重力对稀燃弱湍流预混V形火焰的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湍流和火焰不稳定性对弱湍流预混火焰的影响具有可比性,因此在预测和控制这类火焰时需要考虑更多的因素,例如重力的影响。本文研究重力对稀燃弱湍流预混V形火焰的影响,目的是为发展弱湍流预混火焰理论提供基础数据。
     本文利用落塔和OH-PLIF技术在正常重力和微重力下探测甲烷-空气预混V形火焰,记录了火焰锋面的动态特征。经过图像处理,从OH-PLIF图像中提取了平均反应度(?)、火焰锋面密度∑和湍流火焰传播速度S_T等特征量,以评价重力的影响。研究表明,微重力下火焰皱褶增大并且S_T加快。同时,重力对火焰皱褶的影响随着湍流的增强而减弱,对∑的影响集中在靠近燃烧产物一侧。对于一些火焰,重力的影响与湍流或火焰放热的影响处于同一量级,这意味着重力影响在燃烧模型中不能忽略。重力压制火焰皱褶的原因是Rayleigh-Taylor机理和斜压机理。
     本文对V形火焰进行了数值模拟,目的是研究重力对流场的影响。计算结果显示,浮力加速了燃烧产物的上升,而这又加强了燃烧器出口附近的向上气流。重力的影响随来流速度的增大而减弱,但与火焰放热没有明显的关系,原因是火焰放热除了增强浮力也增大了燃烧产物的惯性力,两种效应相互抵消。
     重力对预混火焰的影响表现为界面效应(对火焰锋面的影响)和体积效应(对流场的影响),二者之间相互耦合。进入微重力后火焰总体特征(如火焰张角)发生的变化同时包含这两种效应。
For the premixed flames of weak turbulence,the influence of turbulence and that of flame instability are comparable. Thus more influences,such as that of gravity,should be taken into consider when predicting or controlling these flames. The present study is focused on the influence of gravity on premixed V-flames of weak turbulence. The purpose is to provide basic data for the development of the theories about the premixed flames of weak turbulence.
    Methane-air premixed V-flames were detected under both normal gravity and microgravity by using drop tower facility and OH-PLIF. The dynamical behavior of flame fronts was recorded. To evaluate the influence of gravity,mean progress
    variable c,flame surface density S and turbulent flame speed ST were extracted
    from the OH-PLIF images through image processing. The results show that wrinkles of the flames were enlarged and the values of ST were increased under microgravity.
    Also,the influence of gravity on flame wrinkles was weakened with the increase of turbulence intensity and the influence of gravity on ?was concentrated at the product side of flame brushes. For some of the flames,the influence of gravity was of the same order as that of turbulence or heal release. This implies that the influence of gravity should not be neglected in models of these flames. Rayleigh-Taylor mechanise anu baroclinic mechanism account for the suppression of flame wrinkles by gravity.
    
    
    To study the influence of gravity on flow field of the flames,numerical simulation was performed. The results show that buoyancy accelerated the rising plume of product and that the accelerated flow of the product in turn enhanced the rising flow near the burner exit. Also,the influence of gravity on flow field of the flames was weakened with increasing momentum of the coming flow,but no apparent correlation was found between the influence of gravity and heat release. The reason is that heat release also increased inertia force of product besides increasing buoyancy and these two effects were opposite to each other.
    As a whole,the influences of gravity on premixed flames are exhibited as two different effects:interface effect,namely the influence on flame fronts,and bulky effect,namely the influence on flow field,and the two effects couple with each other. Both of the two effects account for the change of overall features,such as flame angles,of the flames under microgravity.
引文
1. Bray, K. N. C.. The Challenge of Turbulent Combustion. In 26th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1996:1~26
    2. Shuman, T. R., Nicol, D. G., Lee, J. C. Y., and Malte, P. C.. NOx Behavior in Lean-Premixed Combustion. Poster No. W2A01, presented at the Twenty-seventh Symposium (International) on Combustion, University of Colorado at Boulder,August 2~7, 1998
    3. Mallampilli, H. P., Fletcher, T. H., and Chen, J. Y.. Evaluation of CH_4/ NOx Global Mechanisms Used for Modeling Lena Premixed Turbulent Combustion of Natural Gas. Paper 96F-098, presented at the Fall Meeting of the Western States Section of the Combustion Institute, Los Angeles, CA, 1996
    4. Williams, F. A. (著), 庄逢辰,杨本濂(译).燃烧理论.第二版.北京:科学出版社,1990
    5. Aldredge, R. C.. Flame Proagation in Low-intensity Turbulence under Microgravity Conditions. In Proceedings of the 6th International Microgravity Combustion Workshop, NASA Conference Publication 210826, 2001: 459~462
    6. King, M. K.. NASA Microgravity Combustion Science Program. In Proceedings of the 5th International Microgravity Combustion Workshop, NASA Conference Publication 208917, 1999:3~8
    7. Ross, H., Sotos, R., and T'ien, J. S.. Observations of Candle Flames under Various Atmospheres in Microgravity. Combustion Science and Technology, 1991, 75: 155~160
    8. Ronney, P. D.. Understanding Combustion Progresses Through Microgravity Research. In 27th Symposium (International) on Combustion, The Combustion Institute, 1998:2485~2506
    9. Ross, H. D. (Ed.). Microgravity Combustion: Fire in Free Fall. Academic Press, 2001
    10. Markstein, G. H. (Ed.). Nonsteady Flame Propagation. Pergamon Press, 1964
    
    
    11. Aldredge, R. C. and Williams, F. A.. Influence of Wrinkled Premixed-flame Dynamics on Large-scale, low-intensity turbulent flow. Journal of Fluid Mechanics, 1991, 228:487~511
    12. Libby, P. A.. Theoretical Analysis of the Effect of Gravity on Premixed Turbulent Flames. Combustion Science and Technology, 1989, 68:15~33
    13. Kostiuk, L. W. and Cheng, R. K.. The Coupling of Conical Wrinkled Laminar Flames with Gravity. Combustion and Flame, 1995, 103:27~40
    14. Bédat, B. and Cheng, R. K.. Effects of Buoyancy on Premixed Flame Stabilization. Combustion and Flame, 1996, 107:13~26
    15. Cheng, R. K. and Bédat, B.. Effects of Buoyancy on Lean Premixed V-flames Part I: Laminar and Turbulent Flame Structure. Combustion and Flame, 1999, 116: 360~375
    16. Driscoll, J. E. Flame-Vortex Interactions in Microgravity to Improve Models of Turbulent Combustion. In Proceedings of the 5th International Microgravity Combustion Workshop, NASA Conference Publication 208917, 1999:267~270
    17. A Revolution in the Making. Microgravity News, Winter 1998, vol. 5, no. 4:3-30
    18. Eigenbrod, Ch., K(?)nig, J., Bolik, T., Reken, H., and Rath, H. J.. First Results from Non-intrusive Laser Diagnostic System for Combustion Research at Bremen Drop Tower. Microgravity Science and Technology, 1995, Ⅷ/2:134~136
    19. Wang, Y., Lei, Y., Zhang, X., Hu, W., K(?)nig, J., Hinrichs, O., Eigenbrod, Chr. and Rath, H. J.. Buoyancy Influence on Wrinkled Premixed V-flames. Microgravity Science and Technology, 2001, ⅫⅠ/1: 8~13
    20. Ronney, P. D.. Near-Limit Flame Structures at Low Lewis Number. Combustion and Flame, 1990, 82:1~14
    21. Ronney, P. D., Whaling, K. N., Abbud-Madrid, A., Gatto, J. L., and Pisowicz, V. L.. Stationary Premixed Flames in Spherical and Cylindrical Geometries. AIAA Journal, 1994, vol. 32, no. 3:569~577
    22. Ronney, P. D., Wu, M. S., Weiland, K. J., and Pearlman, H. G.. Experimental Study of Flame Balls in Space: Preliminary Results from STS-83. AIAA Journal, 1998, vol. 36, no. 8:1361~1368
    
    
    23. Lakshmisha, K. N., Paul, P. J., Rajah, N. K. S., Goyal, G., and Mukunda, H. S.. Behavior of Methane-Oxygen-Nitrogen Mixtures near Flammability Limits. In 22th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1988:1573~1580
    24. Giovangigli, V. and Smooke, M.. Application of Continuation Methods to Plane Premixed Laminar Flames. Combustion Science and Technology, 1992, 87:241~256
    25. Levy, A.. An Optical Study of Flammability Limits. Proceedings of Royal Society (London), 1965, A283:134~145
    26. Buckmaster, J. D. and Mikolaitis, D.. A Flammability-Limit Model for Upward Propagation through Lean Methane/Air Mixtures in a Standard Flammability Tube. Combustion and Flame, 1982, 45:109~119
    27. Krivulin, V. N., Kudryavtsev, E. A., Baratov, A. N., Badalyan, A. M., and Babkin, V. S.. Effect of Acceleration on the Limits of Propagation of Homogeneous Gas Mixtures. Combustion, Explosion, and Shock Waves, 1981, 17:37~41
    28. Jarosinsky, J., Strehlow, R. A., and Azarbarzin, A.. The Mechanisms of Lean Limit Extinguishment of an Upward and Downward Propagating Flame in A Standard Flammability Tube. In 19th Symposium (International) on Combustion, The Combustion Institute, 1982:1549~1557
    29. Patnaik, G. and Kailasanath, K.. Numerical Simulation of the Extinguishment of Downward Propagating Flames. In 24th Symposium (International) on Combustion, The Combustion Institute, 1992:189~195
    30. Landau, L. D. and Lifshitz, E. M.. Fluid Mechanics. Second Edition. Pergamon Press. 1987
    31. Darrieus, G.. Propagation d'un Front de Flamme. Paper presented at La Technique Moderne, France, 1938
    32. Landau, L. D.. On the Theory of SBW Combustion. Acta Physicochim, 1944, vol.19:77
    33. Pelcé, P. and Clavin, P.. Influence of Hydrodynamics and Diffusion upon the
    Stability Limits of Laminar Premixed Flames. Journal of Fluid Mechanics, 1982,124:219~237
    
    
    34. Joulin, G. and Clavin, P.. Linear Stability Analysis of Nonadiabatic Flames: Diffusional-Thermal Model. Combustion and Flame, 1979, 35:139~153
    35. Rakiv, Z. and Sivashinsky, G. I.. Instabilities in Upward Propagating Flames. Combustion Science and Technology, 1987, 54:69~84
    36. Dunsky, C. and Fernandez-Pello, A. C.. Gravitational Effects on Cellular Flame Structure. In 23th Symposium (International) on Combustion, The Combustion Institute, 1990:1657~1662
    37. Pearlman, H. G. and Ronney, P. D.. Near-Limit Behavior of High Lewis-Number Premixed Flames in Tubes at Normal and Low Gravity. Physics of Fluids, 1994, 6: 4009~4018
    38. Pearlman, H. G.. Exitability in High-Lewis Number Premixed Gas Combustion. Combustion and Flame, 1997, 109:382~398
    39. Kaper, H. G., Leaf, G. K., Matkowsky, B. J., and Olmstead, W. E.. Dynamics of Nonadiabatic Premixed Flames in a Gravitational Field. SIAM Journal on Applied Mathematics, 1987, 47:544~555
    40. Booty, M. R., Margolis, S. B., and Matkowsky, B. J.. Interaction of Pulsating and Spinning Waves in Nonadiabatic Flame Propagation. SIAM Journal on Applied Mathematics, 1987, 47:1241~1286
    41. Cheng, R. K., Dimalanta, R., Wernet, M. P., and Greenberg, P. S.. Field Effects of Buoyancy on Lean Premixed Turbulent Flames. In Proceedings of the 6th International Microgravity Combustion Workshop, NASA Conference Publication 210826, 2001:121~124
    42. Lewis, G. D.. Combustion in a Centrifugal-Force Field. In 13th Symposium (International) on Combustion, The Combustion Institute, 1970:625~629
    43. Wang, Q. and Ronney, P. D.. Mechanisms of Flame Propagation Limits in Vertical Tubes. Spring Technical Meeting, Combustion Institute, Eastern/Central States Section, March 1993, New Orleans, LA, paper 45
    44. Bill, R. G., Jr., Namer, I., Talbot, L., Cheng, R. K., and Robben, F.. Flame Propagation in Grid-Induced Turbulence. Combustion and Flame, 1981, 43:229~242
    
    
    45. Cheng, R. K. and NG, T. T.. Velocity Statistics in Premixed Turbulent Flames. Combustion and Flame, 1983, 52:185~202
    46. Shepherd, I. G., Hubbard, G. L., and Talbot, L.. The Dynamic Structure of Turbulent V-Shaped Premixed Flames. In 21th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1986:1377~1383
    47. Cheng, R. K., Shepherd, I. G., and Talbot, L.. Reaction Rates in Premixed Turbulent Flames and Their Relevance to the Turbulent Burning Speed. In 22th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1988:771~780
    48. Bray, K. N. C. and Moss, J. B.. A Unified Statistical Model of the Premixed Turbulent Flame. Acta Astronautica, 1977, 4:291~319
    49. 是勋刚(主编).湍流.天津大学出版社,1994
    50. Libby, P. A. and Williams, F. A. (Eds.) Turbulent Reacting Flows. Academic Press, 1994
    51. Batchelor, G. K. and Townsend, A. A.. Decay of Vorticity in Isotropic Turbulence. Proceedings of Royal Society (London), 1947, A190:534~550
    52. Batchelor, G. K. and Townsend, A. A.. Decay of Isotropic Turbulence in the Initial Period. Proceedings of Royal Society (London), 1948, A193:539~558
    53. Smith, K. O. and Goudin, F. C.. Experimental Investigation of Flow Turbulence Effects on Premixed Methane-Air Flames. In: Kennedy, L. A. (Ed.). Progress in Astronautics and Aeronautics. American Institute of Aeronautics and Astronautics, Inc., 1978, 58:37-54
    54. Peters, N.. Laminar Flamelet Concepts in Turbulent Combustion. In 21th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh. 1986:1231~1250
    55. Batchelor, G. K (著),沈青,贾复(译).流体动力学引论.第一版.北京:科学出版社,1997
    56. 韩惠霖(著).喷射理论及其应用.第一版.杭州:浙江大学出版社,1990
    57. Potter, M. C. and Foss, J. F.. Fluid Mechanics. John Wiley & Sons, Inc., 1975
    
    
    58. Schlichting, H.. Boundary-layer Theory. Seventh Edition. McGraw-Hill, Inc.,1979
    59. Hayes, W. D.. The Vorticity Jump across a Gasdynamic Discontinuity. Journal of Fluid Mechanics, 1959, 2:595~600
    60. Pindera, M.-Z. and Talbot, L.. Some Fluid Dynamic Considerations in the Modeling of Flames. Combustion and Flame, 1988, 73:111~125
    61. Rhee, C. W., Talbot, L., and Sethian, J. A.. Dynamical Behaviour of a Premixed Turbulent Open V-flame. Journal of Fluid Mechanics, 1995,300:87~115
    62. Mueller, C. J., Driscoll, J. F., Reuss, D. L., Drake, M. C., and Rosalik, M. E.. Vorticity Generation and Attenuation as Vortices Convect through a Premixed Flame. Combustion and Flame, 1998, 112:342~358
    63. MKS Type 1500 Series Mass-Flo~ Controller. Instruction Manual, 114173-P1, Rev D, 9/96, MKS Instruments, Inc.
    64. MKS Type 1179A and 2179A Mass-Flo(?) Controller and Type 179A Mass-Flo Meter. Instruction Manual, 116527-P1, Rev E, 3/99, MKS Instruments, Inc.
    65. Wolfrum, J.. Lasers in Combustion: From Basic Theroy to Practical Devices. In 27th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1998:1~41
    66. Nguyen, Q. and Paul, P. H.. The Time Evolution of a Vortex-Flame Interaction Observed via Planar Imaging of CH and OH. In 26th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1996:3571~364
    67. Becker, H., Monkhouse, P. B., Wolfrum, J., Cant, R. S., Bray, K. N. C., Maly, R., Pfister, W., Stahl, G., and Warnatz, J.. Investigation of Extinction in Unsteady Flames in Turbulent Combustion by 2D-LIF of OH Radicals and Flamelet Analysis. In 23th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1990:817~823
    68. Dyer, M. J. and Crosley, D. R.. Two-Dimensional Imaging of OH Laser-induced Fluorescence in a Flame. Optics Letters, 1982, 7:382~384
    69. Libby, P. A. and Bray, K. N. C.. Variable Density Effects in Premixed Turbulent Flames. AIAA Journal, 1977, vol. 15, no. 8:1186~1193
    
    
    70. Bray, K. N. C., Libby, P. A., Masuya, G., and Moss, J. B.. Turbulence Production in Premixed Turbulent Flames. Combustion Science and Technology, 1981, 25: 127~140
    71. Williams, F. A.. Analytical and Numerical Methods for Investigation of Flow Fields with Chemical Reactions Especially Related to Combustion. AGARD Conference Proceedings, NATO, Paris, 1975, 164:Ⅱ1-1~Ⅱ1-25
    72. Bray, K. N. C.. Studies of the Turbulent Burning Velocity. Proceedings of Royal Society (London), 1990, A431: 315~335
    73. Fedotov, S. P.. Stochastic Description of Premixed Turbulent Combustion in Terms of a Coarse-Grained Flame Surface Density. Combustion and Flame, 1996, 106:369~376
    74. Shepherd, I. G.. Flame Surface Density and Burning Rate in Premixed Turbulent Flames. In 26th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1996:373~379
    75. Karlovitz, B.. Open Turbulent Flames. In 4th Symposium (International) on Combustion, Williams & Wilkins, 1953:60~67
    76. Goix, P., Paranthoen, P., and Trinite, M.. A Tomographic Study of Measurements in a V-Shaped H_2-Air Flame and a Lagrangian Interpretation of the Turbulent Flame Brush Evolution. Combustion and Flame, 1990, 81: 229~241
    77. Petersen, R. E. and Emmons, H. W.. Stability of Laminar Flames. The Physics of Fluids, 1961, vol. 4, no. 4:456~464
    78. Yoshida, A. and Tsuji, H.. Characteristic Scale of Wrinkles in Turbulent Premixed Flames. In 19th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1982:403~411
    79. Cheng, R. K. and Shepherd, I. G.. The Influence of Burner Geometry on Premixed Turbulent Flame Propagation. Combustion and Flame, 1991, 85:7~26
    80. Cheng, R. K. and Bédat, B.. Effects of Buoyancy on Laminar and Turbulent Premixed V-Flames. In Proceedings of the 4th International Microgravity, Combustion Workshop, NASA Conference Publication 10194, 1997:149~153
    
    
    81. 张兆顺,崔桂香(著).流体力学.第一版.北京:清华大学出版社,1999
    82. Sinibaldi, J. O., Mueller, C. J., Tulkki, A. E., and Driscoll, J. F.. Suppression of Flame Wrinkling by Buoyancy: The Baroclinic Stabilization Mechanism. AIAA Journal, 1998, vol. 36, no. 8:1432~1438
    83. Dfiscoll, J. F., Sichel, M., and Sinibaldi, J. O.. Premixed Flame-Vortex Interactions Imaged in Microgravity. In Proceedings of the 4th International Microgravity Combustion Workshop, NASA Conference Publication 10194, 1997: 167~172
    84. Trouvé, A. and Poinsot, T.. The Evolution Equation for the Flame Surface Density in Turbulent Premixed Combustion. Journal of Fluid Mechanics, 1994, 278:1~31
    85. Veynante, D., Piana, J., Duclos, J. M., and Martel, C.. Experimental Analysis of Flame Surface Density Models for Premixed Turbulent Combustion. In 26th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1996:413~420
    86. Chew, T. C., Bfitter, R. E., and Bray, K. N. C.. Laser Tomography of Turbulent Premixed Bunsen Flames. Combustion and Flame, 1989, 75:165~174
    87. Chew, T. C., Bray, K. N. C., and Britter, R. E.. Spatially Resolved Flamelet Statistics for Reaction Rate Modeling. Combustion and Flame, 1990, 80:65~82
    88. Shy, S. S., I, W. K., Lee, E. I., and Yang, T. S.. Experimental Analysis of Flame Surface Density Modeling for Premixed Turbulent Combustion Using Aqueous Autocatalytic Reactions. Combustion and Flame, 1999, 118:606~618
    89. 朱德忠(主编).热物理激光测试技术.第一版.科学出版社,1990
    90. Bédat, B., Kostiuk, L. W. and Cheng, R. K.. Coupling of Wrinkled Laminar Flames with Gravity. Presented at the 3rd International Microgravity Combustion Workshop, Cleveland, OH, 1995
    91. Cheng, R. K., Bédat, B., Yegian, D. T. and Greenberg, P.. Effects of Buoyancy on the Flowfields of Lean Premixed Turbulent V-Flames. In Proceedings of the 5th International Microgravity Combustion Workshop, NASA Conference Publication 208917, 1999:263~266
    92. Kostiuk, L. W. and Cheng, R. K.. Imaging of Premixed Flames in Microgravity.Experiments in Fluids. 1994, 18:59~68
    
    
    93.王岳,程晓斌,张培元,张孝谦,陈静宜,杨平,解轸,雷宇.用高空气球搭载微重力实验研究浮力对预混V形火焰的影响.工程热物理学报,2001,第22卷第1期:130~132
    94.王应时,范维澄,周力行,徐旭常(著).燃烧过程数值计算.第一版.北京:科学出版社,1989
    95. Boughanem, H. and Trouvé, A.. The Domain of Influence of Flame Instabilities in Turbulent Premixed Combustion. In 27th Symposium (International) on Combustion, The Combustion Institute, 1998:971~978
    96. Sethian, J. A.. Level Set Methods and Fast Marching Methods. The second edition. Cambridge: Cambridge University Press, 1999
    97. Qian, J., Tryggvason, G. and Law, C. K. A Front Tracking Method for the Motion of Premixed Flames. Journal of Computational Physics, 1998, 114:52~69
    98.Kuo,K.K.(著),郑楚光,袁建伟,米建春(译).燃烧原理.第一版.武汉:华中理工大学出版社,1991
    99.Patankar,S.V. (著),张政(译).传热与流体流动的数值计算.第一版.北京:科学出版社,1992
    100. Peters, N.. Four Lectures on Turbulent Combustion. ERCOFTAC Summer School, Aachen, Germany, September 15~19, 1997
    101.傅维镳,张永廉,王清安(著).燃烧学.第一版.北京:高等教育出版社,1992
    102. PHOENICS3.3 Documentation. CHAM, UK, 2000
    103. Spalding, D. B.. Mixing and Chemical Reaction in Steady Confined Turbulent Flames. In 13th Symposium (International) on Combustion, The Combustion Institute, 1970:649~657
    104. Lewis, B. and Von Elbe, G.. Combustion, Flames and Explosions of Gases. Second Edition. Academic Press Inc., 1961
    105.张孝谦,杨平,封灵芝,韦明罡,孙秀婵,田宗漱.浮力对V形火焰张角的影响.工程热物理学报,1996,第17卷第4期:505~508

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700