航空煤油火焰蔓延特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着飞机、船舶等交通运输业的发展,燃油泄漏引发的火灾频繁发生,不断造成灾难性后果。航空煤油具有燃烧速度快、火势凶猛、辐射热强等特性,发生火灾时危害性极大,往往会造成重大经济损失和惨重人员伤亡。因此,充分认识航空煤油火蔓延的基本特性和机理,对控制航空煤油火灾的发生、发展和扑救,降低火灾的危害性具有重要的理论和现实意义。航空煤油属于高闪点多组分混合燃料(闪点为66℃),燃烧前的初始温度一般都低于闪点,因此其初期的火焰蔓延过程主要是液相控制下的火蔓延,与前人主要研究的酒精类低闪点单质燃料有较大区别。因此,有必要针对航空煤油在液相控制模式下的火蔓延进行研究,为航空煤油火灾的控制和灭火机理的研究提供理论依据。
     为研究航空煤油火焰液相控制下的蔓延过程,论文研制了航空煤油火焰蔓延实验系统;研究了液相控制模式下的火焰蔓延特性,包括火焰形态、蔓延速度和脉动等;研究了火焰蔓延过程中燃料表面的温度分布及其温升;建立了表面流数学模型,给出了火焰蔓延过程中表面流速度和温度分布特点;建立了火焰脉动数学模型,揭示了航空煤油火焰脉动过程和燃料表面可燃蒸气着火方式。论文的具体工作包括:
     研制了液体火蔓延特性实验系统。搭建了尺寸为1.00m(长)×0.04m(宽)×0.10m(深)油槽;利用CCD摄像对火焰位置和蔓延速度进行研究;借助红外摄像和微细热电偶对火焰蔓延过程中液体表面及液面下温度变化进行测量;利用纹影仪对火焰前方的液体表面流进行研究。
     实验研究了不同初始温度条件下航空煤油火蔓延过程。结果表明,航空煤油火焰由主火焰和闪燃火焰两部分构成。随着燃料初始温度升高,主火焰蔓延速度由初温16℃时的0.6cm/s,增长至70℃时的2cm/s。73℃时的火焰蔓延由液相控制模式转为气相控制模式,主火焰蔓延速度也跃升至1m/s。在液相控制条件下,不同初温的航空煤油火焰始终以前展—后缩—前展水平脉动方式向前蔓延。主火焰脉动频率具有多频脉动特征。推动主火焰向前蔓延的主要是脉动幅度较大的基频。基频随着燃料初始温度的升高由16℃时的2.0Hz,增长至70℃时的5.4Hz。而闪燃火焰具有低频间断脉动的特征,其脉动频率基本分布在0.2Hz—1.0Hz之间。
     实验研究了航空煤油火焰锋面前方液体表面温度分布和温升过程。结果表明:燃料初温小于66℃时,燃料表面温升缓慢,并会出现特有的温升稳定阶段。当燃料初始温度大于66℃时,燃料表面温度呈线性快速增长趋势。在本文实验条件下,燃料表面最高温度基本处在115℃—145℃的范围内。火焰锋面前方的液体表面升温区可由预热升温区、闪燃火焰升温区和主火焰升温区构成。燃料初温大于66℃时,只有闪燃火焰升温区和主火焰升温区。火焰锋面前方的表面流由弱扰动区和强扰动区构成,随着燃料初始温度的升高,各区域长度逐渐减小,且弱扰动所占比例逐渐超过强扰动。当燃料初温大于66℃时,整个表面流都为弱扰动。表面流是火焰前方液面温度分布的重要影响因素,强扰动区上方液面温度较低,温度分布较均匀。弱扰动区上方液面温度呈线性快速增长趋势。闪燃区主要处于弱扰动区上方。
     建立了航空煤油火焰蔓延的表面流稳态模型,对表面流内部温度和速度分布进行了分析,主要得出以下结论:温度对航空煤油粘度的影响控制着表面流内部温度和速度分布,随着与表面流出口距离的增加,表面流温度逐渐降低,燃料粘度增大,所受的粘性剪切力也逐渐增强,最终在表面流锋线附近形成强扰动区域,表面流的速度和温度在强扰动区域发生突变,在强扰动区域内部温度呈均匀分布状态。随着燃料初温的升高,低温燃料对表面流的粘性剪切扰动逐渐减小,表面流内部锋线附近的温升平台和速度突变现象逐渐消失,最终导致表面流强扰动区域的宽度和厚度逐渐减小。随着燃料初始温度的升高,表面流体积惯性力与所受粘性剪切力的相互作用对表面流的影响逐渐减小,表面流雷诺数随着燃料初温的升高而减小,同时弱扰动分离和转捩时的雷诺数也随着燃料初始温度的升高而减小。航空煤油火焰锋面前方表面流中也存在冷流现象,出现的位置为强扰动中心偏上位置,主要是表面流回流过程中,部分低温燃料被卷入表面流上层所致。
     建立了火焰锋面前方的可燃蒸气运动模型,对航空煤油火焰蔓延过程中的脉动和着火方式进行了分析。结果表明:航空煤油着火条件为化学反应速率大于Ccri=0.077kg/m3·s。航空煤油火焰脉动过程可以分为发展阶段和衰退阶段,闪燃火焰始终出现在主火焰锋面前方,是火焰脉动区域燃料蒸发速率最低的位置。主火焰区域主要有扩散燃烧和预混燃烧两种燃烧方式,闪燃区的燃烧方式为预混燃烧。
With the rapid development of economy, the process of manufacture in petrochemical industries and transportation of hazardous materials with airplane or watercraft often occur fuel spills, which frequently incur severe fires and result in catastrophic consequence. Aviation fuel, with high combustion heat and large risk, is the risk source in the fuel-spilled-fires. Research on basic principles and processes of aviation fuel flame spreading has significance to understand the occurrence and development of such types of accidents, and so as to reduce the occurrence of such types of fire.
     There is great difference between the characteristic of aviation fuel spreading and that of elemental low flash point fuel as alcohol. Aviation fuel is high flash point multi-component mixed fuel with high flash point of 66℃, and research on which has not been reported before. The initial process of fire flame spreading is mainly liquid-control flame spreading and it’s necessary to carry out the research on liquid-control flame spreading of aviation fuel of China in order to support the research on the aviation fuel fire control and fire-extinguishing mechanism of China.
     The experimental system of aviation fuel flame spreading has been developed to simulate the process of liquid-control flame spreading of aviation fuel of China in this paper. The behavior of liquid-control flame spreading of aviation fuel has been analyzed, and the flame structure, spreading rate and oscillation process have been paid great attention to in the study. Fuel surface temperature distribution and heating process during flame spreading has been discussed. The characteristics of surface flow velocity and temperature distribution has been probed based on the mathematical model of surface flow, and the aviation fuel flame oscillation process and the ignition mode of flammable vapor on fuel Surface have been analyzed after the establishment of mathematical model of aviation fuel flame oscillation. Content in this paper is summarized below.
     Firstly, the experimental system of aviation fuel flame spreading has been developed. the position and rate of spread of the flames have been studied using CCD camera considering the size of the fuel oil pool which is 1m×0.04m×0.10m. Temperature measurement on the surface and under the liquid surface has been carried out during flame spreading with infrared cameras, and micro-thermocouple. The liquid surface flow in front of the flame had been studied by the use of schlieren.
     Secondly, aviation fluid fire spread processes under different initial temperature conditions have been studied experimentally. The main flame spread rate gradually increased from 0.6cm/s at the temperature of 16℃to 2cm/s at the temperature of 70℃with the increase of initial temperature of fuel. At the temperature of 73℃liquid-control mode changed into vapor-control mode, and the main flame spread rate jumped to 1m/s. Aviation fuel flame consists of the main flame and the flash combustion flame. Aviation fuel flame at different initial temperature spread forward by oscillating before and after in the liquid-control mode. It’s the fundamental wave with large oscillating amplitude that pushed forward the main flame spreading, and the frequency of which increased from 2Hz at the temperature of 16℃to 5.4Hz at the temperature of 70℃.The flash combustion flame has the characteristic of intermittent oscillating at low frequency of 0.2Hz—1Hz.
     Thirdly, fuel surface temperature distribution and heating process before the flame front have been studied experimentally. It’s revealed that fuel surface heating area consists of preheating heating area, flash combustion heating area and main flame heating area. Preheating heating area disappears when the initial fuel temperature is higher than the open-cup flash temperature of 66℃, and 66℃is the value of the temperature which means flash combustion probably appear. The temperature at the root of the main flame is 107℃. The highest temperature at fuel surface in this paper ranges from 115℃to 145℃.When the initial fuel temperature is below 66℃, the temperature at surface rises slowly, and a specific heating stability stage appears. When the initial fuel temperature is higher than 66℃, the temperature has a linear rapid growth. Surface flow before the flame front consists of weak disturbance zone and strong disturbance zone, and with the initial fuel temperature increase, both zones decrease gradually in length, and the proportion of weak disturbance increases until the surface flow totally acts as weak disturbance when the initial fuel temperature is higher than 65℃. In strong disturbance zone, surface temperature of aviation fuel is relatively stable. Surface flow with high temperature at the root of the main flame undergoes oscillating cooling process during the transition to the strong disturbance. Buoyancy is the main driving force of surface flow during aviation fuel flame spreading.
     Fourthly, a steady-state model of surface flow during aviation fuel flame spreading has been established to analyze temperature and velocity distribution of surface flow. It’s proved that surface flow transits from the weak disturbance state to the strong disturbance state because of viscous shear flow disturbance increasing gradually with the decreasing temperature during the fuel flame spreading, and at the same time, the temperature distribution transits from linear decrease at the weak state to uniform at the strong disturbance state. The Width and thickness of strong disturbance zone of surface flow gradually increase with the initial temperature decreasing. The separation and transition Reynolds number when weak disturbance state transits to strong disturbance state increase with the initial temperature increase. Some low-temperature fuel was involved in the upper surface flow at the recycling process of surface flow, and that is the main reason for cold flow appearing in the surface flow.
     Finally, a model for flammable vapor movement before the flame front has been proposed to analyze the flame oscillation and ignition mode during flame spreading. It’s indicated that a maximum chemical reaction rate of greater than 0.077kg/m3·s is the ignition condition for aviation fuel. The aviation fuel flame oscillation consists of development stage and decay stage. Flash combustion flames always appear in front of the main flame front, and which has the lowest fuel evaporation rate in flame oscillation region. The main flame region consists of diffusion combustion and premixed combustion, and the flash combustion zone is premixed combustion.
引文
[1]范维澄,王清安,姜冯辉,等.1995.火灾学简明教程[M].合肥:中国科学技术大学出版社,1-2
    [2]范维澄,孙金华,陆守香,等.2004.火灾风险评估方法学[M].合肥:科学出版社,1-3
    [3] E.Planas-Cuchi,H.E.Montiel,J.Casal.1997.A Survey of the Type and Consequenees of Fire Aeeidents in Process Plants and in theTransportation of Hazardous Materials[J].Process Safety and Environment Protection ,75(B1):3一8
    [4] Leonard J.T.,Fulper C.R.,Darwin R.1992.Fire Hazards of Mixed Fuels on the Flight Deck [R].Naval Research Lab.,Washington, DC.
    [5] Well S,P,Cozartd K.S.1997.AirCraft Hangar Fire Threat Study and Analysis [R].
    [6] K. Akita. Some problems of flame spreading along a liquid surface[J]. In Fourth Intemational Symposium on Combustion, pages 1075-1083. Combustion Institute, 1972.
    [7] C. S. Tarifa, P. P. de Naforia and A. Torralbo, in Twelfth Symp, (Int'l) on Combustion, The Combustion Institute, Pittsburgh, PA, 1969, p, 229.
    [8] C. S. Tarifa and M. Torralbo, in Eleventh Symp,(Int'l) on Combustion, The Combustion Institute, Pittsburgh, PA, 1967, p. 553.
    [9] J. de Ris, in Twelfth Symp. (Int'l) on Combustion, The Combustion Institute, Pittsburgh, PA.,1969, p. 241.
    [10] I. Glassman and J. Hansel, Fire Res. Abstr. Reu.,10(1968)217.
    [11] Akita, K., Some problems of flame spread along a liquid surface. In Fourteenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA, 1973, pp. 1075-1083
    [12] E.Degroote,P.L.Garcia Ybarra,flame propagation over liquid alcohols,Journal of Thermal Analysis and Calorimetry,Vol.80(2005)541-548
    [13] Burgoyne, J. H. & Roberts, A. F., The spread of flame across a liquid surface,II. teady-state conditions. Proc. Roy. Soc. A, 308 (1968) 55-68.
    [14] Roberts, A. F., Ph.D Thesis, University of London, 1959.4.
    [15] Akita, K., Some problems of flame spread along a liquid surface. In Fourteenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA, 1973, pp. 1075-81.
    [16] Mackinven, R., Hansel, J. G. & Glassman, I., Influence of laboratory 30 D. White et al. parameters on flame spread across liquid fuels. Combustion Science and Technology, 1(1970) 293-306.
    [17] Torrance, K. E., Subsurface flows preceding flame spread over a liquid fuel. Combustion Science and Technology, 3 (1971) 133-143.
    [18] Torrance, K. E. & Mahajan, R. L., Fire spread over liquid fuels: liquid phase parameters. In Fifteenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA, 1975, pp. 281-7.
    [19] Hillstrom, W. W., Temperature effects on flame spreading over fuels. Paper to Eastern Section, Combustion Institute, Fall Meeting, 1975.
    [20] Glassman, I. & Dryer, F. L., Flame spreading across liquid fuels. Fire Safety Journal, 3 (1980) 123-128.
    [21] Nakakuki, A., Flame spread over solid and liquid fuels. J. Fire & Flammability, 7 (1976) 19-40.
    [22] Akita, K. & Fujiwara, O., Pulsating flame spread along the surface of liquid fuels. Combustion and Flame, 17 (1971) 268-269.
    [23] Ishida, H., Flame spread over fuel-soaked ground. Fire Safety Journal, 10 (1986) 163-171.
    [24] Ishida, H., Flame spread over ground soaked with highly volatile liquid fuel. Fire Safety Journal, 13 (1988) 115-123.
    [25] Sirignano, W. A. & Glassman, I., Flame spreading above liquid fuels: surface-tension -driven flows. Combustion Science and Technology, 1 (1970) 307-312.
    [26] Hirano, T., Suzuki, T., Mashiko, I. & Tanabe, N., Gas movements in front of flames propagating across methanol. Combustion Science and Technology, 22 (1980) 83-91.
    [27] Ito, A., Masuda, D. & Saito, K., A study of flame spread over alcohols using holographic interferometry. Combustion and Flame, 83 (1991) 375-389.
    [28] Miller, F. & Ross, H., Further observations of flame spread over laboratory scale alcohol pools. In Twenty-Fourth Symposium (International) on Combustion. The Combustion Institute, ittsburgh, 1992, pp. 1703-11.
    [29] C. S. Tarifa and M. Torralbo, in Eleventh Sy mp,(Int'l) on Combustion, The Combustion Institute,Pittsburgh, PA, 1967, p. 553.
    [30] I. Glassman, J. Hansel and T. Eklund, Combust.Flame, 13 (1969) 99.
    [31] R. Mackinven, J. Hansel and I. Glassman, Combust.Sci. Technol., 1 (1970) 293.
    [32] J. Burgoyne, A. Roberts and P. Quinton, Proc. R.Soc. London, Ser. A, 308 (1968) 39, 55, 69.
    [33] Williams F.A. Combustion Theory (2ed., Benjamin Pub., 1985)
    [34] Akita, K.“Some Problems of Flame Spread Along a Liquid Surface,”FourteenthSymposium (International) on Combustion, 1975: 1075-1081.
    [35] N. SCHILLER', H. D. ROSSt and W. A. SIRIGNANOZ Computational Analysis of Flame Spread Across Alcohol Pools Combust. Sri. und Tech., 1996, Vol. 118, pp.203-255
    [36] Fletcher J. Miller, Howard D. Ross, David N.Schiller, Temperature Field during Flame Spread over Alcohol Pools: Measurements and Modeling ,[Z].
    [37] A. Ito, A. Narumi, T. Konishi, The Measurement of Transient Two-Dimensional Profiles of Velocity and Fuel Concentration Over Liquids, Journal of Heat Transfer. MAY 1999, Vol. 121 / 413
    [38] Jinsheng Cai, Feng Liu, and William A. Sirignano Three-Dimensional Flame Propagation Above Liquid Fuel Pools , 2nd Joint Meeting of the US Sections of the Combustion Institute, Oakland, March 25-28, 2001
    [39] K. Takahashi. Y. Kodaira, Effect of oxygen on flame spread over liquids, Proceedings of the Combustion Institute 31 (2007) 2625–2631.
    [40] Kozue Takahashi,Akihiko Ito, Kozue Takahashi, Akihiko Ito, Scaling and instability analyses on flame spread over liquids[J], Proceedings of the Combustion Institute 30 (2005) 2271–2277.
    [41] T. Konishi,A. Ito, The Role of A Flame-Induced Liquid Surface Wave on Pulsating Flame Spread,Proceedings of the Combustion Institute, Volume 29, 2002/pp. 267–272
    [1]范维澄,王清安,姜冯辉,等.1995.火灾学简明教程[M].合肥:中国科学技术大学出版社, 448-450
    [2]谈庆明.2005.量钢分析[M].合肥:中国科学技术大学出版社,5-10
    [3] G. Heskestad , Dynamics of the fire plume[J], Phil. Trans. R. Soc. Lond. A (1998) 356, 2815-2833
    [4]孙一坚,工业通风[M],中国建筑工业出版社,1996
    [5] BallantyneA , MossJB. Fine wire thermoeouple measurements of fluctuating temperature[J].Combustion Science and Flame,Teehnology,1977,17:63-72
    [6] Sun J H,Dobashi R,Hirano T. Temperature profile across the combustion zone propagating through an iron particle cloud[J].Journal of Loss Prevention in the process Industries,2001,14(6):463-467
    [7]杭庆彪,陈乐,刘瑞祥红外辐射相对温度测量法的新研究[J]红外技术第31卷第6期2009年6月
    [8]杨立.红外热像仪测温计算与误差分析[J].红外技术,1998,2l(4):20—24.
    [9]刘慧开,扬立,太阳辐射对红外热像仪测温误差的影响[J],红外技术,第24卷第1期,2002年1月
    [10] R. S. ALGER Some Aspects of Structures of Turbulent Pool Fires[R] U.S. Naval Research Laboratory report
    [11]张健,杨立,刘慧开环境高温物体对红外热像仪测温误差的影响[J],红外技术第27卷第5期2005年9月
    [12] Tadashi Konishi, Akihiko ito, Kozo Saito. Transient infrared temperature measurement of liquid-fuel surface: results of sturdies of flames spread over liquids[J].APPLIED OPTICS.COL.39,NO..24,20 August 2000
    [1] Francisco J. Higuera1, Jos’e C. Antoranz.The Vortical Structure of Flame Spreading over Liquid Fuels.LNP567, pp. 190–201, 2001.
    [2] Akita, K. & Fujiwara, O., Pulsating flame spread along the surface of liquid fuels. Combustion and Flame, 17 (1971) 268-269.
    [3] Hirano, T., Suzuki, T., Mashiko, I. & Tanabe, N., Gas movements in front of flames propagating across methanol. Combustion Science and Technology, 22(1980) 83-91.
    [4] Feng, C. C., Lam, S. H. & Glassman, I., Flame propagation through layered fuel-air mixtures. Combustion Science and Technology, l0 (1975) 59-71.
    [5] Williams F.A. Combustion Theory (2ed., Benjamin Pub., 1985)
    [6] J.H.Burgoyne,A.F.Roberts,The Spread of Flame Across a Liquid Surface, Proc, Roy. Soc. A. 308 , 69-79(1968)
    [7] E.Degroote,P.L.Garcia Ybarra,flame propagation over liquid alcohols,Journal of Thermal Analysis and Calorimetry,Vol.80(2005)541-548
    [8] D. White, a C. L. Beyler, C. Fulper & J. Leonard .fire spread on aviation fuel. Fire Safety Journal 215 (1997) 1-31
    [9] A. Ito, A. Narumi, T. Konishi, The Measurement of Transient Two-Dimensional Profiles of Velocity and Fuel Concentration Over Liquids, Journal of Heat Transfer. MAY 1999, Vol. 121 / 413
    [1] A. Akita, Some Problems of Flame Spread along a Liquid Surface, in Proceedings of the XIV. Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA 1973, pp. 1075–1083.
    [2] H. D. Ross, 1994, Prog. Energy Combust. Sci., 20 (1994) 17.
    [3] C. Di Blasi, S. Crescitelli and G. Russo,Comp. Meth. App. Mech. Eng., 90 (1991) 643.
    [4] F. A. Williams, Combustion Theory, 2nd Edition,Benjamin/Cummings Pub., Menlo Park, CA 1985.
    [5] Glassman. I. and Hansel, J. G., Some Thoughts and Experiments on Liquid Fuel Spreading. Steady Burning and Ignitability in Quiescent Atmospheres. Fire research Abstracts and Reviews 10. p. 217 (l968).
    [6] Glassman. I. ,Hansel, J. G.. and Eklund T.Hydrodynamic Effects in the Flame Spreading , Ignitability and Steady Burning of Liquid Fuels". Combustion and Flame 13 p.99 (1969).
    [7] Mackinven. R.,Hansel. J. G. and Glassman.I ,Influence of Laboratory Parameters on Flame Spread Across Liquid Fuels . Comb. SC1. and Tech. 1. p. 293 (1970).
    [8] Burgoyne, J. H ., Roberts. A. F. and Quinton. P. G,The Spread of Flame across a Liquid Surface. I. The Induction Period.,Proc. Roy. Soc. A.308. p. 39
    [9] Burgoyne, J. H and Roberts. A. F ,The Spread of Flame across a Liquid Surface. II. Steady-State Conditions,Proc Roy Soc. A.308. p. 69 (1968).
    [10] Burgoyne, J. H and Roberts. A. F , The Spread of Flame across a Liquid Surface III. A Theoretical Model, Proc Roy S~c A.308. P. 69 (1968).
    [11] Sirignano. W. A. and Glassman. I., Flame Spreadlng Above Liquid Fuels: Surface-Tension-Driven Flows, Comb. Sci. and Tech. I , p.307 (1970)
    [12] Williams F.A. Combustion Theory (2ed., Benjamin Pub., (1985)
    [13] HOWARD D. ROSS ,Detailed Experiments of Flame Spread,Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute, 1996/pp. 1327–1334
    [14] D. White, C. L. Beyler, C. Fulper & J. Leonard .fire spread on aviation fuel. Fire Safety Journal 215 (1997) 1-31
    [1] J.H.Burgoyne,A.F.Roberts,The Spread of Flame Across a Liquid Surface[J], Proc, Roy. Soc. A. 308 , 69-79(1968)
    [2] Schiller, D. N., Ross, H. D., and Sirignano, W. A., Computational Analysis of Flame Spread Over Alcohol Pools[J], Combustion Science and Technology, Vol. 118, No. 4-6, May 1996, pp. 205-258.
    [3] Schiller, D. N. and Sirignano, W. A., Opposed-Flow Flame Spread Across n-Propanol Pools[J], Proceedings of the Twenty-Sixth International Symposium on Combustion, 1996, pp. 1319-1325.
    [4] Cai, J., Liu, F., and Sirignano, W.A. (2002) Three-dimensional flame propagation above liquid fuel pools[J]. Combust. Sci. Technol., 174, 5–34.
    [5] Cai, J., Liu, F., and Sirignano, W.A. (2002) three-dimensional structures of flames over liquidfuel pools[J] ,Combust. Sci. andTech., 175: 2113^2139, 2003
    [6] Higuera, F. J. & Garc__a-Ybarra, P. L. 1998 Steady and oscillatory flame spread over liquid fuels[J].Combust. Theory Modelling 2, 43-56.
    [7] Francisco J. Higuera, Jos′e C. Antoranz, Vladimir Sankovitch, etc .The Vortical Structure of Flame Spreading over Liquid Fuels [J] D. Reguera, L.L. Bonilla, and J.M. Rub′? (Eds.): LNP567, pp. 190–201, 2001.
    [8] Francisco J. Higuera,Liquid-fuel thermocapillary flow induced by a spreading flame[J]. J. Fluid Mech. (2002), vol. 473, pp. 349{377. c 2002 Cambridge University Press
    [9] Sharma, O. P. and Sirignano, W. A., a hydrodynamical analysis of the flame spreading over liquid fuels[J] aiaa paper no.71-207, 1971, pp. 1–5.
    [10] P. L. GARCIA-YBARRA, J. L. CASTILLO, J. C. ANTORANZ, study of the thermocapillary layer preceding slow, steadily spreading flames over liquid fuels [J],Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute, 1996/pp. 1469–1475
    [11] T. Konishi, G. Tashtoush, A. Ito, A. Narumi, K.Saito, Proc. Combust. Inst. 28 (2000) 2819–2826.
    [12] Kozue Takahashi,Akihiko Ito, Kozue Takahashi, Akihiko Ito, Scaling and instability analyses on flame spread over liquids[J], Proceedings of the Combustion Institute 30 (2005) 2271–2277
    [1] A. Ito, A. Narumi, T. Konishi, The Measurement of Transient Two-Dimensional Profiles of Velocity and Fuel Concentration Over Liquids [J], Journal of Heat Transfer. MAY 1999, Vol. 121 / 413
    [2] D. N. SCHILLER', H. D. ROSSt and W. A. SIRIGNANOZ Computational Analysis of Flame Spread Across Alcohol Pools[J] .Combust. Sri. und Tech., 1996, Vol. 118, pp.203-255
    [3] Yuji N., Hiroshi Y. and Tadao. T. Effects of Gravity and Ambient Oxygen on a Gas-Phase Ignition Over a Heat Solid Fuel[J]. Combustion and Flame , 2000,120:34~48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700