hot coflow environment. In order to investigate the jet flame structure, species distribution and the formation of NO, wood residue syngas with real composition was considered. The reaction mechanism is a multi-step mechanism which include NO reaction. PLIF was used to measure the OH image and species mean concentration along radial direction. Image of the species mass fraction, temperature, mixture fraction, heat release rate and scalar dissipation rate were obtained. The computed OH image was compared with the OH-PLIF image and the flame front structure was very similar. Many physical variables scatter plot in the mixture fraction space were plotted and also the conditional mean value on the mixture fraction. It is found that the peak of OH curve appears on the left side of the maximum heat release rate, which means on the lean side with high temperature. The discrepancy between peak position of OH curve and heat release rate for this partial premixed jet flame indicates that it is not very precise to use OH as the flame front indicator. Then the relationship between scalar dissipation rate and chemical reaction rate was analyzed and it is found that at the upstream position of the jet high heat release rate appears in the place where the scalar dissipation rate is large. Further downstream this phenomenon disappear gradually. At the end we do analysis of the ignition process of the jet flame. Large scalar dissipation promote the mixing between fuel and oxidizer and the heat release rate grow up in the mixture space, and at last ignition take place.
引文
[1]余常昭,紊动射流.1993:高等教育出版社.
    [2]Wygnanski, I. and H. Fiedler, Some measurements in the self-preserving jet. Journal of Fluid Mechanics Digital Archive,1969.38(03):p.577-612.
    [3]Panchapakesan, N.R. and J.L. Lumley, Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. Journal of Fluid Mechanics Digital Archive.1992. 246(-1):p.197-223.
    [4]Panchapakesan, N.R. and J.L. Lumley, Turbulence measurements in axisymmetric jets of air and helium. Part 2. Helium jet. Journal of Fluid Mechanics Digital Archive,2006. 246(-1):p.225-247.
    [5]Hussein, H.J., S.P. Capp, and W.K. George, Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. Journal of Fluid Mechanics Digital Archive,1994.258(-1):p.31-75.
    [6]Antonia, R.A. and R. W. Bilger, An experimental investigation of an axisymmetric jet in a co-flowing air stream. Journal of Fluid Mechanics Digital Archive,2006.61(04):p. 805-822.
    [7]Islam, M.T. and M.A.T. Ali, Mean velocity and static pressure distributions of a circular jet. Aiaa Journal,1997.35(1):p.196-197.
    [8]Quinn, W.R., A. Pollard, and G.F. Marsters, Mean Velocity and Static Pressure Distributions in a 3-Dimensional Turbulent Free Jet. Aiaa Journal,1985.23(6):p. 971-973.
    [9]Quinn, W.R. and J. Militzer, Experimental and Numerical Study of a Turbulent Free Square Jet. Physics of Fluids,1988.31(5):p.1017-1025.
    [10]Antonia, R.A., B.R. Satyaprakash, and A. Hussain, Measurements of Dissipation Rate and Some Other Characteristics of Turbulent Plane and Circular Jets. Physics of Fluids, 1980.23(4):p.695-700.
    [11]Fukushima, C., L. Aanen, and J. Westerweel, Investigation of the mixing process in an axisymmetric turbulent jet using PIV and LIF. Laser Techniques for Fluid Mechanics. 2002:p.339-356.
    [12]Malmstr, Ouml, et al., Centreline velocity decay measurements in low-velocity axisymmetric jets. Journal of Fluid Mechanics,2000.346(-1):p.363-377.
    [13]Grinstein, F.F., E.J. Gutmark, et al., Streamwise and spanwise vortex interaction in an axisymmetric jet. A computational and experimental study. Physics of Fluids,1996.8(6): p.1515-1524.
    [14]Kotsovinos, N.E. and P.B. Angelidis, The Momentum Flux in Turbulent Submerged Jets. Journal of Fluid Mechanics,1991.229:p.453-470.
    [15]Abdel-Rahman, A.A., S.F. Al-Fahed, and W. Chakroun, The near-field characteristics of circular jets at low Reynolds numbers. Mechanics Research Communications,1996. 23(3):p.313-324.
    [16]Lau, J.C, P.J. Morris, and M.J. Fisher, Measurements in Subsonic and Supersonic Free Jets Using a Laser Velocimeter. Journal of Fluid Mechanics,1979.93(JUL):p.1-27.
    [17]Xu, G. and R.A. Antonia, Effect of different initial conditions on a turbulent round free jet. Experiments in Fluids,2002.33(5):p.677-683.
    [18]Suzuki, T. and T. Colonius, Instability waves in a subsonic round jet detected using a near-field phased microphone array. Journal of Fluid Mechanics,2006.565:p.197-226.
    [19]Ganapathisubramani, B., K. Lakshminarasimhan, and N.T. Clemens, Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry. Journal of Fluid Mechanics,2008.598(-1):p. 141-175.
    [20]Hasan, M.A.Z. and A. Hussain, The Self-Excited Axisymmetric Jet. Journal of Fluid Mechanics,1982.115(FEB):p.59-89.
    [21]Lockwood, F.C. and H.A. Moneib, Fluctuating Temperature Measurements in a Heated Round Free Jet. Combustion Science and Technology,1980.22(1):p.63-81.
    [22]Pietri, L., M. Amielh, and F. Anselmet, Simultaneous measurements of temperature and velocity fluctuations in a slightly heated jet combining a cold wire and Laser Doppler Anemometry. International Journal of Heat and Fluid Flow,2000.21(1):p.22-36.
    [23]Antonia, R.A. and J. Mi, Temperature Dissipation in a Turbulent Round Jet. Journal of Fluid Mechanics,1993.250:p.531-551.
    [24]Sreenivasan, K.R., R.A. Antonia, and D. Britz, Local Isotropy and Large Structures in a Heated Turbulent Jet. Journal of Fluid Mechanics,1979.94(OCT):p.745-775.
    [25]Antonia, R.A., B.R. Satyaprakash, and A. Hussain, Statistics of Fine-Scale Velocity in Turbulent Plane and Circular Jets. Journal of Fluid Mechanics,1982.119(JUN):p. 55-89.
    [26]Cabra, R., T. Myhrvold, et al., Simultaneous laser Raman-Rayleigh-Lif measurements and numerical modeling results of a lifted turbulent H-2/N-2 jet flame in a vitiated coflow. Proceedings of the Combustion Institute,2002.29:p.1881-1888.
    [27]Cabra, R., J.Y. Chen, et al., Lifted methane-air jet flames in a vitiated coflow. Combustion and Flame,2005.143(4):p.491-506.
    [28]Peters, N. and F.A. Williams, Liftoff Characteristics of Turbulent Jet Diffusion Flames. Aiaa Journal,1983.21(3):p.423-429.
    [29]Upatnieks, A., J.F. Driscoll, and S.L. Ceccio, Cinema particle imaging velocimetry time history of the propagation velocity of the base of a lifted turbulent jet flame. Proceedings of the Combustion Institute,2002.29(2):p.1897-1903.
    [30]CHEN, T.H. and L.P. GOSS. Flame lifting and flame/flow interactions of jet diffusion flames in AIAA, Aerospace Sciences Meeting,27th.1989. Reno, NV, UNITED STATES.
    [31]Su, L.K., O.S. Sun, and M.G. Mungal, Experimental investigation of stabilization mechanisms in turbulent,lifted jet diffusion flames. Combustion and Flame,2006.144(3): p.494-512.
    [32]Theron, M. and M. Bellenoue, Experimental investigation of the effects of heat release on mixing processes and flow structure in a high-speed subsonic turbulent H2 jet. Combustion and Flame,2006.145(4):p.688-702.
    [33]Schefer, R.W. and P.J. Goix, Mechanism of flame stabilization in turbulent, lifted-jet flames. Combustion and Flame,1998.112(4):p.559-574.
    [34]Wu, C.-Y., Y.-C. Chao, et al., The blowout mechanism of turbulent jet diffusion flames. Combustion and Flame,2006.145(3):p.481-494.
    [35]Renfro, M.W., A. Chaturvedy, et al., Comparison of OH time-series measurements and large-eddy simulations in hydrogen jet flames. Combustion and Flame,2004.139(1-2):p. 142-151.
    [36]Cheng, T.S., C.Y. Wu, et al., Detailed measurement and assessment of laminar hydrogen jet diffusion flames. Combustion and Flame,2006.146(1-2):p.268-282.
    [37]Lyons, K.M., K.A. Watson, et al., On flame holes and local extinction in lifted-jet diffusion flames. Combustion and Flame,2005.142(3):p.308-313.
    [38]Wang, G., A.N. Karpetis, and R.S. Barlow, Dissipation length scales in turbulent nonpremixed jet flames. Combustion and Flame,2007.148(1-2):p.62-75.
    [39]Karpetis, A.N. and R.S. Barlow, Measurements of flame orientation and scalar dissipation in turbulent partially premixed methane flames. Proceedings of the Combustion Institute,2005.30(1):p.665-672.
    [40]Barlow, R.S., J.H. Frank, et al., Piloted methane/air jet flames:Transport effects and aspects of scalar structure. Combustion and Flame,2005.143(4):p.433-449.
    [41]Barlow, R.S. and A.N. Karpetis, Scalar length scales and spatial averaging effects in turbulent piloted methane/air jet flames. Proceedings of the Combustion Institute.2005. 30(1):p.673-680.
    [42]Idicheria, C.A., I.G. Boxx, and N.T. Clemens, Characteristics of turbulent nonpremixed jet flames under normal-and low-gravity conditions. Combustion and Flame.2004. 138(4):p.384-400.
    [43]Becker, H.A. and S. Yamazaki, Entrainment, momentum flux and temperature in vertical free turbulent diffusion flames. Combustion and Flame,1978.33:p.123-149.
    [44]Boersma, B.J., G. Brethouwer, and F.T.M. Nieuwstadt, A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet. Physics of Fluids, 1998.10(4):p.899-909.
    [45]A.Uzun, K.Koutsavdis, et al., Direct numerical simulation of 3-D jets using compact schemes and spatial filtering. AIAA paper,2001.2001-2543.
    [46]Tam, C.K.W., Advances in numerical boundary conditions for computational aeroacoustics, in AIAA Computational Fluid Dynamics Conference,13th.1997: Snowmass Village, CO.
    [47]Tam, C.K.W. and J.C. Webb, Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics. Journal of Computational Physics,1993.107(2):p. 262-281.
    [48]Ahlman, D., G. Brethouwer, and A.V. Johansson, Direct numerical simulation of a plane turbulent wall-jet including scalar mixing. Physics of Fluids,2007.19(6).
    [49]Freund, J.B., Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound. AIAA Journal,1997.35(4):p.740-742.
    [50]Freund, J.B., Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. Journal of Fluid Mechanics,2001.438(-1):p.277-305.
    [51]Freund, J.B. Direct numerical simulation of the noise from a mach 0.9 jet. in 3 IURFH(?) JVRI FEDSO'98,3Ud ASO E/-SO E Joint Fluids Engineering Conference.1999. San Francisco, CA, USA.
    [52]Lele, S.K., Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics,1992.103(1):p.16-42.
    [53]Freund, J.B., S.K. Lele, and P. Moin, Numerical simulation of a Mach 1.92 turbulent jet and its sound field. Aiaa Journal,2000.38(11):p.2023-2031.
    [54]Boersma, B.J., Numerical simulation of the noise generated by a low Mach number, low Reynolds number jet. Fluid Dynamics Research,2004.35(6):p.425-447.
    [55]Picano, F. and C.M. Casciola, Small-scale isotropy and universality of axisymmetric jets. Physics of Fluids,2007.19(11):p.118106.
    [56]Babu, P.C. and K. Mahesh, Upstream entrainment in numerical simulations of spatially evolving round jets. Physics of Fluids,2004.16(10):p.3699-3705.
    [57]da Silva, C.B. and O. Metais, Vortex control of bifurcating jets:A numerical study. Physics of Fluids,2002.14(11):p.3798-3819.
    [58]Bogey, C. and C. Bailly, Computation of the self-similarity region of a turbulent round jet using Large-Eddy Simulation. Direct and Large-Eddy Simulation VI,2006.10:p. 285-292.
    [59]Zhao, W., S.H. Frankel, and L. Mongeau, Large eddy simulations of sound radiation from subsonic turbulent jets. Aiaa Journal,2001.39(8):p.1469-1477.
    [60]A.Uzun, G.A.Blaisdell, and A.S.Lyrintzis. Recent Progress Towards a Large Eddy Simulation Code for Jet Aeroacoustics. in 8th AIAA/CEAS Aeroacoustics Conference & Exhibit.2002. Breckenridge, Colorado.
    [61]Thompson, K.W., Time-dependent boundary conditions for hyperbolic systems, Ⅱ. Journal of Computational Physics,1990.89(2):p.439-461.
    [62]TAM, C.K.W. and Z. DONG, RADIATION AND OUTFLOW BOUNDARY CONDITIONS FOR DIRECT COMPUTATION OF ACOUSTIC AND FLOW DISTURBANCES IN A NONUNIFORM MEAN FLOW. Journal of Computational Acoustics,1996.4(2):p.175-201.
    [63]Wang, P., J. Frohlich, et al., Large-eddy simulation of variable-density turbulent axisymmetric jets. International Journal of Heat and Fluid Flow,2008.29(3):p.654-664.
    [64]James, S. and F.A. Jaberi, Large scale simulations of two-dimensional nonpremixed methane jet flames. Combustion and Flame,2000.123(4):p.465-487.
    [65]Smooke, M.D., Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames, Lecture Notes in Physics, vol.384.1991, Berlin:Springer-Verlag.
    [66]Poinsot, T.J. and S.K. Lele, Boundary conditions for direct simulations of compressible viscous flows. Journal of Computational Physics,1992.101(1):p.104-129.
    [67]Desjardin, P.E. and S.H. Frankel, Two-dimensional large eddy simulation of soot formation in the near-field of a strongly radiating nonpremixed acetylene-air turbulent jet flame. Combustion and Flame,1999.119(1-2):p.121-132.
    [68]Jiang, X. and K.H. Luo, Dynamics and structure of transitional buoyant jet diffusion flames with side-wall effects. Combustion and Flame,2003.133(1-2):p.29-45.
    [69]Klein, M., A. Sadiki, and J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. Journal of Computational Physics,2003.186(2):p.652-665.
    [70]Boulanger, J., L. Vervisch, et al., Effects of heat release in laminar diffusion flames lifted on round jets. Combustion and Flame,2003.134(4):p.355-368.
    [71]Christo, F.C. and B.B. Dally, Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combustion and Flame,2005.142(1-2):p.117-129.
    [72]Katta, V.R., L.P. Goss, and W.M. Roquemore, Numerical Investigations of Transitional H-2/N-2 Jet Diffusion Flames. Aiaa Journal,1994.32(1):p.84-94.
    [73]Lu, T., C.S. Yoo, et al., Analysis of a Turbulent Lifted Hydrogen Air Jet Flame from Direct Numerical Simulation with Computational Singular Perturbation. AIAA paper, 2008-1013.
    [74]Zhao, W. and S.H. Frankel, Numerical simulations of sound radiated from an axisymmetric premixed reacting jet. Physics of Fluids,2001.13(9):p.2671-2681.
    [75]Mizobuchi, Y., S. Tachibana, et al., A numerical analysis of the structure of a turbulent hydrogen jet lifted flame. Proceedings of the Combustion Institute,2002.29:p. 2009-2015.
    [76]Westbrook, C.K., Hydrogen Oxidation Kinetics in daseous Detonations. Combustion Science and Technology,1982.29(1):p.67-81.
    [77]Mizobuchi, Y., J. Shinjo, et al., A numerical study on the formation of diffusion flame islands in a turbulent hydrogen jet lifted flame. Proceedings of the Combustion Institute, 2005.30(1):p.611-619.
    [78]Navarro-Martinez, S. and A. Kronenburg, LES-CMC simulations of a lifted methane flame. Proceedings of the Combustion Institute,2009.32:p.1509-1516.
    [79]Venuturumilli, R. and L.D. Chen, Comparison of four-step reduced mechanism and starting mechanism for methane diffusion flames. Fuel.2009.88(8):p.1435-1443.
    [80]Patwardhan, S.S. and K.N. Lakshmisha, Autoignition of turbulent hydrogen jet in a coflow of heated air. International Journal of Hydrogen Energy,2008.33(23):p. 7265-7273.
    [81]Lignell, D.O., J.H. Chen, and P.J. Smith, Three-dimensional direct numerical simulation of soot formation and transport in a temporally evolving nonpremixed ethylene jet flame. Combustion and Flame,2008.155(1-2):p.316-333.
    [82]Saji, C.B., C. Balaji, and T. Sundararajan, Investigation of soot transport and radiative heat transfer in an ethylene jet diffusion flame. International Journal of Heat and Mass Transfer,2008.51(17-18):p.4287-4299.
    [83]El-Asrag, H. and S. Menon, Large eddy simulation of soot formation in a turbulent non-premixed jet flame. Combustion and Flame,2009.156(2):p.385-395.
    [84]刘奕,郭印诚,et al.,尹烷乎面射流扩散火焰的大涡模拟.工程热物理学报,2003.24(2):p.343-346.
    [85]董刚,王海峰,and陈义良,甲烷/空气湍流射流扩散火焰的化学动力学模拟.燃烧科学与技术,2003.9(6):p.491-496.
    [86]王智化,燃煤多重污染物一体化协同脱除机理及反应射流直接数值模拟DNS的研究,in机械与能源工程学院.2005,浙江大学:杭州.
    [87]Moin, P. and K. Mahesh, Direct numerical simulation:A tool in turbulence research. Annual Review of Fluid Mechanics,1998.30:p.539-578.
    [88]Veynante, D. and L. Vervisch, Turbulent combustion modeling. Progress in Energy and Combustion Science,2002.28(3):p.193-266.
    [89]Vervisch, L. and T. Poinsot, Direct numerical simulation of non-premixed turbulent flames. Annual Review of Fluid Mechanics,1998.30:p.655-691.
    [90]Poinsot, T., S. Candel, and A. Trouv, Applications of direct numerical simulation to premixed turbulent combustion. Progress in Energy and Combustion Science,1995. 21(6):p.531-576.
    [91]Lignell, D.O., J.H. Chen, et al, The effect of flame structure on soot formation and transport in turbulent nonpremixed flames using direct numerical simulation, Combustion and Flame,2007.151:p.2-28.
    [92]Bilger, R.W., Turbulent Diffusion Flames. Annual Review of Fluid Mechanics,1989. 21(1):p.101-135.
    [93]Hult, J., S. Gashi, et al., Measurement of flame surface density for turbulent premixed flames using PLIF and DNS. Proceedings of the Combustion Institute,2007.31(1):p. 1319-1326.
    [94]Mehravaran, K. and F.A. Jaberi, Direct numerical simulation of transitional and turbulent buoyant planar jet flames. Physics of Fluids,2004.16(12):p.4443-4461.
    [95]Jimenez, C., B. Cuenot, et al., Numerical simulation and modeling for lean stratified propane-air flames. Combustion and Flame,2002.128(1-2):p.1-21.
    [96]Haworth, D.C., R.J. Blint, et al., Numerical simulation of turbulent propane-air combustion with nonhomogeneous reactants. Combustion and Flame,2000.121(3):p. 395-417.
    [97]Uzun, A. and M.Y. Hussaini, Investigation of high frequency noise generation in the near-nozzle region of a jet using large eddy simulation. Theoretical and Computational Fluid Dynamics,2007.21(4):p.291-321.
    [98]Jiang, X., E.J. Avital, and K.H. Luo, Direct computation and aeroacoustic modelling of a subsonic axisymmetric jet. Journal of Sound and Vibration,2004.270(3):p.525-538.
    [99]Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry. [cited; Available from:https://cmcs.ca.sandia.gov:9443/sam/files/public/tstc/index.html.
    [100]Sankaran, R., E.R. Hawkes, et al., Structure of a spatially developing turbulent lean methane-air Bunsen flame. Proceedings of the Combustion Institute,2007.31(1):p. 1291-1298.
    [101]Richardson, E.S., C.S. Yoo, and J.H. Chen, Analysis of second-order conditional moment closure applied to an autoignitive lifted hydrogen jet flame. Proceedings of the Combustion Institute,2009.32:p.1695-1703.
    [102]de Charentenay, J., D. Thevenin, and B. Zamuner, Comparison of direct numerical simulations of turbulent flames using compressible or low-Mach number formulations. International Journal for Numerical Methods in Fluids,2002.39(6):p.497-515.
    [103]Nichols, J.W., P.J. Schmid, and J.J. Riley, Self-sustained oscillations in variable-density round jets. Journal of Fluid Mechanics,2007.582:p.341-376.
    [104]Kee RJ, R.F., Miller JA, Coltrin ME, Grcar JF, Meeks E, CHEMKIN Collection. Release 3.5.1999, Reaction Design,Jnc.:San Diego, CA.
    [105]Kennedy, C.A. and A. Gruber, Reduced aliasing formulations of the convective terms within the Navier-Stokes equations for a compressible fluid. Journal of Computational Physics,2008.227(3):p.1676-1700.
    [106]夏钧,气固两相平面湍流射流的直接数值模拟,in机械与能源工程学院能源工程系.2002,浙江大学:杭州.
    [107]Zang, T.A., On the rotation and skew-symmetric forms for incompressible flow simulations. Applied Numerical Mathematics,1991.7(1):p.27-40.
    [108]Visbal, M.R. and D.V. Gaitonde, High-order-accurate methods for complex unsteady subsonic flows. Aiaa Journal,1999.37(10):p.1231-1239.
    [109]Wang, Z.H., J.R. Fan, et al., Direct numerical simulation of hydrogen turbulent lifted jet flame in a vitiated coflow. Chinese Science Bulletin,2007.52(15):p.2147-2156.
    [110]Fan, J.R., K. Luo, et al., Direct numerical simulation of a near-field particle-laden plane turbulent jet. Physical Review E,2004.70(2).
    [111]Michielse, P.H. and H.A. Van der Vorst, Data transport in WangD partition method. Parallel Computing,1988.7(1):p.87-95.
    [112]Wang, H.H., A Parallel Method for Tridiagonal Equations. ACM Trans. Math. Softw., 1981.7(2):p.170-183.
    [113]Kennedy, C.A. and M.H. Carpenter, Several New Numerical-Methods for Compressible Shear-Layer Simulations. Applied Numerical Mathematics,1994.14(4):p.397-433.
    [114]Carpenter, M.H. and C.A. Kennedy, Fourth-order 2N-storage Runge-Kutta schemes. 1994, National Aeronautics and Space Administration.Langley Research Center: Hampton.VA.
    [115]Thompson, K.W., Time dependent boundary conditions for hyperbolic systems. Journal of Computational Physics,1987.68(1):p.1-24.
    [116]Baum, M., T. Poinsot, and D. Thevenin, Accurate Boundary-Conditions for Multicomponent Reactive Flows. Journal of Computational Physics,1995.116(2):p. 247-261.
    [117]Yoo, C.S., Y. Wang, et al., Characteristic boundary conditions for direct simulations of turbulent counter flow flames. Combustion Theory and Modelling,2005.9(4):p.617-646.
    [118]Yoo, C.S. and H.G. Im, Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects. Combustion Theory and Modelling,2007.11(2):p.259-286.
    [119]Lodato, G., P. Domingo, and L. Vervisch, Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows. Journal of Computational Physics,2008.227(10):p.5105-5143.
    [120]Hedstrom, G.W., Nonreflecting boundary conditions for nonlinear hyperbolic systems. Journal Name:J. Comput. Phys.; (United States); Journal Volume:30:2,1979:p. Medium:X; Size:Pages:222-237.
    [121]Rudy, D.H. and J.C. Strikwerda, A nonreflecting outflow boundary condition for subsonic navier-stokes calculations. Journal of Computational Physics,1980.36(1):p. 55-70.
    [122]Kim, J.W. and D.J. Lee, deneralized characteristic boundary conditions for computational aeroacoustics. Aiaa Journal,2000.38(11):p.2040-2049.
    [123]Kim, J.W. and D.J. Lee, d eneralized characteristic boundary conditions for computational aeroacoustics, part 2. Aiaa Journal,2004.42(1):p.47-55.
    [124]Richards, S.K., X. Zhang, et al., The evaluation of non-reflecting boundary conditions for duct acoustic computation. Journal of Sound and Vibration,2004.270(3):p. 539-557.
    [125]Bodony, D.J., Analysis of sponge zones for computational fluid mechanics. Journal of Computational Physics,2006.212(2):p.681-702.
    [126]Lui, C. and SKLele. Direct numerical simulation of spatially developing, compressible, turbulent mixing layers in AIAA, Aerospace Sciences Meeting and Exhibit.2001. Reno, NV; UNITED STATES.
    [127]Colonius, T., S.K. Lele, and P. Moin, Boundary-Conditions for Direct Computation of Aerodynamic Sound d eneration. Aiaa Journal,1993.31(9):p.1574-1582.
    [128]Ta'asan, S. and D. Nark, An absorbing buffer zone technique for acoustic wave propagation in AIAA, Aerospace Sciences Meeting and Exhibit.1995:Reno, NV; UNITED STATES.
    [129]Berenger, J.-P., A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics,1994.114(2):p.185-200.
    [130]Hu, F.Q., Development of PML absorbing boundary conditions for computational aeroacoustics:A progress review. Computers & Fluids,2008.37(4):p.336-348.
    [131]Hu, F.Q., A Stable, Perfectly Matched Layer for Linearized Euler Equations in Unsplit Physical Variables. Journal of Computational Physics,2001.173(2):p.455-480.
    [132]Hu, F.Q., On Absorbing Boundary Conditions for Linearized Euler Equations by a Perfectly Matched Layer. Journal of Computational Physics,1996.129(1):p.201-219.
    [133]Hu, F.Q., X.D. Li, and D.K. Lin, Absorbing boundary conditions for nonlinear Euler and Navier-Stokes equations based on the perfectly matched layer technique. Journal of Computational Physics,2008.227(9):p.4398-4424.
    [134]Hu, F.Q., A Perfectly Matched Layer absorbing boundary condition for linearized Euler equations with a non-uniform mean flow. Journal of Computational Physics,2005. 208(2):p.469-492.
    [135]Thomas, H., G. John, et al., High-Order Methods and Boundary Conditions for Simulating Subsonic Flows in 11th AIAA/CEAS Aeroacoustics Conference E2Sth Aeroacoustics ConferenceF.2005:Monterey.
    [136]Hu, F.Q., On the construction of PML absorbing boundary condition for the non-linear Euler equations, in 44th AIAA Aerospace Sciences Meeting and Exhibit.2006:Reno, Nevada.
    [137]Owis, F. and P. Balakumar, Evaluation of boundary conditions and numerical schemes for jet noise computation, in AIAA, Aerospace Sciences Meeting and Exhibit,38th.2000: Reno, NV; UNITED STATES.
    [138]Hayder, M.E. and E. Turkel, Nonreflecting Boundary-Conditions for Jet Flow Computations. AIAA Journal,1995.33(12):p.2264-2270.
    [139]Sangsan, L., K.L. Sanjiva, and M. Parviz, Simulation of spatially evolving turbulence and the applicability of TaylorD hypothesis in compressible flow. Physics of Fluids A: Fluid Dynamics,1992.4(7):p.1521-1530.
    [140]Bogdanoff, D.W., Compressibility Effects in Turbulent Shear Layers. AIAA Journal, 1983.21(6):p.926-927.
    [141]Clemens, N.T. and M.G. Mungal, Large-Scale Structure and Entrnment in the Supersonic Mixing Layer. Journal of Fluid Mechanics,1995.284:p.171-216.
    [142]Thurow, B., M. Samimy, and W. Lempert, Compressibility effects on turbulence structures of axisymmetric mixing layers. Physics of Fluids,2003.15(6):p.1755-1765.
    [143]Maidi, M. and M. Lesieur, Large eddy simulations of spatially growing subsonic and supersonic turbulent round jets. Journal of Turbulence,2005.6(38):p.1-20.
    [144]Dubief, Y. and F. Delcayre, On coherent-vortex identification in turbulence. Journal of Turbulence,2000.1:p. N11.
    [145]Jeong, J. and F. Hussain, On the identification of a vortex. Journal of Fluid Mechanics Digital Archive,1995.285(-1):p.69-94.
    [146]Cucitore, R., M. Quadrio, and A. Baron, On the effectiveness and limitations of local criteria for the identification of a vortex. European Journal of Mechanics-B/Fluids. 18(2):p.261-282.
    [147]Frassoldati, A., T. Faravelli, and E. Ranzi, The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1:Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds. International Journal of Hydrogen Energy,2007.32(15):p.3471-3485.
    [148]Prathap, C., A. Ray, and M.R. Ravi, Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition. Combustion and Flame,2008.155(1-2):p.145-160.
    [149]Natarajan, J., T. Lieuwen, and J. Seitzman, Laminar flame speeds of H2/CO mixtures: Effect of CO2 dilution, preheat temperature, and pressure. Combustion and Flame.2007. 151(1-2):p.104-119.
    [150]Chung, S.H., Stabilization, propagation and instability of tribrachial triple flames. Proceedings of the Combustion Institute,2007.31(1):p.877-892.
    [151]Chen, J.H., E.R. Hawkes, et al., Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities:Ⅰ. Fundamental analysis and diagnostics. Combustion and Flame,2006.145(1-2):p.128-144.
    [152]Hawkes, E.R., R. Sankaran, et al., Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal CO/H2 kinetics. Proceedings of the Combustion Institute,2007.31(1):p.1633-1640.
    [153]Shalaby, H., A. Laverdant, and D. Thevenin, Direct numerical simulation of a realistic acoustic wave interacting with a premixed flame. Proceedings of the Combustion Institute,2009.32(1):p.1473-1480.
    [154]Chen. J.Y. [cited; Available from:http://public.ca.sandia.gov/TNF/chemistry.html.
    [155]Baum. M, et al., Direct numerical simulation of H2/O2/N2 flames with complex chemistry in two-dimensional turbulent flows. Vol.281.1994, Cambridge, ROYAUME-UNI:Cambridge University Press.
    [156]Mahalingam, S., J.H. Chen, and L. Vervisch, Finite-rate chemistry and transient effects in direct numerical simulations of turbulent nonpremixed flames. Combustion and Flame, 1995.102(3):p.285-290.
    [157]Echekki, T. and J.H. Chen, Direct numerical simulation of autoignition in non-homogeneous hydrogen-air mixtures. Combustion and Flame,2003.134(3):p. 169-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700